
TopologyManager Feedback (Round 2) 
PUBLIC DOCUMENT 

 
15-July-2019 

Kevin Klues (kklues@nvidia.com) 
 

Link to TopologyManager Feedback (Round 1): 
https://docs.google.com/document/d/1UbD1igeBA1sRuqwkQgJ5sJ9sf1rao_LLORWLhw
SdGUo/edit# 

 
Concrete Proposals: 
 

●​ Proposal for returning a map from GetTopologyHints()instead of a slice: 
https://github.com/kubernetes/enhancements/pull/1131 
https://github.com/kubernetes/kubernetes/pull/80569 
 

●​ Proposal to add GetPreferredAllocations() as optional device plugin API:​
https://github.com/kubernetes/enhancements/pull/1121 
 

●​ Proposal to rename preferred policy to best-effort 
https://github.com/kubernetes/kubernetes/pull/80301 
https://github.com/kubernetes/kubernetes/pull/80683 
 

●​ Proposal to delay adding strict policy until after the initial alpha release​
(no formal proposal yet -- let’s talk about this) 

 
Bullet points 1 and 2 are internal API changes and can wait until after the initial alpha release to 
be decided on. Bullet points 3 and 4, I would consider blockers for the initial alpha release. 

Proposal for map from GetTopologyHints(): 
At present, there is no way for a hint provider to return distinct hints for different resource types 
via a call to GetTopologyHints(). This means that hint providers that govern multiple 
resource types (e.g. the devicemanager) must do some sort of "pre-merge" on the hints it 
generates for each resource type before passing them back to the TopologyManager. 
 
The logic behind this original design was to give components like the devicemanager the 
opportunity to perform these "pre-merges", in order to satisfy internal constraints amongst 
devices before bubbling their TopologyHints up to the TopologyManager. 
 

mailto:kklues@nvidia.com
https://docs.google.com/document/d/1UbD1igeBA1sRuqwkQgJ5sJ9sf1rao_LLORWLhwSdGUo/edit#
https://docs.google.com/document/d/1UbD1igeBA1sRuqwkQgJ5sJ9sf1rao_LLORWLhwSdGUo/edit#
https://github.com/kubernetes/enhancements/pull/1131
https://github.com/kubernetes/kubernetes/pull/80569
https://github.com/kubernetes/enhancements/pull/1121
https://github.com/kubernetes/kubernetes/pull/80301
https://github.com/kubernetes/kubernetes/pull/80683
https://github.com/kubernetes/enhancements/pull/1131


The idea was that this "pre-merge” step could be used to resolve things like internal NVLINK 
dependencies amongst Nvidia GPUs, NIC to GPU alignment on the PCIe bus, etc., without 
exposing this information to the TopologyManager or other HintProviders via the shared 
TopologyHint abstraction. There were no concrete plans on how to actually perform 
resolutions like this (at least not in a generic way), but the plan was to keep the design open to 
such possibilities in the future. 
 
With the introduction of the proposed GetPreferredAllocations() call outlined in the next 
section, performing "pre-merges" such as these should no longer be necessary (please see that 
section for details).  As such, I think it is worth reconsidering what it means to be a 
HintProvider, and what the return value of the GetTopologyHints() should look like. 
 
In an ideal world, I would expect every unique resource type to be its own HintProvider. This 
is already true for the CPUManager (and soon to be true for Memory), but because of the 
pluggable nature of the devicemanager, it is not possible for custom resources like 
nvidia.com/gpu or intel.com/sriov to be their own HintProvider. 
 
This means that there is no direct merging of the affinities associated with resources such as 
nvidia.com/gpu or intel.com/sriov by the TopologyManager. Instead, the 
devicemanager performs its own custom “pre-merge” logic for these devices, passing a single 
set of hints to the TopologyManager to represent the combined affinities of both resource 
types. 
 
This seems counter-intuitive, since there is no practical reason that a "pre-merge" should be 
necessary in this case -- it just happens to be necessary because of the way the current 
interface is designed. Furthermore, it adds unnecessary complexity to the system, and makes it 
harder to reason about how hints from different resource types are merged, because they are 
being merged at multiple levels. 
 
