
Midterm 1 Review (Questions from past exams)

What Would Python Print

def jazz(hands):

if hands < out:

 return hands * 5

else:

 return jazz(hands // 2) + 1

def twist(shout, it, out=7):

while shout:

 shout , out = it(shout), print(shout , out)

return lambda out: print(shout , out)

hands, out = 2, 3

>>> print(None, print(None))

>>> jazz(5)

>>> (lambda out: jazz(8))(9)

>>> twist(2, lambda x: x-2)(4)

>>> twist(5, print)(out)

>>> twist(6, lambda hands: hands-out, 2)(-1)

Environment Diagrams

(Fall 2012)

def horse(mask):

 horse = mask

 def mask(horse):

 return horse

 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

(Fall 2015)

def inside(out):

 anger = lambda fear: fear(disgust)

 fear = lambda disgust: anger(out)

 disgust = 3

 fear(5)

fear, disgust = 2, 4

inside(lambda fear: fear + disgust)

(Spring 2014)

pop, ice, yam = 1, 2, 3

def x(sochi):

 pop = 4

 return lambda ice: sochi(ice)

mask = x(lambda yam: lambda: yam*pop*ice)

horse = mask(5)()

Lambdas

(Spring 2015)

Fill in the blanks so that the expression evaluates to 2015

lamb = lambda lamb: lambda: lamb + lamb

lamb(1000)_____ + (lambda b, c: b____ * b____ - c____)(lamb(____), 1)____

(Spring 2014)

The boolean values True and False are actually instances of a kind of integer

that Python treats as if they represented our logical notions of true and

false. Suppose instead we use functions to represent boolean values. That is,

we’ll represent “true” with a value true (lower case) that is a function, and

likewise “false” with a function false:

true = lambda a, b: a

false = lambda a, b: b

The function py_truth is supposed to convert these values into the normal

Python True and False. Fill in the blanks so as to make the functions below

conform to their comments. Do not use any conditional expressions or

statements (if, and, or, not, while), and do not call py_truth.

def py_truth(p):

"""The Python boolean value represented by P, a functional truth value. >>>

py_truth(true)

True

>>> py_truth(false)

False

"""

return p(True, False)

def functional_and(p1, p2): """

>>> py_truth(functional_and(true, true)) True

>>> py_truth(functional_and(false, true)) False

>>> py_truth(functional_and(true, false)) False

>>> py_truth(functional_and(false, false)) False

"""

return ___

Iteration Recursion

(Fall 2014)

Fill in the blanks of the following functions defined together in the same

file. Assume that all arguments to all of these functions are positive

integers that do not contain any zero digits. For example, 1001 contains zero

digits (not allowed), but 1221 does not (allowed). You may assume that

reverse is correct when implementing remove.

def combine(left, right):

"""Return all of LEFT’s digits followed by all of RIGHT’s digits."""

factor = 1

while factor <= right:

factor = factor * 10

return left * factor + right

def reverse(n):

"""Return the digits of N in reverse.

>>> reverse (122543)

345221

"""

if n < 10:

return n

else:

return combine(__________________________ , __________________________)

def remove(n, digit):

"""Return all digits of N that are not DIGIT, for DIGIT less than 10.

 >>> remove (243132 , 3)

 2412

 >>> remove (243132 , 2)

 4313

 >>> remove(remove(243132, 1), 2)

 433

 """

 removed = 0

 while n != 0:

_________ , _________ = _________________ , _________________

if ___:

removed = __

return reverse(removed)

(Spring 2016)

Suppose we have a sequence of quantities that we want to multiply together, but can

only multiply two at a time. We can express the various ways of doing so by counting

the number of different ways to parenthesize the sequence. For example, here are the

possibilities for products of 1, 2, 3, 4 and 5 elements:

Assume, as in the table above, that we don’t want to reorder elements.

Define a function count_groupings that takes a positive integer n and returns the

number of ways of parenthesizing the product of n numbers. (You might not need to use

all lines.)

def count_groupings(n):

"""For N >= 1, the number of distinct parenthesizations of a product of N

items.

 >>> count_groupings(1) 1

 >>> count_groupings(2) 1

 >>> count_groupings(3) 2

 >>> count_groupings(4) 5

 >>> count_groupings(5) 14

 """

 if n == 1:

return ___

 __

 i = __

 while __:

 __

 i += 1

 return ___

Extras

Environment Diagrams

(Spring 2015)

def still(glad):

 def heart(broken):

 glad = lambda heart: lambda: heart - broken

 return glad(grin)

 return heart(glad - grin)()

broken, grin = 5, 3

still(broken - 1)

(Fall 2013)

Fill in the blanks of the implementation of differs_by_one_digit below, a function

that takes two positive integers m and n and returns whether m and n differ in

exactly one digit. If m and n have different numbers of digits, then

differs_by_one_digit(m, n) always returns False.

def differs_by_one_digit(m, n):

"""Return True if and only if m and n have the same number of digits,

and they differ by exactly one digit.

You may assume that m and n are positive integers.

>>> differs_by_one_digit(3467, 3427) # 3rd digit differs

True

>>> differs_by_one_digit(2013, 2011) # Last digit differs

True

>>> differs_by_one_digit(1013, 2013) # First digit differs

True

>>> differs_by_one_digit(5, 2) # Only digit differs

True

>>> differs_by_one_digit(2013, 2013) # No digit differs

False

>>> differs_by_one_digit(1013, 2011) # Both first and last differ

False

>>> differs_by_one_digit(3102, 2013) # All digits differ

False

>>> differs_by_one_digit(1, 21) # Different digit count

False

>>> differs_by_one_digit(21, 1) # Different digit count

False

"""

 diffs = 0

 while m > 0:

 if __________________________:

 return False

 m, t = m // 10, m % 10

 n, v = n // 10, n % 10

 if _________________________:

 diffs = __________________________________

 return _________________________________

(Fall 2014)

The if_fn returns a two-argument function that can be used to select among

alternatives, similar to an if statement. Fill in the return expression of factorial

so that it is defined correctly for non-negative arguments. You may only use the

names if_fn, condition, a, b, n, factorial, base, and recursive and parentheses in

your expression (no numbers, operators, etc.).

def if_fn(condition):

if condition:

return lambda a, b: a

else:

return lambda a, b: b

def factorial(n):
"""Compute N! for non-negative N. N! = 1 * 2 * 3 *...* N.

 >>> factorial (3)

 6

 >>> factorial (5)

 120

 >>> factorial (0)

 1

 """

 def base():

return 1

def recursive():

return n * factorial(n-1)

return __

