Midterm 1 Review (Questions from past exams)

What Would Python Print

def jazz(hands):
if hands < out:
return hands * 5
else:

return jazz(hands // 2) + 1
def twist(shout, it, out=7):
while shout:
shout , out = it(shout), print(shout , out)
return lambda out: print(shout , out)
hands, out = 2, 3
>>> print(None, print(None))
>>> jazz(5)
>>> (lambda out: jazz(8))(9)
>>> twist(2, lambda x: x-2)(4)

>>> twist(5, print)(out)

>>> twist(6, lambda hands: hands-out, 2)(-1)

Environment Diagrams
(Fall 2012)
def horse(mask):
horse = mask
def mask(horse):
return horse
return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

(Fall 2015)

def inside(out):
anger = lambda fear: fear(disgust)
fear = lambda disgust: anger(out)
disgust = 3
fear(5)

fear, disgust = 2, 4
inside(lambda fear: fear + disgust)

(Spring 2014)
pop, ice, yam =1, 2, 3
def x(sochi):
pop = 4
return lambda ice: sochi(ice)

mask = x(lambda yam: lambda: yam*pop*ice)

horse = mask(5)()

Lambdas

(Spring 2015)

Fill in the blanks so that the expression evaluates to 2015
lamb = lambda lamb: lambda: lamb + lamb

lamb(1000) + (lambda b, c: b * b - cC) (1lamb(), 1)

(Spring 2014)

The boolean values True and False are actually instances of a kind of integer
that Python treats as if they represented our logical notions of true and
false. Suppose instead we use functions to represent boolean values. That is,
we’ll represent “true” with a value true (lower case) that is a function, and
likewise “false” with a function false:

true = lambda a, b: a
false = lambda a, b: b

The function py_truth is supposed to convert these values into the normal
Python True and False. Fill in the blanks so as to make the functions below
conform to their comments. Do not use any conditional expressions or
statements (if, and, or, not, while), and do not call py truth.

def py_truth(p):

"""The Python boolean value represented by P, a functional truth value. >>>
py_truth(true)

True

>>> py_truth(false)

False

return p(True, False)
def functional_and(pl, p2): """

>>> py_truth(functional_and(true, true)) True
>>> py_truth(functional and(false, true)) False

>>> py_truth(functional and(true, false)) False
>>> py_truth(functional_and(false, false)) False

return

Iteration Recursion

(Fall 2014)

Fill in the blanks of the following functions defined together in the same
file. Assume that all arguments to all of these functions are positive
integers that do not contain any zero digits. For example, 1001 contains zero
digits (not allowed), but 1221 does not (allowed). You may assume that
reverse is correct when implementing remove.

def combine(left, right):
"""Return all of LEFT’s digits followed by all of RIGHT’s digits."""
factor =1
while factor <= right:
factor = factor * 10
return left * factor + right

def reverse(n):
"""Return the digits of N in reverse.
>>> reverse (122543)
345221
if n < 10:
return n
else:
return combine(’)

def remove(n, digit):
"""Return all digits of N that are not DIGIT, for DIGIT less than 10.
>>> remove (243132 , 3)
2412
>>> remove (243132 , 2)
4313
>>> remove(remove (243132, 1), 2)
433
removed = @
while n != 0:

if

removed =
return reverse(removed)

(Spring 2016)

Suppose we have a sequence of quantities that we want to multiply together, but can

only multiply two at a time. We can express the various ways of doing so by counting
the number of different ways to parenthesize the sequence. For example, here are the
possibilities for products of 1, 2, 3, 4 and 5 elements:

Product ab | abc abcd abcde
Count 1 2 5 14
ab | a(be) | a(bled) | a(blc(de))) (ab)(c(de)) (a((bc)d)e
(ab)e | a((be)d) | a(b((cd)e)) (ab)((cd)e) ((ab)(cd))e
Parenthesizations (ab)(cd) | a((bc)(de)) (a(bc))(de) ((a(bc))d)e
(a(bc))d | a((b(ed))e) ((ab)c)(de) (((ab)c)d)e
((ab)e)d | a(((bc)d)e) (a(b(cd)))e

Assume, as in the table above, that we don’t want to reorder elements.

Define a function count_groupings that takes a positive integer n and returns the

number of ways of parenthesizing the product of n numbers. (You might not need to use

all lines.)

def count_groupings(n):
"""For N >= 1, the number of distinct parenthesizations of a product of N
items.
>>> count_groupings(1l) 1
>>> count_groupings(2) 1
>>> count_groupings(3) 2
>>> count_groupings(4) 5
>>> count_groupings(5) 14

if n == 1:
return

i:

while

i+=1

return

Extras
Environment Diagrams
(Spring 2015)

def still(glad):
def heart(broken):
glad = lambda heart: lambda: heart - broken
return glad(grin)
return heart(glad - grin)()

broken, grin = 5, 3
still(broken - 1)

(Fall 2013)

Fill in the blanks of the implementation of differs_by one_digit below, a function
that takes two positive integers m and n and returns whether m and n differ in
exactly one digit. If m and n have different numbers of digits, then

differs_by one_digit(m, n) always returns False.

def differs_by one_digit(m, n):
"""Return True if and only if m and n have the same number of digits,
and they differ by exactly one digit.
You may assume that m and n are positive integers.
>>> differs_by one digit(3467, 3427) # 3rd digit differs

True

>>> differs_by one digit(2013, 2011) # Last digit differs
True

>>> differs_by one digit(1013, 2013) # First digit differs
True

>>> differs_by one digit(5, 2) # Only digit differs

True

>>> differs_by one digit(2013, 2013) # No digit differs
False

>>> differs_by one digit(1013, 2011) # Both first and last differ
False

>>> differs_by one digit(3102, 2013) # All digits differ
False

>>> differs_by one digit(1, 21) # Different digit count
False

>>> differs_by one digit(21, 1) # Different digit count
False

diffs = 0

while m > 0:

if

return False
m, t=m// 10, m % 10
n, v=n//10, n % 10

diffs =

return

(Fall 2014)

The if_fn returns a two-argument function that can be used to select among
alternatives, similar to an if statement. Fill in the return expression of factorial
so that it is defined correctly for non-negative arguments. You may only use the
names if_fn, condition, a, b, n, factorial, base, and recursive and parentheses in
your expression (no numbers, operators, etc.).

def if fn(condition):
if condition:
return lambda a, b: a
else:
return lambda a, b: b

def factorial(n):

"""Compute N! for non-negative N. N! =1 * 2 * 3 * , * N,
>>> factorial (3)
6
>>> factorial (5)
120
>>> factorial (9)
1
def base():
return 1

def recursive():
return n * factorial(n-1)

return

