
OST & SM project topics 
September 2, 2025 
 
Subjects 

●​ Open source technologies and real-time data analytics 
●​ Stream mining 

General exam rules 
●​ General exam rules are defined in the course intro presentations. 
●​ Note: there will be 2+1 opportunities to attempt the theoretical part of the exam: 

○​ Regular exam opportunity in December and/or mid-January.  
○​ Re-take opportunity near the end of January. Available only to candidates who 

failed the regular exam attempt in December or January. 

General project rules 
OST+SM joint projects plan and milestones: 

●​ Project topics are chosen and solved by 5-member teams.  
○​ Team formation deadline: Sep 22, 2025.  
○​ Project selection deadline: Sep 26, 2025. Max points deduction if this deadline is 

missed (-10%). 
●​ System architecture and per team member workplan - Deadline: Oct 17, 2025. Sooner 

the better. Revise with project supervisor. Significant point deductions if this deadline is 
missed (-15%). 

●​ Early project submission deadline will be Nov 27, 2025 (12:00 CET). We will organize the 
theoretical part of both exams (SM & OST) in December for candidates submitting their 
projects by this deadline on the first submitted, first served basis. Submissions only via 
Canvas assignments. 

●​ Early project defenses in the Dec 1-5 week, 2024. 
●​ Late project submission deadline will be Dec 4, 2025 (12:00 CET).  

Minimum project implementations include at least the following elements for a passing grade 
(and meaningfully more for a higher grade): 

●​ 2 different input datasets utilized - if feasible. 
●​ 1 streaming system included in the system architecture. 
●​ 2 stream processing stages developed by each team member doing the project in the SM 

course. Identify interesting algorithms in relevant scientific papers and implement and 
integrate such algorithms for a higher grade! 

●​ 1 data storage tech where the input data stream or its aggregate is persisted. 
●​ 1 batch processing stage trained and utilized on 'static' data in the data store.  



●​ 1 visualization solution. Each team member creates at least one (meaningful) dashboard 
with at least 2 graphs included. 

●​ Reference research papers (conference or journal) and implement the solutions or their 
derivatives for higher grades (4 and 5) in the SM course. 

Project descriptions are provided by the course teams and include at least the following 
●​ Title and short description. 
●​ List of datasets to be used. 
●​ Data analysis and flow stages diagram - might include the names of technologies used to 

implement each analytics. 
○​ Batch analytics. 
○​ Stream mining transformations. 

●​ Deployment diagram showing the actual deployment of each utilised technology and data 
source on Docker containers or similar.  

●​ List of open-source tools and technologies which must be included in the project. 
●​ Useful references to papers and online resources if any. 

Project submission 
The project submission will consist of the following elements: 

●​ Github repository for the code. 
●​ Github (or other) repo for the data (unless otherwise instructed). 
●​ A short-ish project report describing the system. The report should be integrated into the 

Github repository - it must contain the same elements in that case as well (see details 
below). Alternatively, and on request the report can be edited in Overleaf (LNCS template 
format). 

●​ A max 10-slide PPT focusing on the system architecture and key contributions. This will 
be presented during the project presentations in the last two weeks of the semester. The 
structure closely follows the report structure. Additionally: 

○​ The PPT includes a well-defined description of duties performed by project team 
members, i.e. the team members tell us who did which part of the project. This will 
allow the course team to separately grade the team members, i.e. not all team 
members get the same grades in every case. 

Project Documentation 
LNCS template on Overleaf is available here: 
https://www.overleaf.com/latex/templates/springer-lecture-notes-in-computer-science/kzwwpvhw
nvfj 

●​ It should contain the following elements/sections:  
○​ Structured abstract (up to 200 words). Background, goal, method, results, impact. 
○​ Introduction (up to 1 pp). Includes a references to relevant scientific papers, 

standards and technologies. 
○​ Data sets utilised (up to 1 pp). 



○​ System architecture (2 pp). 
○​ Testing/experiments (2 pp). 
○​ References. At least 10 entries (but max 15). 

●​ The documentation will be written in English and checked for grammar errors by the team 
members (or third parties helping the team members). Very bad English will not be 
accepted, so-so bad English will affect the points received. 

