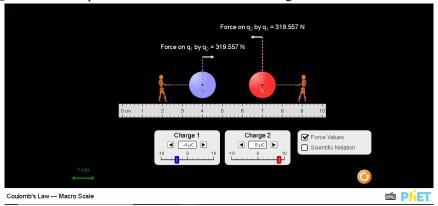
Coulomb's Law Electric Forces Inquiry

This lab uses the **Coulomb's Law** simulation from PhET Interactive Simulations at University of Colorado Boulder.


Learning Goals: Students will be able to

- A. Determine what makes a force attractive or repulsive
- B. Explain Newton's third law for electrostatic forces
- C. Relate the electrostatic force magnitude to the charges and the distance between them
- D. Use measurements to determine Coulomb's constant

 A - Review your understanding: 1. Open the <u>Balloons and Static Electricity</u> simulation and observe the behavior of a balloon that is rubbed on a Write your observations below: 	sweater
2. Explain why the balloon stuck to the sweater in the simulation. Use words like "electrons" and "charge".	
3. Two balloons were rubbed on a sweater like in the <u>Balloons and Static Electricity</u> and then hung like in the pibelow. Explain why you think they move apart and what might affect how far apart they will be.	icture

B - Develop your understanding:

1. Open the Macro Scale screen and explore the forces between two charged bodies.

C - Explain your understanding:

1. By experiment,	determine what makes a	a force attractive of	or repulsive. I	Describe your	experiments and	observations v	vith
some examples	i.						

2. What evidence do you see that Newton's third law applies to electrostatic forces?								

3.	How	does	the	value	of the	electro	ostatic	force	varv	with	the	value	of the	charges?	1

4. How does the value of the electrostatic force vary with the distance between them?

D - Use your understanding:

1. Coulomb's equation is used for determining the force between 2 charged bodies separated by a distance:

$$F = k \frac{q_1 q_2}{r^2}$$

k (Electrostatic constant), q (charge of body in Coulombs, C), r (distance between bodies in meters), and F (electrostatic force in Newton, N)

a.	Use me	easurements to determine Electrostatic constant for at least 2 situations. Snow your work.
b.	Using	your value of k, determine the electrostatic force for these 2 situations:
	i.	$-4\mu\mathrm{C}$ charge is 3cm from a $5\mu\mathrm{C}$ charge.
	ii.	An electron has a charge of -1.6×10^{-19} C and a proton has a charge of 1.6×10^{-19} C. In a hydrogen atom, the distance between them is 5.3×10^{-11} m. Determine the electrostatic force between them.
c.	Use the	e simulation to check your work on (i). Describe how you used the simulation for support.
2. Exp	olain hov	v electric forces are like gravity.