AB Calculus Practice 5.3

Continuity and differentiability

1. If you can draw a fun	ection without picking up	p your pencil, it's	probably	·
2. For $f(x)$ to be continuthe same value as $f(a)$.	ous at $x = a$, the left- and	d right-hand	must match,	and they must be
3. If a function isn't a "s	smooth curve," it's proba	ably not		
4. If you zoom in enoug		function, it	t'll eventually look like a	ı
5. All	functions are		_, but not all	
functions are	.			
	lifferentiable, it can't ha			_>
7. For $f(x)$ to be different	atiable at $x = a$, the left-	and right-hand	must mate	h, and the left-
	must also m			
	bold number	rs - calculator pei	rmitted	
	$f(x) = \begin{cases} 2 & \text{if } x > 0 \\ 2 & \text{if } x > 0 \end{cases}$	$2x + 5 for x < -x^2 + 6 for x \ge$: −1 : −1	
8. If f is the function de	fined above, then $f'(-1)$	is		
(A) -2	(B) 2		(C) 3	
(D) 5	(E) nonexistent	t		

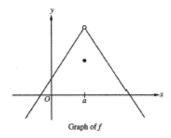
9. If $\lim_{x \to a} f(x) = f(a)$, then which of the following statements about f must be true?

- (A) f is continuous at x = a.
- (B) f is differentiable at x = a.
- (C) For all values of x, f(x) = f(a).
- (D) The line y = f(a) is tangent to the graph of f at x = a.
- (E) The line x = a is a vertical asymptote of the graph of f.

10. If the function f is continuous at x = -2, which of the following must be true?

$$(A) f(-2) < \lim_{x \to -2} f(x)$$

(B)
$$\lim_{x \to -2^{+}} f(x) \neq \lim_{x \to -2^{-}} f(x)$$

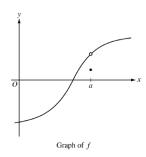

(C)
$$f(-2) = \lim_{x \to -2^{+}} f(x) = \lim_{x \to -2^{-}} f(x)$$

- (D) The derivative of f at x = -2 exists
- (E) The derivative of f is positive for x < -2 and negative for x > -2

11. Let f be the function defined by $f(x) = \sqrt{|x + 3|}$ for all x. Which of the following statements is false?

- (A) f is continuous but not differentiable at x = -3.
- (B) f is continuous at x = -3.
- (C) f is differentiable at x = -3.
- (D) $\lim_{x \to -3} f(x) = 0$

(E) x = -3 is a vertical tangent of the graph of f.


- 12. The graph of the function f is shown above. Which of the following statements must be true?
- (A) f is continuous at x = a.
- (B) $\lim_{x \to a} f(x) = f(a)$.
- (C) $\lim_{x \to a} f'(x)$ exists.
- (D) $\lim_{x \to a} f(x)$ exists.
- (E) f(x) is continuous for all values of x.

$$f(x) = \begin{cases} x+2 & \text{if } x \le 3\\ 4x-7 & \text{if } x > 3 \end{cases}$$

- 13. Let f be the function given above. Which of the following statements are false about f? Circle all that apply
 - I. $\lim_{x \to 3} f(x)$ exists
 - II. f is continuous at x = 3
 - III. f is differentiable at x = 3

a	$\lim_{x \to a} f(x)$	$\lim_{x \to a^+} f(x)$	f(a)
-1	4	6	4
0	-3	-3	5
1	2	2	2

- 14. The function f has the properties indicated in the table above. Which of the following must be true?
- (A) f is continuous at x = -1
- (B) f is continuous at x = 0
- (C) f is continuous at x = 1
- (D) f is differentiable at x = 0
- (E) f is differentiable at x = 1

- 15. The graph of y = f(x) is shown above. Which of the following is false?
- (A) $\lim_{x \to a^{+}} f(x) \neq \lim_{h \to a^{-}} f(x)$
- (B) $\lim_{h \to 0} \frac{f(a+h) f(a)}{h}$ does not exist.
- (C) $\lim_{x \to a} f(x) \neq f(a)$
- (D) $\lim_{x \to a} f(x)$ exists.

$$f(x) = \begin{cases} 3x - 2 & \text{if } x < 1\\ \ln(3x - 2) & \text{if } x \ge 1 \end{cases}$$

16. Let f be the function defined above. Which of the following statements about f are false?

Circle all that apply

I.
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x)$$

II.
$$\lim_{x \to 1^{-}} f'(x) = \lim_{x \to 1^{+}} f'(x)$$

III. f is differentiable at x = 1