
Department of Electrical and Computer Engineering

The University of Texas at Austin

EE 306, Fall 2021​
Problem Set 4​
Due: November 1st, before class​
Yale N. Patt, Instructor​
TAs: Sabee Grewal, Ali Fakhrzadehgan, Ying-Wei Wu, Michael Chen, Jason Math,
Adeel Rehman

Instructions: You are encouraged to work on the problem set in groups and turn in one
problem set for the entire group. The problem sets are to be submitted on
Gradescope. Only one student should submit the problem set on behalf of the group,
but everyone should create a gradescope account and be tagged on the homework.

1.​ (Adapted from 5.31) The following diagram shows a snapshot of the 8 registers
of the LC-3 before and after the instruction at location x1000 is executed. Fill in
the bits of the instruction at location x1000.

Register Before After

R0 x0000 x0000

R1 x1111 x1111

R2 x2222 x2222

R3 x3333 x3333

R4 x4444 x4444

R5 x5555 xFFF8

R6 x6666 x6666

R7 x7777 x7777

Memory Location Value

x1000 0001 101 000 1 11000

2.​ [Updated 10/28] The memory locations x3000 to x3007 contain the values as

shown in the table below. Assume the memory contents below are loaded into
the simulator and the PC has been set to point to location x3000. Assume that a
breakpoint has been placed to the left of the HALT instruction (i.e. at location
x3006 which contains 1111 0000 0010 0101). Assume that before the program is
run, each of the 8 registers has the value x0000 and the NZP bits are 010.

Memory Location Value

x3000 0101000000100000

x3001 0001000000100101

x3002 0010001000000100

x3003 0001000000000000

x3004 0001001001111111

x3005 0000001111111101

x3006 1111000000100101

x3007 0000000000000100

a.​ In no more than 15 words, summarize what this program will do when the
Run button is pushed in the simulator.

Hint: What relationship is there between the value loaded from memory
and the final value in R0 after the program has completed?

5 is put in R0 and shifted left the value at location x3007 times

b.​ What are the contents of the PC, the 8 general purpose registers (R0-R7),
and the N, Z, and P condition code registers after the program completes?

PC x3006

R0 x0050

R1 x0000

R2 x0000

R3 x0000

R4 x0000

R5 x0000

R6 x0000

R7 x0000

N 0

Z 1

P 0

c.​ What is the total number of CPU clock cycles that this program will take to
execute until it reaches the breakpoint?

[Updated 10/28] Note: You should refer to the state machine in the
Handouts section of the website to determine how many cycles an
instruction takes. Assume each state that accesses memory takes 5
cycles to complete and every other state takes 1 cycle to execute. (This is
the same state machine we gave you during the exam.)

https://users.ece.utexas.edu/~patt/21f.306/handouts.html
https://users.ece.utexas.edu/~patt/21f.306/handouts.html

Memory
Location

Value Instruction Cycles to
Execute

Number of
times

Executed

Total
Cycles

x3000 0101000000100000 AND 9 1 9

x3001 0001000000100101 ADD 9 1 9

x3002 0010001000000100 LD 15 1 15

x3003 0001000000000000 ADD 9 4 36

x3004 0001001001111111 ADD 9 4 36

x3005 0000001111111101 Branch 10 taken
9 not taken

3 taken
1 not taken

39

Total Cycle: 9 + 9 + 15 + 36 + 36 + 39 = 144

3.​ Below is a segment of LC-3 assembly language program.

 ADD R2, R1, #0

HERE ADD R3, R2, #-1

 AND R3, R3, R2

 BRz END

 ADD R2, R2, #1

 BRnzp HERE

END HALT

If the data in R1 is an unsigned integer larger than 1, what does the program do?

(Hint: what is the relationship between the resulting integer in R2 and the original
integer in R1?)

The program finds out the smallest power of 2 which is larger than or equal
to the unsigned integer in R1.

4.​ What does the following program do (in 15 words or fewer)? The PC is initially at
x3000.