To compensate for this, I propose the following change to the GetTopologyHints() interface 
to allow each resource type to pass back its own set of TopologyHints: 
 
-  GetTopologyHints(pod v1.Pod, containerName string) []TopologyHint 
+  GetTopologyHints(pod v1.Pod, containerName string) map[string][]TopologyHint 

 
Where the returned map is indexed by the resource type instead of passing back a flat slice. 
  
Extending the interface in this way, gives components like the devicemanager the ability to 
provide hints for each resource type as if they were their own HintProvider. That is to say, it 
allows the devicemanager to pass the responsibility of merging hints from all resource types 
into a single central location -- the TopologyManager -- instead of requiring a pre-merge step 
to be completed inside the devicemanager itself. 
 



With this in place, HintProviders like the CPUManager and Memory can mostly go 
unchanged, except that they will now pass back a map with a single element indexed by “cpu” 
and “memory” respectively. 
 
As a bonus, this change also allows the TopologyManager to recognize which resource type a 
set of hints originated from, should this information become useful for policies in the future. 

Proposal for GetPreferredAllocations(): 
This proposal allows a device plugin to forward lists of preferred allocations to the 
devicemanager so it can incorporate this information into its TopologyHint generation, as 
well as help influence its final allocation decision once all TopologyHints have been merged. 
 
One way to look at this proposal, is to think of it as a way of generating intra-device allocation 
preferences from each plugin without having to expose any device specific topology information 
(e.g. NVLINK topologies) to the kubelet. 
 
In this way, the TopologyManager can be restricted to only deal with inter-device topology 
constraints (e.g. NUMA node, PCIe bus, etc.), while still having a way of incorporating 
device-specific topology constraints into its allocation decisions. 
 
As a concrete example, consider the following DGX-1 node below: 

https://github.com/kubernetes/enhancements/pull/1121
https://www.nvidia.com/en-us/data-center/dgx-1/


 
 
The DGX-1 is a Deep Learning AI server from Nvidia that has 8 GPUs, with 4 GPUs per NUMA 
node and a set of high-bandwidth connections between pairs of GPUs called NVLINKs. The 
more NVLINKs that exist between a pair of GPUs, the larger the communication bandwidth, and 
thus the better the performance. As such, the number of NVLINKs that exist between a set of 
GPUs imposes a GPU specific topology constraint that must be considered when allocating 
GPUs to a container for high performance. 
 
As a concrete example, a request for 2 GPUs on the DGX-1 node above would better be served 
by the pair (0,3) than the pair (0,1) because two NVLINKs exist between (0,3) and only one 
NVLINK exists between (0,1). Without a mechanism to consider these NVLINK constraints in 
some way, the TopologyManager (and ultimately the devicemanager) will end up weighing 
these two pairs equally since they can both be allocated from the same NUMA node. 
 
Using GetPreferredAllocations()gives device plugins like the Nvidia GPU plugin, a 
mechanism to influence allocation decisions made by the devicemanager to compensate for 
situations like these, without exposing any internal details about why a plugin prefers one 
pairing of devices over another. 
 



Continuing with the example above, if all GPUs on the DGX-1 node were currently available, a 
call to GetPreferredAllocations() with a request size of 2 would pass back the following 
(i.e. a list of all available GPU pairs that have 2 NVLINKs between them): 
 

{(0, 3), (0, 4), (1, 2), (1, 5), (2, 3), (2, 6), (3, 7), (4, 7), (5, 6), (6, 7)} 
 

The devicemanager would then prefer allocations from this list both when generating hints to 
pass to the TopologyManager, as well as when doing its final allocation after all 
TopologyManager constraints have also been considered. 
 
The following subsections go into more detail about how this would be accomplished. 

Integration into hint generation: 
1)​ Explicitly define the default strategy for setting the preferred field of a TopologyHint. 

By default, a hint provider will set preferred = true on hints with the smallest 
SocketAffinity possible, and preferred = false on all others. 
 

2)​ Enumerate all of the available devices managed by a HintProvider and figure out 
what NUMA affinity the current request could be allocated with. Generate a unique hint 
per unique NUMA affinity, following the default strategy for setting the preferred field of a 
TopologyHint, as outlined above. 
 

