
A new home for the host platform

Authors: wyv@bazel.build (Xudong Yang)
Status: Approved
Reviewers: fabian@meumertzhe.im (Fabian Meumertzheim), jcater@google.com
(John Cater), pcloudy@google.com (Yun Peng)
Created: 2024-03-18
Updated: 2024-03-18

Please read Bazel Code of Conduct before commenting.

Background
● We're in the process of Starlarkifying all native repo rules (#18285), and

local_config_platform is one of them.
○ This repo rule is trivially Starlarkifiable.

● The rule is currently used by the identically-named built-in module (see code).
○ Being a built-in module, it's implicitly added as a dependency to every other

module in the external dependency graph, which means that the apparent
repo name @local_config_platform is visible to all repos.

○ This is important because the current default value for the
--host_platform flag is @local_config_platform//:host (see
code).

○ We'd like to remove this special case. Ideally, @bazel_tools should be the
only built-in module.

● There's a related feature request to inject custom constraints into the detected host
platform (#8766).

Proposed solution
Create a new home for the host platform

● We can easily Starlarkify the repo rule local_config_platform as it only depends
on information we already have access to via rctx.os.

● We can place the code in the module platforms.

http://github.com/Wyverald
http://github.com/fmeum
https://github.com/katre
https://github.com/meteorcloudy
https://www.contributor-covenant.org/version/1/4/code-of-conduct
https://github.com/bazelbuild/bazel/issues/18285
https://cs.opensource.google/bazel/bazel/+/master:src/main/java/com/google/devtools/build/lib/bazel/bzlmod/ModuleFileFunction.java;drc=a54a393d209ab9c8cf5e80b2a0ef092196c17df3;l=539
https://cs.opensource.google/bazel/bazel/+/master:src/main/java/com/google/devtools/build/lib/analysis/PlatformOptions.java;drc=1d4ab4d1ce630ae95f886633698c075860cf7804;l=58
https://github.com/bazelbuild/bazel/issues/8766
http://rctx.os

○ platforms is a crucial dependency of effectively all Bazel projects (since it's
a dependency of bazel_tools), and is an appropriate home for the host
platform (but see alternatives below).

○ We can put the code for both the repo rule and the module extension into the
package @platforms//host. The repo rule only needs to generate the list
of host constraints, whereas the host platform itself can be located at
@platforms//host:host.

● In summary, the following changes are made to @platforms: (see proof of concept
PR platforms#86)

○ New file host/extension.bzl which contains the code for an extension
host_platform and a repo rule host_platform_repo. The extension
does nothing but call the repo rule host_platform_repo generating a repo
called host_platform.

○ New file host/constraints.bzl which simply re-exports the symbol
HOST_CONSTRAINTS from @host_platform//:constraints.bzl (this
is the generated host constraints list).

○ New file host/BUILD which defines a platform() target called host,
whose constraints are HOST_CONSTRAINTS from constraints.bzl.

○ The MODULE.bazel file of @platforms uses the host_platform extension,
and imports its generated repo host_platform with use_repo.

● We can then change the default value of the --host_platform flag to point to the
new target in platforms.

○ Do note that label-typed flag default valuesmust point into a built-in module,
since they are resolved from the view of the main repo and we can't make any
assumptions about the main repo other than the fact that it has an implicit
dependency on all built-in modules.

○ Since platforms is not a built-in module, we can't directly set the default
value of --host_platforms to @platforms//host.

○ This means that our only choice is to use the remaining built-in module
bazel_tools. We can make @bazel_tools//tools:host_platform an
alias of @platforms//host.

Deprecate local_config_platform
● We can then work to deprecate local_config_platform, both the native repo rule

and the built-in module.
● As a first step, we can change the native repo rule (implementation:

LocalConfigPlatformFunction.java) to instead produce a simple wrapper
repo around the new stuff in platforms:

○ The file @local_config_platform//:constraints.bzl simply
re-exports the symbol HOST_CONSTRAINTS from
@platforms//host:constraints.bzl.

○ The target @local_config_platform//:host becomes an alias of
@platforms//host.

● We then add a new incompatible flag to disable the built-in module and disallow
usage of the native repo rule.

https://github.com/bazelbuild/platforms/pull/86
https://cs.opensource.google/bazel/bazel/+/master:src/main/java/com/google/devtools/build/lib/bazel/repository/LocalConfigPlatformFunction.java

Python

○ This flag can be flipped in Bazel 8.0, and removed in Bazel 9.0.
● User code that directly refers to @local_config_platform will need to be

updated to use things in @platforms//host instead.
○ The migration can start right away; all changes described above can be

back-ported to 7.x (sans the flag flip and removal).

Implement custom constraint injection
● The fact that the new host_platform repo is generated by a module extension

opens up new possibilities; most notably, a way for modules to inject custom
constraints into the host platform.

