
OST & SM project topics
September 2, 2025

Subjects

●​ Open source technologies and real-time data analytics
●​ Stream mining

General exam rules
●​ General exam rules are defined in the course intro presentations.
●​ Note: there will be 2+1 opportunities to attempt the theoretical part of the exam:

○​ Regular exam opportunity in December and/or mid-January.
○​ Re-take opportunity near the end of January. Available only to candidates who

failed the regular exam attempt in December or January.

General project rules
OST+SM joint projects plan and milestones:

●​ Project topics are chosen and solved by 5-member teams.
○​ Team formation deadline: Sep 22, 2025.
○​ Project selection deadline: Sep 26, 2025. Max points deduction if this deadline is

missed (-10%).
●​ System architecture and per team member workplan - Deadline: Oct 17, 2025. Sooner

the better. Revise with project supervisor. Significant point deductions if this deadline is
missed (-15%).

●​ Early project submission deadline will be Nov 27, 2025 (12:00 CET). We will organize the
theoretical part of both exams (SM & OST) in December for candidates submitting their
projects by this deadline on the first submitted, first served basis. Submissions only via
Canvas assignments.

●​ Early project defenses in the Dec 1-5 week, 2024.
●​ Late project submission deadline will be Dec 4, 2025 (12:00 CET).

Minimum project implementations include at least the following elements for a passing grade
(and meaningfully more for a higher grade):

●​ 2 different input datasets utilized - if feasible.
●​ 1 streaming system included in the system architecture.
●​ 2 stream processing stages developed by each team member doing the project in the SM

course. Identify interesting algorithms in relevant scientific papers and implement and
integrate such algorithms for a higher grade!

●​ 1 data storage tech where the input data stream or its aggregate is persisted.
●​ 1 batch processing stage trained and utilized on 'static' data in the data store.

●​ 1 visualization solution. Each team member creates at least one (meaningful) dashboard
with at least 2 graphs included.

●​ Reference research papers (conference or journal) and implement the solutions or their
derivatives for higher grades (4 and 5) in the SM course.

Project descriptions are provided by the course teams and include at least the following
●​ Title and short description.
●​ List of datasets to be used.
●​ Data analysis and flow stages diagram - might include the names of technologies used to

implement each analytics.
○​ Batch analytics.
○​ Stream mining transformations.

●​ Deployment diagram showing the actual deployment of each utilised technology and data
source on Docker containers or similar.

●​ List of open-source tools and technologies which must be included in the project.
●​ Useful references to papers and online resources if any.

Project submission
The project submission will consist of the following elements:

●​ Github repository for the code.
●​ Github (or other) repo for the data (unless otherwise instructed).
●​ A short-ish project report describing the system. The report should be integrated into the

Github repository - it must contain the same elements in that case as well (see details
below). Alternatively, and on request the report can be edited in Overleaf (LNCS template
format).

●​ A max 10-slide PPT focusing on the system architecture and key contributions. This will
be presented during the project presentations in the last two weeks of the semester. The
structure closely follows the report structure. Additionally:

○​ The PPT includes a well-defined description of duties performed by project team
members, i.e. the team members tell us who did which part of the project. This will
allow the course team to separately grade the team members, i.e. not all team
members get the same grades in every case.

Project Documentation
LNCS template on Overleaf is available here:
https://www.overleaf.com/latex/templates/springer-lecture-notes-in-computer-science/kzwwpvhw
nvfj

●​ It should contain the following elements/sections:
○​ Structured abstract (up to 200 words). Background, goal, method, results, impact.
○​ Introduction (up to 1 pp). Includes a references to relevant scientific papers,

standards and technologies.
○​ Data sets utilised (up to 1 pp).

○​ System architecture (2 pp).
○​ Testing/experiments (2 pp).
○​ References. At least 10 entries (but max 15).

●​ The documentation will be written in English and checked for grammar errors by the team
members (or third parties helping the team members). Very bad English will not be
accepted, so-so bad English will affect the points received.

●​ The references will be listed in the APA or Harvard format. There will be at least 10
relevant references, but not more than 15 and which are not equal to the course materials
and/or books. Find similar conference/journal papers and/or project reports and refer to
them.

