
Problems

Section 05

Problem 1

Module Implementations: Consider the Ocaml code below that defines a module signature for a
simple list library

module type LIST_LIB = sig

 (*
 map f lst applies function f to each element of lst, returning a
list of the results.
 *)
 val map: ('a -> 'b) -> 'a list -> 'b list

 (*
 filter f lst returns a list of elements in lst for which f returns
true.
 *)
 val filter: ('a -> bool) -> 'a list -> 'a list

end

For each implementation of this signature below, state whether it type checks and if it
implements the module correctly.

module Llib1: LIST_LIB = struct

 let rec map f l =
 match l with
 | [] -> []
 | hd :: tl -> f hd :: map f tl

 let rec filter f l =
 match l with
 | [] -> []
 | hd :: tl -> if f hd then hd :: filter f tl else filter f tl

end

Typechecks (T / F): _____​ ​ ​ ​ Correct (T / F): _____

module Llib2: LIST_LIB = struct

 let rev l =
 let rec loop l acc =
 match l with
 | [] -> acc
 | hd :: tl -> loop tl (hd :: acc)
 in loop l []

let rec map f l =
 match l with
 | [] -> []
 | hd :: tl -> f hd :: map f tl

 let rec filter f l =
 match l with
 | [] -> []
 | hd :: tl -> if f hd then hd :: filter f tl else filter f tl

end

Typechecks (T / F): _____​ ​ ​ ​ Correct (T / F): _____

module Llib3: LIST_LIB = struct

 let rec map f l =
 match l with
 | [] -> []
 | hd :: tl -> f hd :: map f tl

 let rec filter f l =
 match l with
 | [] -> []
 | hd :: tl -> if f hd then filter f tl else hd :: filter f tl

end

Typechecks (T / F): _____​ ​ ​ ​ Correct (T / F): _____

module Llib4: LIST_LIB = struct

 let rev l =
 let rec loop l acc =
 match l with
 | [] -> acc
 | hd :: tl -> loop tl (hd :: acc)
 in loop l []

 let map f l =
 let rec loop l acc =
 match l with
 | [] -> rev acc
 | hd :: tl -> loop tl (f hd :: acc)
 in loop l []

end

Typechecks (T / F): _____​ ​ ​ ​ Correct (T / F): _____

Problem 2

Module Representation Invariants: Consider the OCaml code below that defines a signature for
a module that implements a list where all elements are positive integers.

module type POSITIVE_LIST = sig
 (* This is a signature for a module that provides an implementation
 for a list of ints where each int is positive. It should be
 impossible for the user to have a list with any non-positive
 elements using this module (this is our representation invariant)
 *)

 type t

 val empty_posList: t

 val cons: int -> t -> t

 val map: (int -> int) -> t -> t

end

For each implementation of this signature below, state whether it implements the module
correctly.

module PL1: POSITIVE_LIST = struct

 type t = int list

 let empty_posList = []

 let cons a l = a :: l

 let map = List.map

end

Correct (T / F): _____

module PL2: POSITIVE_LIST = struct

 type t = int list

 let empty_posList = []

 let cons a l = if a > 0 then a :: l

 else failwith "Non-positive input"

 let rec map f l =
 match l with
 | [] -> []
 | hd :: tl -> (f hd) :: map f tl

end

Correct (T / F): _____

module PL3: POSITIVE_LIST = struct

 type t = int list

 let empty_posList = []

 let cons a l = if a > 0 then a :: l

 else failwith "Non-positive input"

 let rec map f l =
 match l with
 | [] -> []
 | hd :: tl -> cons (f hd) (map f tl)

end

Correct (T / F): _____

	Problems
	Section 05
	Problem 1
	
	Problem 2