Memory Location Value

x3000 0101 000 000 1 00000

x3001 0010 001 011111110

x3002 0000 010 000000100

x3003 0000 011 000000001

x3004 0001 000 000 1 00001

x3005 0001 001 001 000 001

x3006 0000 111 111111011

x3007 1111 0000 0010 0101

Counts the number of bits that are set to 1 in the word at x3100

5.​ Prior to executing the following program, memory locations x3100 through x4000
are initialized to random values, exactly one of which is negative. The following
program finds the address of the negative value, and stores that address into
memory location x3050. Two instructions are missing. Fill in the missing
instructions to complete the program. The PC is initially at x3000.

Memory Location Value

x3000 1110 000 011111111

x3001 0110 001 000 000000

x3002 0000 100 000000010

x3003 0001 000 000 1 00001

x3004 0000 111 111111100

x3005 0011 000 001001010

x3006 1111 0000 0010 0101

6.​ The LC-3 has just finished executing a large program. A careful examination of
each clock cycle reveals that the number of executed store instructions (ST, STR,
and STI) is greater than the number of executed load instructions (LD, LDR, and
LDI). However, the number of memory write accesses is less than the number of
memory read accesses, excluding instruction fetches. How can that be? Be sure
to specify which instructions may account for the discrepancy.

A large number of LDI instructions (two read accesses) and STI
instructions (one read access and one write access) could account for this
discrepancy.

7.​ (7.2) An LC-3 assembly language program contains the instruction:

ASCII LD R1, ASCII

The label ASCII corresponds to the address x4F08. If this instruction is executed
during the running of the program, what will be contained in R1 immediately after
the instruction is executed?

Since the LD instruction is loading itself, the PC offset is #-1

R1 = 0010 001 1 1111 1111

8.​ (Adapted from 7.10) The following program fragment has an error in it. Identify
the error and explain how to fix it.

 ADD R3, R3, #30

 ST R3, A

 HALT

A .BLKW 1

Will this error be detected when this code is assembled or when this code is run
on the LC-3?

The immediate value is too large for ADD R3, R3, #30.

We can split the instruction into two ADD R3, R3, #15.

9.​ (Adapted from 6.14) Consider the following assembly language program:

 AND R2, R2, #0

LOOP ADD R1, R1, #-3

 BRn END

 ADD R2, R2, #1

 BRnzp LOOP

END HALT

What are the possible initial values of R1 that cause the final value in R2 to be 3?

For R2 to contain the value 3, we must have looped the loop body 3 times.
This means BRn must not have initiated a branch for 3 consecutive times.
Therefore, R1 wasn't negative after the instruction ADD R1, R1, #-3 was
executed 3 times and then was negative after the 4th execution of the
instruction. That is:

 and 𝑅1 − (3 × 3) ≥ 0 𝑅1 − (3 × 4) < 0

Solving the inequalities yields, . Since a register contains 9 ≤ 𝑅1 < 12
integers, R1 could have been 9, 10, or 11.

10.​(Adapted from 7.16) Assume a sequence of nonnegative integers is stored in
consecutive memory locations, one integer per memory location, starting at
location x4000. Each integer has a value between 0 and 30,000 (decimal). The
sequence terminates with the value -1 (i.e., xFFFF).

a.​ Create the symbol table entries generated by the assembler when
translating the following routine into machine code:

 .ORIG x3000

 AND R4, R4, #0

 AND R3, R3, #0

 LD R0, NUMBERS

LOOP LDR R1, R0, #0

 NOT R2, R1

 BRz DONE

 AND R2, R1, #1

 BRz L1

 ADD R4, R4, #1

 BRnzp NEXT

L1 ADD R3, R3, #1

NEXT ADD R0, R0, #1

 BRnzp LOOP

DONE TRAP x25

NUMBERS .FILL x4000

 .END

Label Address

LOOP x3003

L1 x300A

NEXT x300B

DONE x300D

NUMBER x300E

b.​ What does the above program do?

