

Section: Congruence

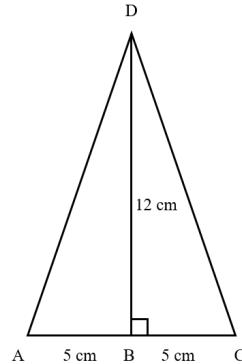
Sub-section: Congruent Triangles (SAS and ASA) and Congruent Triangles (AAS and HL)

Choose the correct answer.

1. What postulate can be used to prove that the triangles below are congruent?

(Understand, MA 2.2 G.8/4)

- A. AAS
- B. ASA
- C. SAS**
- D. SSS


Solution SAS

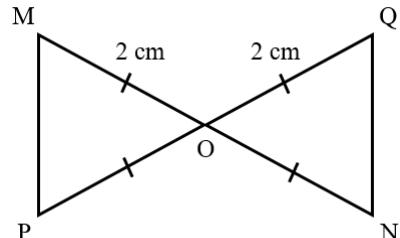
Length of AB = Length of BC (Given)

$\hat{ABD} = \hat{CBD}$ (Given)

Length of BD = Length of BD (Common side)

So, $\Delta ABD \cong \Delta CBD$ (SAS)

Section: Congruence


Sub-section: Congruent Triangles (SAS and ASA) and Congruent Triangles (AAS and HL)

2. What postulate can be used to prove that the triangles below are congruent?

(Understand, MA 2.2 G.8/4)

- A. SAS
- B. AAS
- C. ASA
- D. SSS

Solution SAS

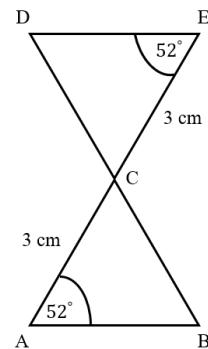
Length of MO = Length of QO (Given)

$\hat{MOP} = \hat{QON}$ (Vertical angle)

Length of OP = Length of ON (Given)

So, $\Delta MOP \cong \Delta QON$ (SAS)

Quiz: Congruent Triangles


Section: Congruence

Sub-section: Congruent Triangles (SAS and ASA) and Congruent Triangles (AAS and HL)

3. What postulate can be used to prove that the triangles below are congruent?

(Understand, MA 2.2 G.8/4)

- A. AAS
- B. ASA**
- C. SAS
- D. SSS

Solution ASA

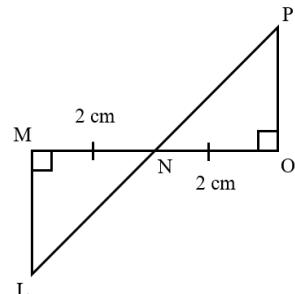
$$\hat{BAC} = \hat{DEC} \text{ (Given)}$$

$$\text{Length of } AC = \text{Length of } EC \text{ (Given)}$$

$$\hat{ACB} = \hat{ECD} \text{ (Vertical angle)}$$

So, $\Delta ACB \cong \Delta ECD$ (ASA)

Quiz: Congruent Triangles


Section: Congruence

Sub-section: Congruent Triangles (SAS and ASA) and Congruent Triangles (AAS and HL)

4. What postulate can be used to prove that the triangles below are congruent?

(Understand, MA 2.2 G.8/4)

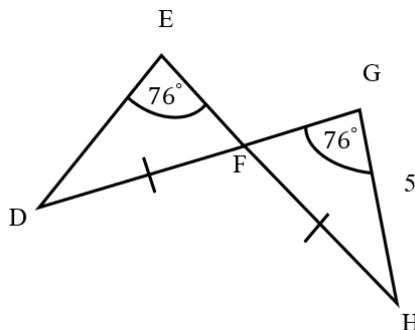
- A. AAS
- B. SSS
- C. SAS
- D. ASA**

Solution ASA

$$\hat{L}MN = \hat{P}ON \text{ (Given)}$$

$$\text{Length of } MN = \text{Length of } ON \text{ (Given)}$$

$$\hat{M}NL = \hat{O}NP \text{ (Vertical angle)}$$


So, $\Delta LMN \cong \Delta PON$ (ASA)

Quiz: Congruent Triangles

Section: Congruence

Sub-section: Congruent Triangles (SAS and ASA) and Congruent Triangles (AAS and HL)

5.