3)​ If the devicemanager has a plugin that implements GetPreferredAllocations(), 
reset the value of the preferred field for each hint as follows. First, walk through all 
hints and set preferred = false. Next walk though each preferred allocation 
returned from GetPreferredAllocations() and calculate the NUMA affinity for that 
allocation. Walk back through each hint, setting preferred = true on hints with an 
affinity mask matching that of a preferred allocation. 

Integration into allocation strategy: 
If a plugin does not implement GetPreferredAllocations(), then we should simply follow 
the device allocation strategy that exists today (i.e. allocate devices directly from the available 
devices list). If however, GetPreferredAllocations() is implemented, then one of the 
preferred allocations should be chosen over simply pulling devices at random from the available 
devices list. 
 
There are 4 cases to consider: 
 

●​ TopologyManager disabled, GetPreferredAllocations() not implemented 
●​ TopologyManager enabled, GetPreferredAllocations() not implemented 
●​ TopologyManager disabled, GetPreferredAllocations() implemented 



●​ TopologyManager enabled, GetPreferredAllocations() implemented 
 

With the TopologyManager disabled and GetPreferredAllocations() unimplemented, 
the existing strategy is to simply pull devices from the front of the available devices list -- this 
should go unchanged. 
 
With the TopologyManager enabled and GetPreferredAllocations() unimplemented, 
the strategy is to pull devices from the available devices list, such that they have the desired 
NUMA affinity -- this should also go unchanged. 
 
With the TopologyManager disabled and GetPreferredAllocations() implemented, the 
new strategy should be to prefer allocations from the list returned by 
GetPreferredAllocations() if possible, and fall back to pulling devices from the front of 
the available devices list if not. 
 
With the TopologyManager enabled and GetPreferredAllocations() implemented, the 
new strategy should be to prefer allocations from the list returned by 
GetPreferredAllocations() such that they have the desired NUMA affinity, then fall back 
to pulling devices at random from the available devices list, such that they have the desired 
NUMA affinity. 

Proposal to rename preferred to best-effort 
At present, there are two proposed TopologyManager policies: preferred and strict. 
 
The TopologyManager KEP states that: 
 

The TopologyManager supports two modes: strict and preferred (default). In 
strict mode, the pod is rejected if alignment cannot be satisfied.  

 
However, the exact semantics of how each of these policies should behave are a bit fuzzy. 
 
After reading the rest of the KEP (as well as looking through the code where this policy is 
implemented) it is clear that the “preferred” policy actually implements more of a 
“best-effort” policy, where it attempts to align device allocations from multiple 
HintProviders on at least one NUMA node (but does not guarantee alignment across 
multiple NUMA nodes if that is what some of the HintProviders require). 
 
The algorithm for this “best-effort”  policy goes as follows: 
 

1)​ Take the cross-product of hints generated by each HintProvider 
 



2)​ For each set of hints in the cross-product, take the bitwise-and of the SocketAffinity 
for each hint to produce a merged SocketAffinity. 
 

3)​ For each set of hints in the cross-product, inspect the preferred field of each hint. 
 

a)​ If all hints have preferred == true, then set preferred = true in the 
merged hint. 

b)​ If even one hint has preferred == false, then set preferred = false in 
the merged hint. 

 
4)​ Select the “best-hint” from the set of all merged hints with the following criteria: 

 
a)​ Start with a default hint of SocketAffinity = nil, preferred = false 
b)​ Prefer hints with preferred == true 
c)​Prefer hints that have at least 1 bit set in the SocketAffinity 
d)​ Prefer hints with less bits set in the SocketAffinity 
e)​ Prefer hints with lower-ordered bits set in the SocketAffinity 

 
5)​ Always admit the pod, regardless of what the merged hint result is 

 
This strategy makes sense under many scenarios, and is obviously a useful policy to implement. 
 
However, calling it preferred instead of best-effort seems like it will lead to much 
confusion since “preferred” doesn’t actually convey any information about what the policy is 
doing under the hood, whereas best-effort does. 

Proposal to delay strict policy in alpha release 
Likewise, the semantics around the behaviour of the strict policy are even less well defined. 
 
At present, the strict policy is a simple extension of the preferred policy. I.e. its algorithm 
goes as follows: 
 

1)​ Calculate the merged hint from the “best-effort” / “preferred” policy 
2)​ If preferred == true, admit the pod, if preferred == false, don’t 

 
This is a very straightforward extension of the “best-effort” / “preferred” policy, but is it 
the right one? I’m not so sure. 
 