●​ The age of the references should not be older than 10 years. 2-3 exceptions are accepted
if they are highly relevant and therefore necessary.

●​ The documentation will be shared with the course professors on Overleaf or Github and
not in PDF or other non-shared document format.

Topic types and lists (2025)

Topic 0: Cybersecurity job market analyzer (CSOMA)
●​ Description: Develop a solution for collecting, storing and analysing cyber security job

adverts on the European scale. Analyze and visualize the data.
●​ Team size: 5
●​ Mentored by: Imre Lendak
●​ Dataset: From online feed.
●​ Open-source technologies to be used: Kafka for real-time data ingest and stream

mining, LinkedIn as a data source, sktime (or similar) for time-series analytics,
Kubernetes for deployment.

●​ Batch processing task(s):
○​ Batch 1: Train a (prediction) model for weekly/monthly per-country analytics.
○​ Batch 2: Train a forecasting model for predicting per-country and European

trends.
●​ Example stream mining pipelines:

○​ Pipeline 1: Filter ads per country and maintain a Top 10 target list.
○​ Pipeline 2: Filter ad countries and maintain a Top 10 country/region list.
○​ Pipeline 3: Detect changes in job types per country/region and report.
○​ Other ideas for higher grades: analyze Cyberseek and generate analyses based

on their features.
●​ Visualization: Create a choropleth map of job ad frequency across different job types.

Allow scroll-back through time. Create additional dashboards.

Topic 1: New-tech SCADA (NT-SCADA)
●​ Description: Develop a supervisory control and data acquisition platform based on

open-source technologies. Implement ingesting, storing, analyzing and visualizing large
volumes of analog and digital inputs collected from sensors. Add support for handling
analog and digital outputs sent from the SCADA to actuators (e.g., breakers, valves and
other equipment which turns electric signals into physical actions).

●​ Team size: 5
●​ Mentored by: Imre Lendak
●​ Dataset: SWaT and other datasets containing sensor and actuator data.
●​ Open-source technologies to be used: Kafka for real-time data ingest, InfluxDB (or

similar) for storage, Flink for batch data analytics, Kafka for stream mining (or other on
request), sktime (or similar) for batch time-series analytics, Kubernetes for deployment.

●​ Batch processing task(s):
○​ Batch 1: Train at least one binary classification model.
○​ Batch 2: Train at least one fine-grained classification model.
○​ Batch 3: Analyse and visualise daily statistics.

●​ Stream mining pipelines:
○​ Pipeline 1: Identify anomalous sensor data in real time utilising a binary

classification model.
○​ Pipeline 2: Perform fine-grained classification of sensor data.
○​ Other ideas for higher grades: look for relevant network flow analysis solutions

online and implement.
●​ Visualization:

○​ Tabular visualization of sensor data.
○​ Tabular visualization of actuator data.
○​ Analog input and output plots.
○​ Other dashboards and plots.

Topic 2: Open-source operational technology SIEM
(OSOT-SIEM)

●​ Description: Develop a security information and event management system tailored for
use in critical infrastructure settings. The OSOT-SIEM should collect at least intrusion
detection system (IDS) logs, anti-malware logs, sensor/actuator values and network
session information (from ip, to ip, from port, to port, kBs).

●​ Team size: 5
●​ Mentored by: Imre Lendak
●​ Dataset: Separate datasets containing IDS, anti-malware, sensor/actuator and network

session data. Example datasets: SWAT 2015 and newer.
●​ Open-source technologies to be used: Kafka for real-time data ingest, InfluxDB (or

similar) for storage, Kafka for stream mining (or other on request), sktime (or similar) for
batch time-series analytics, Kubernetes for deployment.

●​ Batch processing task(s):
○​ Batch 1: Train at least one time-series anomaly detection model.
○​ Batch 2: Train at least one fine-grained classification model.
○​ Batch 3: Analyse and visualise daily statistics.

●​ Stream mining pipelines:
○​ Pipeline 1: Identify anomalous sensor data in real time utilising a binary

classification model.
○​ Pipeline 2: Perform fine-grained classification of IDS data.
○​ Other ideas for higher grades: look for relevant network session analysis solutions

online and implement, add at least one threat intelligence data source to the
project.

●​ Visualization:
○​ Tabular visualization of sensor/actuator data.
○​ Event correlation maps.

