ICE Box Practice & Review HBA AP Chemistry

- 1. At the start of an experiment, $[H_2] = 1 \times 10^{-3} \text{ M}$ and $[I_2] = 2 \times 10^{-3} \text{ M}$. When equilibrium is reached, the $[HI] = 1.86 \times 10^{-3} \text{ M}$. Find the K_{eq} . $H_2(g) + I_2(g) \approx 2HI(g)$
- 2. Initially, N_2 and H_2 each have a concentration of 0.01 M. At equilibrium, $[NH_3]$ is 0.002 M. What is the K_{eq} value for this reaction at equilibrium?

$$N_2(g) + 3H_2 \rightleftharpoons 2NH_3$$

3. The initial concentration of HCl is 0.4 M and has a $K_c = 6.25$. What are the equilibrium concentrations of all products and reactants?

$$2HCl \rightleftharpoons H_2 + Cl_2$$

4. A sample containing 0.800 moles of POCl₃ is enclosed in a 0.500 litre vessel at a certain temperature. When the equilibrium for the dissociation reaction below is attained, it is found that the vessel contains 0.259 moles of Cl₂. Calculate the equilibrium constant.

$$POCl_{3(g)} \rightleftharpoons POCl_{(g)} + Cl_{2(g)}$$

5. The brown gas NO_2 on cooling is converted into the colourless gas N_2O_4 as described by the equation below. If the original concentration of NO_2 is 0.90 M, and at equilibrium its concentration is only 0.26 M, what is the equilibrium constant for the reaction?

$$2 \text{ NO}_{2(g)} \stackrel{>}{=} N_2 O_{4(g)}$$

6. If 0.300 mol of SO3 and 0.300 mol NO were placed in a 1.00 L flask and allowed to react, what would be the equilibrium concentration of each gas ? (Keq = 0.500)

$$SO_{3(g)} + NO_{(g)} \rightleftharpoons NO_{2(g)} + SO_{2(g)}$$

7. If 2.00 mol HCl are placed in a 5.00 L flask and allowed to come to the equilibrium shown above, what will the equilibrium [H2] be ? ($Keq = 3.2 \times 10^{-4}$)

$$2 \text{ HCl}_{(g)} \rightleftharpoons H_{2(g)} + \text{Cl}_{2(g)}$$

8.	If 1.50 mol of each chemical species are placed in a 3.00 L flask and allowed to achieve the equilibrium
	above, what mass of CO will be present at equilibrium? (Keq = 3.59)

$$H_{2(g)} + CO_{2(g)} \stackrel{?}{=} CO_{(g)} + H_2O_{(g)}$$