In fact, I’d argue that the current semantics of “strict” are actually quite misleading. They 
encode a sort of “strict” equality across all preferred fields, but then allow a 
“best-effort” affinity across the SocketAffinity fields. Sort of a half-strict interpretation. 



 
Would it be better to interpret “strict” as a policy that enforces a “strict” equality across 
both the preferred field and the SocketAffinity field (and, by extension, any other fields 
we introduce in the future)? 
 
Such a policy would be useful, for example, to guarantee alignment of devices on multiple 
NUMA nodes (something that is not possible with the current best-effort policy). This 
strategy seems much more logical and easy to interpret than the current implementation. 
 
Even this has its complications though. For example, consider the following scenario: 
 

+------------+-----------------+-----------------+ 
| Providers  | Hints           | Proposed Strict | 
+------------+-----------------+-----------------+ 
| Nvidia GPU | ((1, 1), True)  | Merged Hint:    | 
|            |                 | ((1, 1), True)  | 
| CPUManager | ((0, 1), True)  |                 | 
|            | ((1, 0), True)  | Admit Pod: True | 
|            | ((1, 1), True)  |                 | 
+------------+-----------------+-----------------+ 

 

Such a scenario could arise if 3 GPUs are being requested on a 4 GPU system with 2 GPUs per 
NUMA node. The only possible way to allocate GPUs on this node is across 2 different NUMA 
nodes. There will never be a situation where there will be single NUMA node alignment. 
 
As such, it’s clear that this means that GPUs will be allocated from both NUMA nodes if he pod 
is admitted. However, does this mean that the CPUmanager must also allocate CPUs from both 
NUMA nodes? If so, in what distribution should it allocate them? If not, then how is this different 
than the “best-effort” policy? What if only a single CPU is requested? 
 
Given all of this ambiguity, it feels premature to introduce a “strict” policy at the node level 
until we’ve talked through these details a bit more and figured out their exact semantics. 
 
Moreover, I’m not convinced we would ever want to set such a “strict” policy at the node 
level. It seems too restrictive for common use-cases. Additionally, it adds unforeseen 
complications by exposing users, job controllers, and the scheduler to pod rejections that were 
previously not possible. 
 
Instead, it seems like “strict” topology-aware allocation should be more of a pod-level 
decision that we use to override the lower-level “best-effort” policy when desired. This, 
however, opens up a whole other discussion that is out of scope of the current design. 
 
As a side note, I’ve implemented a small python program that implements all of the different 
policies discussed here and compares their results for every combination of hints from 2 
HintProviders on a 2 socket system. 

https://gist.github.com/klueska/02443e7ee37c6d225771ba6fc9c385fc


 
Example output below: 
 
+------------+-----------------+-----------------+------------------+------------------+ 
| Providers  | Hints           | Best Effort     | Current Strict   | Proposed Strict  | 
+------------+-----------------+-----------------+------------------+------------------+ 
| Provider 0 | ((0, 1), True)  | Merged Hint:    | Merged Hint:     | Merged Hint:     | 
|            |                 | ((0, 0), True)  | ((0, 0), True)   | ((0, 0), True)   | 
| Provider 1 | ((1, 0), True)  |                 |                  |                  | 
|            |                 | Admit Pod: True | Admit Pod: False | Admit Pod: False | 
|            |                 |                 |                  |                  | 
+------------+-----------------+-----------------+------------------+------------------+ 
| Provider 0 | ((1, 1), True)  | Merged Hint:    | Merged Hint:     | Merged Hint:     | 
|            |                 | ((0, 1), True)  | ((0, 1), True)   | ((1, 1), False)  | 
| Provider 1 | ((0, 1), True)  |                 |                  |                  | 
|            | ((1, 1), False) | Admit Pod: True | Admit Pod: True  | Admit Pod: False | 
|            |                 |                 |                  |                  | 
+------------+-----------------+-----------------+------------------+------------------+ 
 
... 


	TopologyManager Feedback (Round 2) 
	Proposal for map from GetTopologyHints(): 
	Proposal for GetPreferredAllocations(): 
	 
	Integration into hint generation: 
	Integration into allocation strategy: 

	Proposal to rename preferred to best-effort 
	Proposal to delay strict policy in alpha release 