In the figure above, given $\hat{D}\hat{E}\hat{F} = \hat{F}\hat{G}\hat{H} = 76^\circ$, $\overline{DF} = \overline{FH}$ and $\overline{DE} = 3x - 13$.

What is the value of x ?

(Understand, MA 2.2 G.8/4)

A. 4

B. 5

C. 6

D. 7

Solution 6

$\hat{D}\hat{E}\hat{F} = \hat{F}\hat{G}\hat{H}$ (Given)

$\hat{D}\hat{F}\hat{E} = \hat{H}\hat{F}\hat{G}$ (Vertical angle)

$\overline{DF} = \overline{FH}$ (Given)

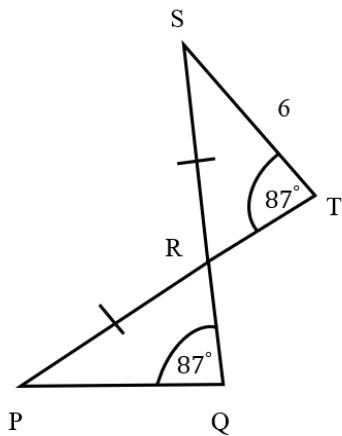
So, $\Delta DEF \cong \Delta HGF$ (AAS)

Then $\overline{DE} = \overline{HG}$

Since $\overline{DE} = 3x - 13$, $\overline{HG} = 5$

So, $3x - 13 = 5$

$3x = 18$


Then $x = 6$

Quiz: Congruent Triangles

Section: Congruence

Sub-section: Congruent Triangles (SAS and ASA) and Congruent Triangles (AAS and HL)

6.

In the figure above, given $\hat{PQR} = \hat{STR} = 87^\circ$, $\overline{PR} = \overline{SR}$ and $\overline{PQ} = 4x - 26$

What is the value of x ?

(Understand, MA 2.2 G.8/4)

- A. 5
- B. 6
- C. 7
- D. 8**

Solution 8

$$\hat{PQR} = \hat{STR} \text{ (Given)}$$

$$\hat{PRQ} = \hat{SRT} \text{ (Vertical angle)}$$

$$\overline{PR} = \overline{SR} \text{ (Given)}$$

So, $\Delta PQR \cong \Delta STR$ (AAS)

Then $\overline{PQ} = \overline{ST}$

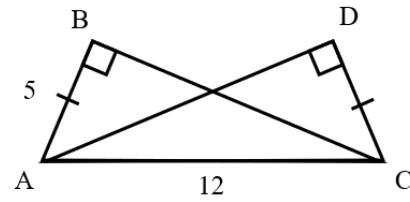
Since $\overline{PQ} = 4x - 26$, $\overline{ST} = 6$

So, $4x - 26 = 6$

$$4x = 32$$

Then $x = 8$

Quiz: Congruent Triangles


Section: Congruence

Sub-section: Congruent Triangles (SAS and ASA) and Congruent Triangles (AAS and HL)

7. What postulate can be used to prove that the triangles below are congruent?

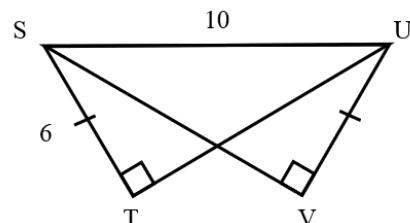
(Understand, MA 2.2 G.8/4)

- A. AAS
- B. HL**
- C. SAS
- D. SSS

Solution HL

$$\hat{A}B\hat{C} = \hat{C}D\hat{A} = 90^\circ \text{ (Right angle)}$$

Length of AB = Length of CD (Given)


Length of AC = Length of CA (Common side)

So, $\Delta ABC \cong \Delta CDA$ (HL)

8. What postulate can be used to prove that the triangles below are congruent?

(Understand, MA 2.2 G.8/4)

- A. HL**
- B. ASA
- C. SAS
- D. SSS

Solution HL

$$\hat{S}T\hat{U} = \hat{U}V\hat{S} = 90^\circ \text{ (Right angle)}$$

Length of ST = Length of UV (Given)

Length of SU = Length of US (Common side)

So, $\Delta STU \cong \Delta UVS$ (HL)