
Design of Calcite Implicit Type Cast

Background and Motivation
The implicit type coercion is almost supported by every production RDBMS: MYSQL[1],
ORACLE[2] and MS-SQL[3], also some Hadoop data warehouse facilitates like HIVE.

As a query optimization engine of many computation engines(i.e. Apache Flink, Apache Drill)
and some OLAP engines(like Apache Druid). Calcite would supply better compatibility with
sql query to the underlying engines it adapter with if it has the built-in support for implicit type
coercion. There are already some JIRA issues that are relative with this topic more or less:

1.​ CALCITE-2992: Enhance implicit conversions when generating hash join keys for an
equiCondition

2.​ CALCITE-3002: Case statement fails with: SqlValidatorException: Cannot apply '=' to
arguments of type '<INTEGER> = <BOOLEAN>'

3.​ CALCITE-1531: SqlValidatorException when boolean operators are used with NULL
4.​ CALCITE-3081: Literal NULL should be generated in SqlDialect
5.​ CALCITE-2829: Use consistent types when processing ranges

Senarios of Type Coercion：

●​ When data from one object is moved to, compared with, or combined with data from
another object, the data may need to be converted from the data type of one object
to another.

●​ When data from a sql result column is moved into a program variable, the data must
be converted from the system data type to the data type of the variable.

Current Popular DB’s Type Conversion

Oracle Implicit Type Conversion Rules

Oracle Database automatically converts a value from one datatype to another when such a
conversion makes sense. Table 2-11 is a matrix of Oracle implicit conversions. The table
shows all possible conversions, without regard to the direction of the conversion or the
context in which it is made. The rules governing these details follow the table.

The following rules govern the direction in which Oracle Database makes implicit data type
conversions:

●​ During INSERT and UPDATE operations, Oracle converts the value to the datatype
of the affected column.

●​ During SELECT FROM operations, Oracle converts the data from the column to the
type of the target variable.

https://docs.oracle.com/cd/B12037_01/server.101/b10759/sql_elements002.htm#g195937

●​ When comparing a character value with a numeric value, Oracle converts the
character data to a numeric value.

●​ Conversions between character values or NUMBER values and floating-point
number values can be inexact, because the character types and NUMBER use
decimal precision to represent the numeric value, and the floating-point numbers use
binary precision.

●​ Conversions from BINARY_FLOAT to BINARY_DOUBLE are exact.
●​ Conversions from BINARY_DOUBLE to BINARY_FLOAT are inexact if the

BINARY_DOUBLE value uses more bits of precision that supported by the
BINARY_FLOAT.

●​ When comparing a character value with a DATE value, Oracle converts the character
data to DATE.

●​ When you use a SQL function or operator with an argument of a data type other than
the one it accepts, Oracle converts the argument to the accepted datatype.

●​ When making assignments, Oracle converts the value on the right side of the equal
sign (=) to the datatype of the target of the assignment on the left side.

●​ During concatenation operations, Oracle converts from noncharacter datatypes to
CHAR or NCHAR.

●​ During arithmetic operations on and comparisons between character and
noncharacter datatypes, Oracle converts from any character datatype to a numeric,
date, or rowid, as appropriate. In arithmetic operations between CHAR/VARCHAR2
and NCHAR/NVARCHAR2, Oracle converts to a NUMBER.

●​ Comparisons between CHAR and VARCHAR2 and between NCHAR and
NVARCHAR2 types may entail different character sets. The default direction of
conversion in such cases is from the database character set to the national character
set. Table 2-12 shows the direction of implicit conversions between different
character types.

●​ Most SQL character functions are enabled to accept CLOBs as parameters, and
Oracle performs implicit conversions between CLOB and character types. Therefore,
functions that are not yet enabled for CLOBs can accept CLOBs through implicit
conversion. In such cases, Oracle converts the CLOBs to CHAR or VARCHAR2
before the function is invoked. If the CLOB is larger than 4000 bytes, then Oracle
converts only the first 4000 bytes to CHAR.

MS-SQL Implicit Type Conversion Rules

The following illustration shows all explicit and implicit data type conversions that are allowed
for SQL Server system-supplied data types. These include xml, bigint, and sql_variant.
There is no implicit conversion on assignment from the sql_variant data type, but there is
implicit conversion to sql_variant.

https://docs.oracle.com/cd/B12037_01/server.101/b10759/sql_elements002.htm#g196434

Data type conversion behaviors for MS-SQL

Proposed Design for Calcite

How does Calcite Validate the AST
A sql statement is parsed as a AST (SqlNode tree in Calcite) after the invoking of method
SqlParser#parseStmt, then it is the SqlValidator that deduce the data type of every
SqlNode. For example, sql statement:

https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-type-conversion-database-engine?view=sql-server-2017#data-type-conversion-behaviors

select emp.ename, dept.name​
from emp​
join dept​
on emp.deptno = dept.deptno

would be parsed to an AST as follows:

SqlValidator instantiate the SqlValidatorScope for SqlNode, i.e. SqlSelect,
SqlJoin and SqlIdentifier with order from root node to leaf node. It also registers all
kinds of SqlValidatorNameSpace for some of the nodes.

SqlValidatorScope has Father-son relationship, for AST above, the CatalogScope is
the parent of SelectScope, JoinScope and TableScope.

SqlValidatorNameSpace is the component to lookup the relation row type.
SqlValidator deduce the relation type from the IdentifierNameSpace first then it
deduce the node data types in order from leaf node to root node.

A SqlCall has 2 kinds of pluggable components to deduce the operands types and the
return type. The SqlOperandTypeChecker is used to deduce the operands data types
while the SqlReturnTypeInference is used to deduce the SqlCall’s return type.