●​ The references will be listed in the APA or Harvard format. There will be at least 10 
relevant references, but not more than 15 and which are not equal to the course materials 
and/or books. Find similar conference/journal papers and/or project reports and refer to 
them.  

●​ The age of the references should not be older than 10 years. 2-3 exceptions are accepted 
if they are highly relevant and therefore necessary. 

●​ The documentation will be shared with the course professors on Overleaf or Github and 
not in PDF or other non-shared document format. 

Topic types and lists (2025) 

Topic 0: Cybersecurity job market analyzer (CSOMA) 
●​ Description: Develop a solution for collecting, storing and analysing cyber security job 

adverts on the European scale. Analyze and visualize the data.  
●​ Team size: 5 
●​ Mentored by: Imre Lendak 
●​ Dataset: From online feed. 
●​ Open-source technologies to be used: Kafka for real-time data ingest and stream 

mining, LinkedIn as a data source, sktime (or similar) for time-series analytics, 
Kubernetes for deployment. 

●​ Batch processing task(s): 
○​ Batch 1: Train a (prediction) model for weekly/monthly per-country analytics. 
○​ Batch 2: Train a forecasting model for predicting per-country and European 

trends. 
●​ Example stream mining pipelines: 

○​ Pipeline 1: Filter ads per country and maintain a Top 10 target list. 
○​ Pipeline 2: Filter ad countries and maintain a Top 10 country/region list. 
○​ Pipeline 3: Detect changes in job types per country/region and report. 
○​ Other ideas for higher grades: analyze Cyberseek and generate analyses based 

on their features. 
●​ Visualization: Create a choropleth map of job ad frequency across different job types. 

Allow scroll-back through time. Create additional dashboards. 



Topic 1: New-tech SCADA (NT-SCADA) 
●​ Description: Develop a supervisory control and data acquisition platform based on  

open-source technologies. Implement ingesting, storing, analyzing and visualizing large 
volumes of analog and digital inputs collected from sensors. Add support for handling 
analog and digital outputs sent from the SCADA to actuators (e.g., breakers, valves and 
other equipment which turns electric signals into physical actions). 

●​ Team size: 5 
●​ Mentored by: Imre Lendak 
●​ Dataset: SWaT and other datasets containing sensor and actuator data. 
●​ Open-source technologies to be used: Kafka for real-time data ingest, InfluxDB (or 

similar) for storage, Flink for batch data analytics, Kafka for stream mining (or other on 
request), sktime (or similar) for batch time-series analytics, Kubernetes for deployment. 

●​ Batch processing task(s): 
○​ Batch 1: Train at least one binary classification model. 
○​ Batch 2: Train at least one fine-grained classification model. 
○​ Batch 3: Analyse and visualise daily statistics. 

●​ Stream mining pipelines: 
○​ Pipeline 1: Identify anomalous sensor data in real time utilising a binary 

classification model. 
○​ Pipeline 2: Perform fine-grained classification of sensor data. 
○​ Other ideas for higher grades: look for relevant network flow analysis solutions 

online and implement. 
●​ Visualization: 

○​ Tabular visualization of sensor data. 
○​ Tabular visualization of actuator data. 
○​ Analog input and output plots. 
○​ Other dashboards and plots. 

 

Topic 2: Open-source operational technology SIEM 
(OSOT-SIEM) 

●​ Description: Develop a security information and event management system tailored for 
use in critical infrastructure settings. The OSOT-SIEM should collect at least intrusion 
detection system (IDS) logs, anti-malware logs, sensor/actuator values and network 
session information (from ip, to ip, from port, to port, kBs).  

●​ Team size: 5 
●​ Mentored by: Imre Lendak 
●​ Dataset: Separate datasets containing IDS, anti-malware, sensor/actuator and network 

session data. Example datasets: SWAT 2015 and newer. 
●​ Open-source technologies to be used: Kafka for real-time data ingest, InfluxDB (or 

similar) for storage, Kafka for stream mining (or other on request), sktime (or similar) for 
batch time-series analytics, Kubernetes for deployment. 



●​ Batch processing task(s): 
○​ Batch 1: Train at least one time-series anomaly detection model. 
○​ Batch 2: Train at least one fine-grained classification model. 
○​ Batch 3: Analyse and visualise daily statistics. 