○ For example, a ruleset offering GPU acceleration might wish to augment the
host platform with constraints on the GPU type.

● The core idea is that such an "injector module" could define its own repo rule to run
some arbitrary detection logic, and output its findings into a file. It can then inform
the host_platformmodule extension about this file; the extension can then work
the custom constraints in this file into the HOST_CONSTRAINTS list. (see proof of
concept in fmeum/host_platform)

● Concretely, the host_platformmodule extension defined in platforms can offer
a tag class, add_constraints, which accepts a singular label attribute that points
to a JSON file (why not a .bzl file? see alternatives). This JSON file should contain a
single list of strings, each of which is a constraint_value label.

● An example:

############################
rules_gpu's MODULE.bazel
bazel_dep(name = "platforms", version = "0.0.9")

`my_extension` calls a repo rule that runs arbitrary detection logic, and
generates
a repo `my_constraints_repo` containing the list of custom constraints.
my_extension = use_extension("//:my_extension.bzl", "my_extension")
use_repo(my_extension, "my_constraints_repo")

host_platform = use_extension("@platforms//host:extension.bzl",
"host_platform")
host_platform.add_constraints(file =
"@my_constraints_repo//:constraints.json")

############################
@rules_gpu//:my_extension.bzl
def _my_constraints_repo_impl(rctx):
gpu_name = _somehow_retrieve_current_gpu_name(rctx)
gpu_label = Label("//gpu:" + gpu_name)
rctx.file("BUILD.bazel")
rctx.file("constraints.json", '["' + str(gpu_label) + '"]')

my_constraints_repo = repository_rule(_my_constraints_repo_impl)

https://github.com/fmeum/host_platform

my_extension = module_extension(
lambda _mctx: my_constraints_repo(name = "my_constraints_repo"),

)

############################
@my_constraints_repo//:constraints.json (a JSON list of canonical
labels)
["@@rules_gpu~//gpu:rtx_4090"]

Alternatives considered
Place the host platform into a module other than
platforms

● Instead of placing the host platform detection code (including the module extension,
repo rule, actual platform() target) into platforms, we could create another
module dedicated to the host platform.

● Pros
○ platforms is a very simple module today; it contains nothing but

constraint_setting and constraint_value definitions for CPU and
OS types. Host platform detection code is rather unlike these current
occupants.

○ There is precedent for this: platform_data was added experimentally into
platforms (platforms#78), but was then moved into its own module at
rules_platform.

● Cons
○ Above all, a module named platforms seems like a natural place to place

the host platform.
○ Because bazel_tools will need to depend on whichever module we put the

host platform in, this new module would necessarily be present in every Bazel
project and pollute the dependency graph further.

○ Creating another module has the usual administrative costs: separate source
repo, release process, etc.

○ The considerations that resulted in the creation of rules_platform don't
necessarily apply in this case. See this doc comment for more details.

Retain the name local_config_platform
● Instead of calling the extension (and generated repo) host_platform, we could

retain the old name local_config_platform.
● Pros

https://github.com/bazelbuild/platforms/pull/78
https://github.com/bazelbuild/rules_platform
https://docs.google.com/document/d/1g5JAAOfLsvQKBGqzSLFp1hIYFoQsgOslsjaIGV6P7Tk/edit?disco=AAABJhkv3bI

○ It's slightly more familiar.
● Cons

○ It doesn't match the flag name (--host_platform), nor the name of the
concept used in human language ("the host platform").

Custom constraint injection: Ask for a .bzl instead
● In the tag class add_constraints, instead of asking for a label to a JSON file, we

could ask for a label pointing into a Starlark file (.bzl) that declares a label list
constant with some conventional name (for example, HOST_CONSTRAINTS or
CUSTOM_HOST_CONSTRAINTS).

● Pros
○ Starlark is used throughout Bazel.

● Cons
○ Starlark is too powerful for this use case. All we need is a string list.
○ Using a .bzl file passed in via a label attribute is very awkward because we

can't dynamically load() a .bzl file. We'd have to use another repo rule to
generate a repo containing a .bzl file that load()s from the given file, and
then load from this other repo to export the constant. JSON parsing, however,
is readily available in Starlark.

Custom constraint injection: Ask for a plain text file
instead

● Same as above, but even simpler: just ask for a plain text file, with one constraint
label per line.

● Pros
○ Can't get much simpler than a plain text file. Even JSON is arguably too

powerful for a "string list" use case.
● Cons

○ Amazingly, a newline-separate text file is somewhat of a "custom file format"
in that it doesn't have a short name, so it could be argued that it's worsening
the "too many file formats in Bazel" problem. (Consider .bazelignore, which is
at a similar spot.)

Document History
Date Description

2024-03-18 First proposal