The instruction AND R2, R1, #1 performs a bit mask (x0001) to
decide whether the least significant bit of the value is 0 or 1. The LSB
of a number is used to determine whether the integer was even or
odd. For example, numbers with a zero LSB are: 0000 (#0), 0010 (#2),
0100 (#4), 0110 (#6), which are all even.

Hence, R3 counts the amount of even numbers in the list and R4
counts the amount of odd numbers.

11.​[Updated 10/30] (Adapted from 7.18) The following LC-3 program compares two
character strings of the same length. The source strings are in the .STRINGZ
form. The first string starts at memory location x4000, and the second string
starts at memory location x4100. If the strings are the same, the program
terminates with the value 1 in R5; otherwise the program terminates with the
value 0 in R5. Insert one instruction each at (a), (b), and (c) that will complete the
program. (Note: The memory location immediately following each string contains
x0000.)

 .ORIG x3000

 LD R1, FIRST

 LD R2, SECOND

 AND R0, R0, #0

LOOP LDR R3, R1, #0 ; (a)

 LDR R4, R2, #0

 BRz NEXT

 ADD R1, R1, #1

 ADD R2, R2, #1

 NOT R4, R4 ; (b)

 ADD R4, R4, #1 ; (c)

 ADD R3, R3, R4

 BRz LOOP

 AND R5, R5, #0

 BRnzp DONE

NEXT AND R5, R5, #0

 ADD R5, R5, #1

DONE TRAP x25

FIRST .FILL x4000

SECOND .FILL x4100

 .END

12.​The data at memory address x3500 is a bit vector with each bit representing
whether a certain power plant in the area is generating electricity (bit = 1) or not
(bit = 0). The program counts the number of power plants that generate electricity
and stores the result at x3501. However, the program contains a mistake which
prevents it from correctly counting the number of electricity generating
(operational) power plants. Identify it and explain how to fix it.

 .ORIG x3000

 AND R0, R0, #0

 LD R1, NUMBITS

 LDI R2, VECTOR

 ADD R3, R0, #1

CHECK AND R4, R2, R3

 BRz NOTOPER

 ADD R0, R0, #1

NOTOPER ADD R3, R3, R3

 ADD R1, R1, #-1

 BRp CHECK

 LD R2, VECTOR

 STR R0, R2, #1

 TRAP x25

NUMBITS .FILL #16

VECTOR .FILL x3500

 .END

R2 contains the bit vector, and not the address at which the bit vector is
contained. The instruction LDI R2, VECTOR loaded the value at x3500 into
R2 since the value at the memory address labeled as VECTOR was used as
the address from which to load. The store instruction STR R0, R2, #1
uses the value of R2 to evaluate an address. However, R2 must be modified
to contain an address for an STR instruction to work. Thus, LD R2,
VECTOR is an additional required instruction.

13.​The following program does not do anything useful. However, being an electronic
idiot, the LC-3 will still execute it.

 .ORIG x3000

 LD R0, Addr1

 LEA R1, Addr1

 LDI R2, Addr1

 LDR R3, R0, #-6

 LDR R4, R1, #0

 ADD R1, R1, #3

 ST R2, #5

 STR R1, R0, #3

 STI R4, Addr4

 HALT

Addr1 .FILL x300B

Addr2 .FILL x000A

Addr3 .BLKW 1

Addr4 .FILL x300D

Addr5 .FILL x300C

 .END

​
Without using the simulator, answer the following questions:

a.​ What will the values of registers R0 through R4 be after the LC-3 finishes
executing the ADD instruction?

R0 x300B

R1 x300D

R2 x000A

R3 x1263

R4 x300B

b.​ What will the values of memory locations Addr1 through Addr5 be after the
LC-3 finishes executing the HALT instruction?

Addr1 x300B

Addr2 x000A

Addr3 x000A

Addr4 x300B

Addr5 x300D