●​ Stream mining pipelines: 
○​ Pipeline 1: Identify anomalous sensor data in real time utilising a binary 

classification model. 
○​ Pipeline 2: Perform fine-grained classification of IDS data. 
○​ Other ideas for higher grades: look for relevant network session analysis solutions 

online and implement, add at least one threat intelligence data source to the 
project. 

●​ Visualization: 
○​ Tabular visualization of sensor/actuator data. 
○​ Event correlation maps. 

 

Topic 3: Federated Deep Learning for IoT-Based Anomaly 
Detection in Real-Time Monitoring (FLEAD)  

Description:  

Develop a distributed framework for real-time anomaly detection in IoT-based monitoring 
systems using Federated Learning. The project will simulate multiple IoT devices (e.g., 
sensors in a smart city or industrial setting) that collaboratively train a deep learning 
model for detecting anomalies without sharing raw data. The framework focuses on 
privacy preservation and can handle heterogeneous IoT devices with varying 
computation power, data quality, and network constraints. A simulated IoT dataset will be 
used to replicate different devices' behaviors and data streams, making the project 
realistic while maintaining the benefits of distributed learning. 

Team Size: 5 

Mentored by: Jiyan Mahmud (jiyan@inf.elte.hu)  

Open-Source Technologies to be Used:  

●​ Federated Learning Frameworks: TensorFlow Federated 
●​ Kafka for real-time data ingestion  
●​ Spark for batch analytics and stream mining  
●​ Stream processing frameworks: Kafka Streams or Apache Flink  
●​ Visualization Tools: Grafana, Kibana, or Plotly Dash  
●​ Deployment: Docker and Kubernetes for containerization and orchestration  



Federated Stream Mining Pipelines:  

●​ Pipeline 1: Receive and ingest streaming IoT sensor data in real time, 
enabling federated learning across edge devices.  

●​ Pipeline 2: Apply preprocessing on each local IoT device (clean, normalize, 
and prepare the data). Handle missing values, scaling, and encoding 
categorical variables, while preserving the privacy of each device’s data.  

●​ Pipeline 3: Train the local deep learning anomaly detection models on each 
device using federated learning techniques and send model updates (not raw 
data) to a central server for aggregation.  

●​ Pipeline 4: Aggregate the model updates on a central server, using Federated 
Averaging or another federated aggregation technique, to improve the global 
model.  

●​ Pipeline 5: Use ensemble methods for anomaly detection by combining 
results from different federated models, apply voting-based techniques for 
consensus, and trigger alarms when anomalies are detected.  

 

Topic 4:X-ICS-IncreADStream: Explainable Incremental 
Autoencoder-Based Real-Time Anomaly Detection for Industrial 
Control Systems 

Description:  

This project will build a system to find and explain unusual behavior (anomalies) in 
real-time data from Industrial Control Systems (ICS). These systems are used in places 
like water treatment plants, power stations, or factories. The system will use a deep 
learning model (an autoencoder) to learn how the system normally works and detect 
when something strange happens. 

The system will also learn continuously over time (called incremental learning). This 
helps it adapt to changes in the system, such as slow wear and tear or different working 
conditions. When it finds an anomaly, the system will explain which sensors caused it, so 
engineers can fix the problem faster. 

The system will work with any streaming data tool (like Kafka,or others). It will also 
include a live dashboard to show data and send alerts when needed. 

Team Size: 5 

Mentored by: Jiyan Mahmud (jiyan@inf.elte.hu)  



Open-Source Technologies to be Used:  

●​ Data Simulation & Ingestion: Use flexible streaming tools to simulate or ingest 
real-time ICS sensor data from datasets such as SWaT, WADI, or HAI.  

●​ Preprocessing & Feature Engineering: Apply Python-based data processing 
libraries such as Pandas and NumPy for real-time data cleaning, normalization. 

●​ Anomaly Detection Model: Use deep autoencoders for unsupervised anomaly 
detection. The model will learn normal system behavior and identify deviations 
through reconstruction error. Incorporate incremental learning techniques to 
update the model over time as system conditions evolve. 

