Problems

Section 05

Problem 1

Module Implementations: Consider the Ocaml code below that defines a module signature for a
simple list library

module type LIST_LIB = sig

(*
map f lst applies function f to each element of 1lst, returning a
list of the results.

*)
val map: ('a -> 'b) -> 'a list -> 'b list

(*
filter f 1st returns a list of elements in 1lst for which f returns
true.

*)

val filter: ('a -> bool) -> 'a list -> 'a list
end

For each implementation of this signature below, state whether it type checks and if it
implements the module correctly.

module L1ib1: LIST_LIB = struct

let rec map f 1 =
match 1 with

| [1 -> T[]
| hd :: t1l -> f hd :: map f tl

let rec filter f 1 =
match 1 with

| [1 -> 1]
| hd :: tl -> if f hd then hd :: filter f tl else filter f tl

end

Typechecks (T / F): Correct (T / F):

module L1ib2: LIST_LIB = struct
let rev 1 =
let rec loop 1 acc =
match 1 with
| []1 -> acc
| hd :: tl -> loop tl (hd :: acc)
in loop 1 []

let rec map f 1 =
match 1 with

| [1 -> T[]
| hd :: t1l -> f hd :: map f tl

let rec filter f 1 =
match 1 with

| [1 -> T[]
| hd :: tl -> if f hd then hd :: filter f tl else filter f tl

end

Typechecks (T / F): Correct (T / F):

module L1ib3: LIST_LIB = struct

let rec map f 1 =
match 1 with

| [1 -> T[]
| hd :: t1l -> f hd :: map f tl

let rec filter f 1 =
match 1 with

| [1 -> 1]
| hd :: tl -> if f hd then filter f tl else hd :: filter f tl

end

Typechecks (T / F): Correct (T / F):

module Llib4: LIST_LIB

let rev 1 =
let rec loop 1 acc
match 1 with

| []1 -> acc
| hd :: tl -> loop
in loop 1 []
let map f 1 =

let rec loop 1 acc =
match 1 with
| []1 -> rev acc
| hd :: tl -> loop
in loop 1 []

end

Typechecks (T/F):

struct

t1 (hd

t1 (f hd

:: acc)

:: acc)

Correct (T / F):

Problem 2

Module Representation Invariants: Consider the OCaml code below that defines a signature for
a module that implements a list where all elements are positive integers.

module type POSITIVE_LIST = sig
(* This is a signature for a module that provides an implementation
for a list of ints where each int is positive. It should be
impossible for the user to have a list with any non-positive
elements using this module (this is our representation invariant)

*)

type t

val empty_posList: t

val cons: int -> t -> t

val map: (int -> int) -> t -> t
end

For each implementation of this signature below, state whether it implements the module
correctly.

module PL1: POSITIVE_LIST = struct
type t = int list
let empty_posList = []
let cons al=a ::1
let map = List.map
end

Correct (T / F):

module PL2: POSITIVE_LIST = struct
type t = int list
let empty_posList = []

let cons al =if a > @ then a :: 1
else failwith "Non-positive input”

let rec map f 1 =
match 1 with

| [1 -> 11
| hd :: tl -> (f hd) :: map f tl

end

Correct (T / F):

module PL3: POSITIVE_LIST = struct
type t = int list
let empty_posList = []

let cons al =if a > 06 then a :: 1
else failwith "Non-positive input”

let rec map f 1 =
match 1 with

| [1 -> 1]
| hd :: tl -> cons (f hd) (map f tl)

end

Correct (T / F):

	Problems
	Section 05
	Problem 1
	
	Problem 2