Implicit type coercion is all about the type of the operands, so the
SqlOperandTypeChecker is the trigger of our core conversion rules.

Calcite has these operand type checkers:

●​ FamilyOperandTypeChecker
●​ CompositeOperandTypeChecker
●​ SameOperandTypeChecker
●​ SetopOperandTypeChecker

●​ ImplicitCastOperandTypeChecker
●​ AssignableOperandTypeChecker
●​ ComparableOperandTypeChecker

Implicit Type Coercion Work Flow

The validator will check the operands/return types of all kinds of operators:

1.​ If the validation passes, the validator will just cache the data type (say
RelDataType) for the SqlNode it has validated;

2.​ If the validation fails, the validator will ask for the TypeCoercion component about
if we can do an implicit type coercion, if the coercion rules passes, the
TypeCoercion component will replace the SqlNode with a coerced one of desired
type (the node may be an operand of an operator or a column of selected row);

3.​ Then the TypeCoercion component would update the inferred type for the casted
node and the containing operator/row column type;

4.​ If the coercion rule fails again, the validator will just throw the exception as is before.

For some cases, although the validation succeed, we still need the type coercion, i.e. for
expression 1 > '1', Calcite will just return false without type coercion, we do type coercion
eagerly here and the expression would be coerced to 1 > cast('1' as int) whose result
evaluates true.

The graph below illustrates how we coerce the operand types of a SqlCall:

The graph below illustrates how we coerce the operand type of a SqlNode with struct type:

Strategies for Finding Common Type

The whole rules to find the proper conversion type:

●​ If the operator has expected data types, just take them as the desired one. (e.g. the
UDF would have eval() method which has reflection argument types)

●​ If there is no expected data type but the data type families are registered, try to
coerce the arguments to the family's default data type, i.e. the String family will have
a VARCHAR type.

●​ If neither expected data type nor families are specified, try to find the tightest
common type of the node types, i.e. int and double will return double, the numeric
precision does not lose for this case.

●​ If no tightest common type is found, try to find a wider type, i.e. string and int will
return int, we allow some precision loss when widening decimal to fractional, or
promote to string type.

We try the best to find the tightest common type that does not lose precision, for example
DOUBLE and INT return DOUBLE, DATE and TIMESTAMP return TIMESTAMP; If we can
not find the tightest common type, then try to coerce all the operands to VARCHAR type
which may lose some precision(or 2 DECIMALs with wider precision/scale).

Conversion Contexts and Strategies

SQL Contexts Expression subtype Strategies

Set Operation union/except/intersect compare the data type of
each branch row to find the
common type of each fields
pair

Arithmetic Expression

binary arithmetic:
[+, -, &, |, ^, /, %, pmod]

1. promote string operand to
data type of the other
numeric operand; 2. two
strings would all be coerced
to DECIMAL.

binary comparison:
[=, <, <=, >, >=, <>]

1.promote string and
timestamp to timestamp;
2. make 1=true and 0=false
always evaluates true;
3. find common type for both
operands if there is numeric
type operand.

IN Expression

with subquery compare type of LHS and
RHS, find the common type,
if it is struct type, find wider
type for every field

without subquery if RHS is a expr list,
compare every expr to find
the wider type

Special AGG Function promote string all to decimal
type

Case When Expression

case when expression find then and else operands
common wider type

Colesce FUNC same as case when

[Date|Timestamp|String] +/-
interval

 promote string to timestamp

Function with Expected
Inputs Type

builtin functions look up the families
registered in the operand
type checker, find the family
default type if rule allows it

UDF/UDAF try to coerce based on the
argument operands types of
eval() func

Type Conversion Matrix
The table below illustrates the implicit type coercion rules for all kinds of engines:

From-To bool

ean
tinyi
nt

smal
lint

int bigi
nt

deci
mal

float/
real

dou
ble

inter
val

dat
e

tim
e

times
tamp

[var]
char

[var]bi
nary

boolean s

tinyint m s m s m s m s m s m s m m s m

smallint m s m s m s m s m s m s m m s m

int m s m s m s m s m s m s m m s m

bigint m s m s m s m s m s m s o m m o s m

decimal m s m s m s m s m s m s m m s m

float/real m s m s m s m s m s m s m o s m

double m s m s m s m s m s m s m o s m

interval o o

date s m o s

time m

timestam
p

 m m m m m s m s m

[var]char m o s m o s m o
s

m o
s

m o s m o s m o
s

o m o
s

m s s

[var]bina
ry

 m m m m m m m s

c: Calcite m: MS-SQL o: Oracle s: Spark

See CalciteImplicitCasts for the details.

Reference
[1] Mysql type conversion
[2] Oracle Datatype Comparison Rules
[3] SqlServer Data type conversion (Database Engine)

https://docs.google.com/spreadsheets/d/1GhleX5h5W8-kJKh7NMJ4vtoE78pwfaZRJl88ULX_MgU/edit?usp=sharing
https://dev.mysql.com/doc/refman/5.5/en/type-conversion.html
https://docs.oracle.com/cd/B12037_01/server.101/b10759/sql_elements002.htm
https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-type-conversion-database-engine?view=sql-server-2017

	Design of Calcite Implicit Type Cast
	Background and Motivation
	Current Popular DB’s Type Conversion
	Oracle Implicit Type Conversion Rules
	MS-SQL Implicit Type Conversion Rules

	Data type conversion behaviors for MS-SQL
	Proposed Design for Calcite
	How does Calcite Validate the AST
	Implicit Type Coercion Work Flow
	Strategies for Finding Common Type
	Conversion Contexts and Strategies

	Type Conversion Matrix
	Reference