Topic 3: Federated Deep Learning for IoT-Based Anomaly
Detection in Real-Time Monitoring (FLEAD)

Description:

Develop a distributed framework for real-time anomaly detection in IoT-based monitoring
systems using Federated Learning. The project will simulate multiple IoT devices (e.g.,
sensors in a smart city or industrial setting) that collaboratively train a deep learning
model for detecting anomalies without sharing raw data. The framework focuses on
privacy preservation and can handle heterogeneous IoT devices with varying
computation power, data quality, and network constraints. A simulated IoT dataset will be
used to replicate different devices' behaviors and data streams, making the project
realistic while maintaining the benefits of distributed learning.

Team Size: 5

Mentored by: Jiyan Mahmud (jiyan@inf.elte.hu)

Open-Source Technologies to be Used:

●​ Federated Learning Frameworks: TensorFlow Federated
●​ Kafka for real-time data ingestion
●​ Spark for batch analytics and stream mining
●​ Stream processing frameworks: Kafka Streams or Apache Flink
●​ Visualization Tools: Grafana, Kibana, or Plotly Dash
●​ Deployment: Docker and Kubernetes for containerization and orchestration

Federated Stream Mining Pipelines:

●​ Pipeline 1: Receive and ingest streaming IoT sensor data in real time,
enabling federated learning across edge devices.

●​ Pipeline 2: Apply preprocessing on each local IoT device (clean, normalize,
and prepare the data). Handle missing values, scaling, and encoding
categorical variables, while preserving the privacy of each device’s data.

●​ Pipeline 3: Train the local deep learning anomaly detection models on each
device using federated learning techniques and send model updates (not raw
data) to a central server for aggregation.

●​ Pipeline 4: Aggregate the model updates on a central server, using Federated
Averaging or another federated aggregation technique, to improve the global
model.

●​ Pipeline 5: Use ensemble methods for anomaly detection by combining
results from different federated models, apply voting-based techniques for
consensus, and trigger alarms when anomalies are detected.

Topic 4:X-ICS-IncreADStream: Explainable Incremental
Autoencoder-Based Real-Time Anomaly Detection for Industrial
Control Systems

Description:

This project will build a system to find and explain unusual behavior (anomalies) in
real-time data from Industrial Control Systems (ICS). These systems are used in places
like water treatment plants, power stations, or factories. The system will use a deep
learning model (an autoencoder) to learn how the system normally works and detect
when something strange happens.

The system will also learn continuously over time (called incremental learning). This
helps it adapt to changes in the system, such as slow wear and tear or different working
conditions. When it finds an anomaly, the system will explain which sensors caused it, so
engineers can fix the problem faster.

The system will work with any streaming data tool (like Kafka,or others). It will also
include a live dashboard to show data and send alerts when needed.

Team Size: 5

Mentored by: Jiyan Mahmud (jiyan@inf.elte.hu)

Open-Source Technologies to be Used:

●​ Data Simulation & Ingestion: Use flexible streaming tools to simulate or ingest
real-time ICS sensor data from datasets such as SWaT, WADI, or HAI.

●​ Preprocessing & Feature Engineering: Apply Python-based data processing
libraries such as Pandas and NumPy for real-time data cleaning, normalization.

●​ Anomaly Detection Model: Use deep autoencoders for unsupervised anomaly
detection. The model will learn normal system behavior and identify deviations
through reconstruction error. Incorporate incremental learning techniques to
update the model over time as system conditions evolve.

●​ Stream Processing: Integrate with any stream processing framework such as
Kafka Streams, Apache Flink, or lightweight socket-based pipelines to manage
data flow, windowing, and real-time model inference.

●​ Explainability Module: Use tools like SHAP, Integrated Gradients, or LIME to
generate real-time explanations for each detected anomaly, identifying the most
influential features or sensors contributing to the deviation.

●​ Visualization & Alerts: Implement real-time dashboards using Grafana,
Streamlit, or other visualization tools to display sensor trends, anomaly scores,
and explanations.

●​ Deployment & Containerization: Use Docker/Kubernetes to containerize the
system components for easy deployment on local machines, cloud infrastructure,
or edge devices. Support modular deployment to simulate distributed ICS
environments.

