
List of Classes with Behaviors and Method Descriptions

Flow Chart

Board
+ Sets array of 9 spaces
+ Gets board state
+ Sets state of squares
+ Resets board

Player
+ Takes a marker (gets)
+ Holds a marker (sets)

Runner
+ Starts new game with two players and new board
+ Calls square setting method from Board class
+ Returns true if marker can be placed
 + Checks if there is any available square on the board
​ + Returns true if a particular square on board is empty
​ + Returns true if there is a winning combo on board
​ ​ + Returns the winning marker type in addition to (or instead of?) true
​ ​ + Change empty square integers to strings to allow for comparison
+ Returns false if board is full and game is tied
+ Gets turn(board) (Returns marker type whose turn it is)

+ Randomly assigns first move to X or O if board is empty​
+ Restarts game

+ Queries human to play again
​ ​ - if input == 1, return start_game
​ ​ - elsif input == 2, exit_game
​ ​ -else, return “That is not a 1 or 2”
- Starts the game
​ while true:
​ - print board(@board)
​ - place marker(io.get_square, whose_turn?(board))
​ - check board for winner(board)

Input/Output
+ Returns (Need to change to puts) “It is __’s turn”
+ Gets restart input
+ Gets first player marker type
​ - Ensures that first marker type is a marker type
​ - Re-gets marker type if it is not

https://docs.google.com/drawings/d/17PTHq-X108_ctL7y-XzyqYVjpf3GiffzPy1TKBQfOuI/edit?usp=sharing

- def get_marker_type Queries Player to determine marker, either X or O
​ - “What sort of marker would you like to use? (i.e. X or O)”
​ - if input.length == 1 return input
​ - elsif input.length != 1

- puts “Your marker should be only one character” get_marker_type
- end

+ Prints current board in 3 x 3 pattern
+ Gets (input) next square on board to be marked
​ + Queries human for which square to place piece into on board
+ Prints winner

AI
- Determines best move
​ + Complete winning triple
​ ​ + Looks for triples with two of the same plus one empty
​ ​ + Fills in empty with X if there are 2 X’s
​ ​ + Returns board position of blank to be filled
​ + Blocks opponent’s winning move (inverse of “Determines best move”)
​ ​ + Looks for triples with two of the same plus empty for opponent
​ ​ + Fills in empty with X if there are 2 O’s
​ - Creates a fork
​ ​ - Gets possible forks (opportunity to make two threats to win)
​ - Blocks a fork (inverse of “Creates a fork”?)
​ + Marks the center of board
​ ​ + If square 5 is empty, mark with marker
​ ​ + If square 5 is full, return nil (or something else?)
​ + Marks opposite corner
​ ​ + If square 1 (if this evaluates to true square 1.to_i == 0, and
@board.square_empty?(board, 9)) is filled, mark square 9, 3->7, 7->3, 9->1
​ + Marks empty corner
​ ​ + If 1,3,7,9 empty, fill empty with marker
​ + Marks empty side
​ ​ + If 2, 4,6,8 empty, fill empty with marker

Describing Runner

startup:

def start_game
​ io.ask_for_width_of_board # Enter 3 for a 3x3 board or 4 for a 4x4 board
​ board_size = io.get_size_of_board
​ runner.set_width_of_board(board_size)
​ @board.reset_any_size_board
​
-​ io.ask_for_number_of_human_players
-​ io.get_number_of_human_players

runner.play_game

end

def play_game
​

winner = board.winner_on_board?(board) #Maybe need to rename @board in runner?
while winner == false

it “should call:
marker = whose_turn?(runner.number_of_empty_squares(@board))
io.puts_turn(runner.whose_turn?) # It’s #{marker}’s turn
output_board = @board.output_board(board)
io.put_to_console(output_board)
io.ask_for_square_to_mark? # Enter a square to mark

square = io.get_square_to_mark
if runner.square_empty?(square) == false
​ io.marker_error

io.ask_for_square_to_mark
io.get_square_to_mark

else
​ runner.place_marker(square, marker)
​ runner.play_game

io.puts_winner(winner)
io.ask_to_restart? # Enter 1 to restart or any key to exit
choice_to_restart = io.get_input
if restart?(choice_to_restart) == 1
​ runner.start_game

end

