List of Classes with Behaviors and Method Descriptions

Flow Chart

Board

+ Sets array of 9 spaces
+ Gets board state

+ Sets state of squares
+ Resets board

Player
+ Takes a marker (gets)

+ Holds a marker (sets)

Runner
+ Starts new game with two players and new board
+ Calls square setting method from Board class
+ Returns true if marker can be placed
+ Checks if there is any available square on the board
+ Returns true if a particular square on board is empty
+ Returns true if there is a winning combo on board
+ Returns the winning marker type in addition to (or instead of?) true
+ Change empty square integers to strings to allow for comparison
+ Returns false if board is full and game is tied
+ Gets turn(board) (Returns marker type whose turn it is)
+ Randomly assigns first move to X or O if board is empty
+ Restarts game
+ Queries human to play again
- if input == 1, return start_game
- elsif input == 2, exit_game
-else, return “That is not a 1 or 2”
- Starts the game
while true:
- print board(@board)
- place marker(io.get_square, whose_turn?(board))
- check board for winner(board)

Input/Output
+ Returns (Need to change to puts) “Itis __’s turn”

+ Gets restart input

+ Gets first player marker type
- Ensures that first marker type is a marker type
- Re-gets marker type if it is not


https://docs.google.com/drawings/d/17PTHq-X108_ctL7y-XzyqYVjpf3GiffzPy1TKBQfOuI/edit?usp=sharing

- def get_marker_type Queries Player to determine marker, either X or O
- “What sort of marker would you like to use? (i.e. X or O)”
- if input.length == 1 return input
- elsif input.length 1= 1
- puts “Your marker should be only one character” get_marker_type
- end
+ Prints current board in 3 x 3 pattern
+ Gets (input) next square on board to be marked
+ Queries human for which square to place piece into on board
+ Prints winner

Al
- Determines best move
+ Complete winning triple
+ Looks for triples with two of the same plus one empty
+ Fills in empty with X if there are 2 X’s
+ Returns board position of blank to be filled
+ Blocks opponent’s winning move (inverse of “Determines best move”)
+ Looks for triples with two of the same plus empty for opponent
+ Fills in empty with X if there are 2 O’s
- Creates a fork
- Gets possible forks (opportunity to make two threats to win)
- Blocks a fork (inverse of “Creates a fork™?)
+ Marks the center of board
+ If square 5 is empty, mark with marker
+ If square 5 is full, return nil (or something else?)
+ Marks opposite corner
+ If square 1 (if this evaluates to true square 1.to_i == 0, and
@board.square_empty?(board, 9)) is filled, mark square 9, 3->7, 7->3, 9->1
+ Marks empty corner
+1f 1,3,7,9 empty, fill empty with marker
+ Marks empty side
+ If 2, 4,6,8 empty, fill empty with marker

Describing Runner

startup:



def start_game
io.ask_for_width_of board # Enter 3 for a 3x3 board or 4 for a 4x4 board
board_size = io.get_size_of board
runner.set_width_of board(board_size)
@board.reset_any_size board

- io.ask_for_number_of_human_players
- io.get_number_of human_players

runner.play_game
end
def play_game

winner = board.winner_on_board?(board) #Maybe need to rename @board in runner?
while winner == false

it “should call:

marker = whose_turn?(runner.number_of_empty squares(@board))

io.puts_turn(runner.whose_turn?) # It’s #{marker}’s turn

output_board = @board.output_board(board)

io.put_to_console(output_board)

io.ask_for_square to_mark? # Enter a square to mark

square = io.get_square_to_mark

if runner.square_empty?(square) == false
io.marker_error
io.ask_for_square_to_mark
io.get_square_to_mark

else
runner.place_marker(square, marker)
runner.play_game

io.puts_winner(winner)
io.ask_to_restart? # Enter 1 to restart or any key to exit
choice_to_restart = io.get_input
if restart?(choice_to_restart) ==
runner.start_game

end