Real-Time Processing Pipelines:

Pipeline 1: Simulating ICS Data

Simulate real-time sensor data from industrial control systems using a pre-recorded
dataset (e.g., SWaT, WADI, or HAI). Stream this data continuously through a chosen
streaming platform (e.g., Kafka, or custom solution), replicating the behavior of a live
SCADA environment.

Pipeline 2: Data Preprocessing & Feature Engineering

Process the incoming data stream in real time by handling missing or noisy
values,Normalize sensor readings,Extract time-series features.

Pipeline 3: Deep Autoencoder-Based Anomaly Detection

Train a deep autoencoder on historical “normal” ICS data to learn the typical behavior of
the system. The model evaluates incoming data by comparing it to its learned patterns
and calculating reconstruction error.

Pipeline 4: Incremental Learning & Real-Time Detection

Deploy the trained model into the streaming environment to detect anomalies on the fly.​
 Use incremental learning to update the model continuously with newly observed
“normal” behavior,

Pipeline 5: Explainability Engine

When an anomaly is detected, trigger an explanation module to identify which sensor
features most contributed to the deviation.

Pipeline 6: Visualization & Alerting

Visualize real-time system metrics, anomaly scores, and explanations using tools like
Grafana or custom dashboards. Set up automatic alerts via Slack, email, or SMS when
critical anomalies are detected, ensuring quick response from operators.

Topic 5: Smart City Air Quality Monitoring with Real-Time Stream
Analytics (SCAir-IoT)

Description:​
This project will develop a system to collect, store, and analyze air quality sensor data
from smart city IoT devices. The system will simulate multiple sensors measuring
pollutants (PM2.5, CO₂, NO₂, O₃) and detect pollution spikes in real time. It will also
forecast short-term air quality using batch analytics to support city planning and public
health responses.

Team Size: 5

Mentored by: Loubna Seddiki (seddikiloubna@inf.elte.hu)

Dataset:

●​ UCI Air Quality Dataset
●​ Optionally enriched with open city datasets

Open-Source Technologies to be Used:

●​ Data Simulation & Ingestion: Use Kafka or MQTT (or both) to simulate and
ingest sensor data streams from UCI Air Quality Dataset and optional city
datasets.

●​ Preprocessing & Feature Engineering: Apply Python libraries such as Pandas
and NumPy for real-time data cleaning, normalization, and aggregation by
location.

●​ Analytics Models: Use scikit-learn and TensorFlow to train regression models for
short-term forecasting and classification models to predict safe vs. unsafe air
quality zones.

●​ Stream Processing: Integrate Spark Streaming or Apache Flink to manage data
flow, windowing, and online detection of pollution spikes.

●​ Visualization & Alerts: Build dashboards using Grafana or Plotly Dash to display
live sensor readings, forecasts, and heatmaps. Trigger alerts for unsafe air quality
events via Slack, email, or SMS.

●​ Storage: Use InfluxDB to store historical sensor data and enable efficient queries
for visualization and analysis.

●​ Deployment & Containerization: Use Docker/Kubernetes to containerize system
components for reproducible deployment on local machines, cloud, or edge
environments.

Batch Processing Tasks:

●​ Train a regression model to forecast pollution levels 1–3 hours ahead.
●​ Train a classification model to predict “safe” vs. “unsafe” air quality zones.

Real-Time Processing Pipelines:

●​ Pipeline 1: Simulating Air Quality Data. Stream air quality data continuously
from UCI Air Quality Dataset (and optionally enriched datasets like weather/traffic)
using Kafka or MQTT to emulate real-world citywide IoT sensors.

●​ Pipeline 2: Data Preprocessing & Feature Engineering. Clean and normalize
sensor readings, aggregate values by location, and extract time-series features
such as averages and rolling statistics in real time.

●​ Pipeline 3: Pollution Spike Detection. Apply anomaly detection and
threshold-based methods to identify abnormal increases in pollutants (PM2.5,
CO₂, NO₂, O₃) in the streaming data.

●​ Pipeline 4: Forecasting & Classification. Run regression models for short-term
forecasts (1–3 hours ahead) and classification models to label current city zones
as safe or unsafe.