●​ Stream Processing:  Integrate with any stream processing framework such as 
Kafka Streams, Apache Flink, or lightweight socket-based pipelines to manage 
data flow, windowing, and real-time model inference. 

●​ Explainability Module: Use tools like SHAP, Integrated Gradients, or LIME to 
generate real-time explanations for each detected anomaly, identifying the most 
influential features or sensors contributing to the deviation. 

●​ Visualization & Alerts: Implement real-time dashboards using Grafana, 
Streamlit, or other visualization tools to display sensor trends, anomaly scores, 
and explanations. 

●​ Deployment & Containerization: Use Docker/Kubernetes to containerize the 
system components for easy deployment on local machines, cloud infrastructure, 
or edge devices. Support modular deployment to simulate distributed ICS 
environments. 

Real-Time Processing Pipelines:  

Pipeline 1: Simulating ICS Data  

Simulate real-time sensor data from industrial control systems using a pre-recorded 
dataset (e.g., SWaT, WADI, or HAI). Stream this data continuously through a chosen 
streaming platform (e.g., Kafka, or custom solution), replicating the behavior of a live 
SCADA environment. 

Pipeline 2: Data Preprocessing & Feature Engineering 

Process the incoming data stream in real time by handling missing or noisy 
values,Normalize sensor readings,Extract time-series features.  

Pipeline 3: Deep Autoencoder-Based Anomaly Detection 



Train a deep autoencoder on historical “normal” ICS data to learn the typical behavior of 
the system. The model evaluates incoming data by comparing it to its learned patterns 
and calculating reconstruction error. 

Pipeline 4: Incremental Learning & Real-Time Detection 

Deploy the trained model into the streaming environment to detect anomalies on the fly.​
 Use incremental learning to update the model continuously with newly observed 
“normal” behavior, 

Pipeline 5: Explainability Engine 

When an anomaly is detected, trigger an explanation module to identify which sensor 
features most contributed to the deviation. 

Pipeline 6: Visualization & Alerting 

Visualize real-time system metrics, anomaly scores, and explanations using tools like 
Grafana or custom dashboards. Set up automatic alerts via Slack, email, or SMS when 
critical anomalies are detected, ensuring quick response from operators. 

Topic 5: Smart City Air Quality Monitoring with Real-Time Stream 
Analytics (SCAir-IoT) 

Description:​
This project will develop a system to collect, store, and analyze air quality sensor data 
from smart city IoT devices. The system will simulate multiple sensors measuring 
pollutants (PM2.5, CO₂, NO₂, O₃) and detect pollution spikes in real time. It will also 
forecast short-term air quality using batch analytics to support city planning and public 
health responses. 

Team Size: 5 

Mentored by: Loubna Seddiki (seddikiloubna@inf.elte.hu) 

Dataset: 

●​ UCI Air Quality Dataset  
●​ Optionally enriched with open city datasets  

Open-Source Technologies to be Used: 



●​ Data Simulation & Ingestion: Use Kafka or MQTT (or both) to simulate and 
ingest sensor data streams from UCI Air Quality Dataset and optional city 
datasets. 

●​ Preprocessing & Feature Engineering: Apply Python libraries such as Pandas 
and NumPy for real-time data cleaning, normalization, and aggregation by 
location. 

●​ Analytics Models: Use scikit-learn and TensorFlow to train regression models for 
short-term forecasting and classification models to predict safe vs. unsafe air 
quality zones. 

●​ Stream Processing: Integrate Spark Streaming or Apache Flink to manage data 
flow, windowing, and online detection of pollution spikes. 

●​ Visualization & Alerts: Build dashboards using Grafana or Plotly Dash to display 
live sensor readings, forecasts, and heatmaps. Trigger alerts for unsafe air quality 
events via Slack, email, or SMS. 

●​ Storage: Use InfluxDB to store historical sensor data and enable efficient queries 
for visualization and analysis. 

●​ Deployment & Containerization: Use Docker/Kubernetes to containerize system 
components for reproducible deployment on local machines, cloud, or edge 
environments. 

Batch Processing Tasks: 

●​ Train a regression model to forecast pollution levels 1–3 hours ahead. 
●​ Train a classification model to predict “safe” vs. “unsafe” air quality zones. 

Real-Time Processing Pipelines: 

●​ Pipeline 1: Simulating Air Quality Data. Stream air quality data continuously 
from UCI Air Quality Dataset (and optionally enriched datasets like weather/traffic) 
using Kafka or MQTT to emulate real-world citywide IoT sensors. 

●​ Pipeline 2: Data Preprocessing & Feature Engineering. Clean and normalize 
sensor readings, aggregate values by location, and extract time-series features 
such as averages and rolling statistics in real time. 

●​ Pipeline 3: Pollution Spike Detection. Apply anomaly detection and 
threshold-based methods to identify abnormal increases in pollutants (PM2.5, 
CO₂, NO₂, O₃) in the streaming data. 

●​ Pipeline 4: Forecasting & Classification. Run regression models for short-term 
forecasts (1–3 hours ahead) and classification models to label current city zones 
as safe or unsafe. 

Pipeline 5: Visualization & Alerting 



Provide dashboards with live readings, forecast vs. actual comparison curves, and a city 
heatmap of pollution zones. Trigger alerts when pollutant levels exceed safe thresholds. 

Topic 6: Real-Time Anomaly Detection in IoMT Device 
Communication (IoMT-AD) 

Description:​
This project will build a system to analyze and detect abnormal behavior on the Internet 
of Medical Things (IoMT) devices such as patient monitors, infusion pumps, and 
wearables. The focus is on identifying unusual communication patterns that may indicate 
device malfunctions or cyberattacks. By analyzing real-time traffic streams, the system 
will flag anomalies, trigger alerts, and provide visualization dashboards to help 
healthcare operators respond quickly. 

Team Size: 5​
Mentored by: Loubna Seddiki (seddikiloubna@inf.elte.hu) 

Dataset: 

●​ CICIoMT2023 Dataset (IoMT network traffic with both normal and attack 
scenarios) 

Open-Source Technologies to be Used: 

●​ Data Simulation & Ingestion: Use Kafka to simulate and ingest IoMT traffic from 
CICIoMT2023 in real time. 

●​ Preprocessing & Feature Engineering: Extract communication features such as 
packet size, protocol type, connection duration, and flow statistics using Python 
(Pandas, Scapy). 

●​ Anomaly Detection Model: Train LSTM autoencoders for unsupervised anomaly 
detection and use TensorFlow/Keras for model training and inference. 

●​ Stream Processing: Use Apache Spark Streaming or Flink to process traffic 
flows, apply feature extraction, and run real-time inference. 

●​ Visualization & Alerts: Implement dashboards with Grafana or Kibana to monitor 
device traffic, anomaly scores, and attack patterns. Integrate alerting mechanisms 
(email, Slack, SMS). 

●​ Storage: Use InfluxDB to store IoMT traffic metrics, anomalies, and alerts for later 
analysis. 

●​ Deployment & Containerization: Package system components with Docker and 
orchestrate them with Kubernetes for scalability in healthcare network 
environments. 



Batch Processing Tasks: 

●​ Train an LSTM autoencoder model on historical normal IoMT traffic to learn 
baseline device communication behavior. 

●​ Train classification models (e.g., Random Forest, CNN) to distinguish between 
normal and malicious traffic for evaluation. 

●​ Tune thresholds for anomaly detection based on reconstruction error distributions. 

Real-Time Processing Pipelines: 

●​ Pipeline 1: Simulating IoMT Traffic. Replay CICIoMT2023 traffic streams using 
Kafka to emulate real-world IoMT communication. 

●​ Pipeline 2: Data Preprocessing & Feature Extraction. Extract relevant network 
features (packet size, duration, flow count, protocols) and normalize them in real 
time. 

●​ Pipeline 3: Anomaly Detection Model. Apply the LSTM autoencoder to 
incoming traffic and compute reconstruction error to flag unusual device 
communication. 

●​ Pipeline 4: Alerting & Forensic Storage. Generate alerts for abnormal behavior, 
store flagged sessions in InfluxDB, and mark them for forensic investigation. 

●​ Pipeline 5: Visualization & Monitoring. Use Grafana/Kibana dashboards to 
show device health, anomaly frequency over time, and heatmaps of attack 
patterns per device type. 
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