Pipeline 5: Visualization & Alerting

Provide dashboards with live readings, forecast vs. actual comparison curves, and a city
heatmap of pollution zones. Trigger alerts when pollutant levels exceed safe thresholds.

Topic 6: Real-Time Anomaly Detection in IoMT Device
Communication (IoMT-AD)

Description:​
This project will build a system to analyze and detect abnormal behavior on the Internet
of Medical Things (IoMT) devices such as patient monitors, infusion pumps, and
wearables. The focus is on identifying unusual communication patterns that may indicate
device malfunctions or cyberattacks. By analyzing real-time traffic streams, the system
will flag anomalies, trigger alerts, and provide visualization dashboards to help
healthcare operators respond quickly.

Team Size: 5​
Mentored by: Loubna Seddiki (seddikiloubna@inf.elte.hu)

Dataset:

●​ CICIoMT2023 Dataset (IoMT network traffic with both normal and attack
scenarios)

Open-Source Technologies to be Used:

●​ Data Simulation & Ingestion: Use Kafka to simulate and ingest IoMT traffic from
CICIoMT2023 in real time.

●​ Preprocessing & Feature Engineering: Extract communication features such as
packet size, protocol type, connection duration, and flow statistics using Python
(Pandas, Scapy).

●​ Anomaly Detection Model: Train LSTM autoencoders for unsupervised anomaly
detection and use TensorFlow/Keras for model training and inference.

●​ Stream Processing: Use Apache Spark Streaming or Flink to process traffic
flows, apply feature extraction, and run real-time inference.

●​ Visualization & Alerts: Implement dashboards with Grafana or Kibana to monitor
device traffic, anomaly scores, and attack patterns. Integrate alerting mechanisms
(email, Slack, SMS).

●​ Storage: Use InfluxDB to store IoMT traffic metrics, anomalies, and alerts for later
analysis.

●​ Deployment & Containerization: Package system components with Docker and
orchestrate them with Kubernetes for scalability in healthcare network
environments.

Batch Processing Tasks:

●​ Train an LSTM autoencoder model on historical normal IoMT traffic to learn
baseline device communication behavior.

●​ Train classification models (e.g., Random Forest, CNN) to distinguish between
normal and malicious traffic for evaluation.

●​ Tune thresholds for anomaly detection based on reconstruction error distributions.

Real-Time Processing Pipelines:

●​ Pipeline 1: Simulating IoMT Traffic. Replay CICIoMT2023 traffic streams using
Kafka to emulate real-world IoMT communication.

●​ Pipeline 2: Data Preprocessing & Feature Extraction. Extract relevant network
features (packet size, duration, flow count, protocols) and normalize them in real
time.

●​ Pipeline 3: Anomaly Detection Model. Apply the LSTM autoencoder to
incoming traffic and compute reconstruction error to flag unusual device
communication.

●​ Pipeline 4: Alerting & Forensic Storage. Generate alerts for abnormal behavior,
store flagged sessions in InfluxDB, and mark them for forensic investigation.

●​ Pipeline 5: Visualization & Monitoring. Use Grafana/Kibana dashboards to
show device health, anomaly frequency over time, and heatmaps of attack
patterns per device type.

	OST & SM project topics
	General exam rules
	General project rules
	Project submission
	Project Documentation
	Topic types and lists (2025)
	Topic 0: Cybersecurity job market analyzer (CSOMA)
	Topic 1: New-tech SCADA (NT-SCADA)
	Topic 2: Open-source operational technology SIEM (OSOT-SIEM)
	Topic 3: Federated Deep Learning for IoT-Based Anomaly Detection in Real-Time Monitoring (FLEAD)
	Topic 4:X-ICS-IncreADStream: Explainable Incremental Autoencoder-Based Real-Time Anomaly Detection for Industrial Control Systems
	Pipeline 2: Data Preprocessing & Feature Engineering
	Pipeline 3: Deep Autoencoder-Based Anomaly Detection
	Pipeline 4: Incremental Learning & Real-Time Detection
	Pipeline 5: Explainability Engine
	Pipeline 6: Visualization & Alerting

	Topic 5: Smart City Air Quality Monitoring with Real-Time Stream Analytics (SCAir-IoT)
	Topic 6: Real-Time Anomaly Detection in IoMT Device Communication (IoMT-AD)

