Учебная дисциплина «Автомобильные эксплуатационные материалы» Лабораторная работа №1

«Определение качества бензина. Правила техники безопасности.»

1. Цель работы:

- оценка первичных признаков качества бензина по показателям: внешний вид, плотность, испытание на медной пластинке, установка соответствия исследуемого бензина соответствующим стандартам.

2. Задание

- ознакомьтесь с требованиями охраны труда, пожарной и экологической безопасности при выполнении работ;
 - изучите выданные преподавателем образцы бензина;
 - оцените первичные признаки качества бензина;
 - проведите опыт с медной пластиной;
 - определите плотность бензина;
 - установите соответствие исследуемого бензина соответствующим стандартам
 - сделайте вывод и заполните отчет по работе.

3. Оснащение работы

Пластинки из электролитной меди; пробирки; мерный цилиндр на 100 мл; автомобильные бензины марок АИ-80, АИ-92, АИ-95, АИ-98; термометр; набор ареометров.

4. Основные теоретические сведения

4.1 Внешний вид бензина

По стандарту в бензине не допускается наличие мутности, взвешенных и осевших на дно посторонних примесей, в том числе и воды.

Посторонние примеси, попадающие в бензин при транспортировке, хранении, приемоотпускных операциях вместе со смолистыми и нагарообразующими веществами увеличивают интенсивность накопления высокотемпературных отложений. Кроме того, абразивные частицы повышают скорость изнашивания деталей двигателя.

Мутность бензина говорит о присутствии в нем воды. Количество воды, находящейся в свободном состоянии, зависит от условий транспортировки, хранения и может быть значительным. Вода теоретически (если она во взвешенном состоянии) улучшает процесс сгорания и повышает детонационную стойкость бензина, а практически вызывает сильную коррозию всех элементов топливной системы. Вода вызывает перебои в работе двигателя, а в зимнее время может вызвать остановку двигателя из-за обледенения карбюратора и замерзания в магистралях топливной системы.

Цвет бензина служит первичным признаком определения качества. Бензин либо бесцветен, либо имеет бледно-желтый цвет, обусловленный в основном присутствием антидетонаторов.

Антидетонаторы - специальные присадки повышающие октановое число.

Наибольшее распространение сегодня получили оксигенаты, маргенецсодержащие, железосодержащие антидетонаторы.

Ферроцен (C5H4)**2Fe** - кристаллический порошок желто-оранжевого цвета хорошо растворяющийся в бензине. Ферроцен и его производные получили допуск к применению в составе бензинов всех марок в концентрации, соответствующей содержанию железа не более 37 мг/л.

Метилтретичнобутиловый эфир СН 3 -0-С(СН 3)з (МТБЭ) - оксигенат, бесцветная, прозрачная жидкость с резким запахом. Температура кипения 48-55°С, плотность - 740-750 кг/м 3, октановое число по исследовательскому методу 115-135. На основании положительных результатов государственных испытаний в России разрешено производство и применение автобензинов с содержанием МТБЭ до 15%, считается наиболее перспективным компонентом.

Циклопентадиенилтрикарбонилмарганец С 5 H 5 Mп(CO) 3 (ЦТМ) - кристалический желтый порошок.

Метилциклопентадиэтилтрикарбонилмарганца СНзС 5 Н 4 Мп(СО)з (МЦТМ) - это соединение представляет собой прозрачную маловязкую жидкость светло-янтарного цвета с травянистым запахом.

Таблица 1 - Антидетонационные присадки

Тип добавки или присадки	Ограничение концентрации	Причина ограничения	Макс, прирост ОЧ 1
Оксигенаты	15%	Относительно низкая теплота сгорания и высокая агрессивность по отношению к резинам	4-6
Свинецсодержащие	0,17 г Рb/л	Высокий уровень токсичности и нагарообразования в камере сгорания	8
Марганецсодержащие	50 мг Mn/л	Повышенный износ и нагарообразование на свечах зажигания и в камере сгорания	5-6
Железосодержащие	38 мг Fe/л	Повышенный износ и нагарообразование на свечах зажигания и в камере сгорания	3-4
Ароматические амины	1-1,3%	Осмоление деталей двигателя и топливной системы. Увеличение износа деталей	6

4. 2. Массовая доля серы

Общее содержание серы характеризует суммарное количество всех сернистых соединений в топливе, которые при сгорании образуют кислородные соединения серы SO2, SO3. При взаимодействии с водой образуются сернистая и серная кислоты, вызывающие коррозию и способствующие процессам образования отложений и износу двигателя.

Экспериментальными работами установлено, что при увеличении серы с 0.05 до 0.10% износ деталей двигателя возрастает в 1.5-2.0 раза, а при повышении количества серы до 0.20% - еще вдвое.

Основная масса сернистых соединений, содержащихся в нефти, при получении топлива перегоняется с углеводородами, выкипающими при температуре выше 200°С. Поэтому общее количество серы в бензине редко превышает 0,05%.

Испытание на медной пластине является универсальным способом оценки коррозионной активности моторных топлив, зависящей от общего содержания активных соединений серы. Сера и ее соединения воздействуют на медь и ее сплавы, вызывая возникновение черных, темно-серых, коричневых, бурых пятен или налета.

4.3 Плотность бензина

Плотность при температуре 20°С должна находится в заданном диапазоне. Плотность бензина относится к температуре 20°С и к плотности воды при температуре 4°С, принятой за единицу. Плотность обозначается . Превышение плотности как-либо на работе двигателя не сказывается и важна только при транспортировке и определении стоимости, так как оптом продается по весу, а в розницу - по объему, но может служить критерием определения качества.

5. Порядок выполнения работы

- 5.1 Ознакомьтесь с требованиями охраны труда, пожарной и экологической безопасности при выполнении работ;
 - 5.2 Оцените выданные преподавателем образцы бензинов по внешнему признаку.
 - 5.3. Проведите испытание на медной пластине, для этого:
- 5.3.1 отполированную пластинку из чистой электролитической меди погрузите в испытуемое топливо и выдержите три часа при 50°C, сутки при комнатной температуре. Ускоренный метод 18 минут при температуре 100°C.
- 5.3.2. оцените соответствие выданного вам образца бензина с требованием стандарта. Бензин не соответствует требованиям, если после испытания пластинка покрывается черными, темно-серыми, коричневыми, бурыми пятнами или налетом.
- 5.4.Определите плотности исследуемых марок бензинов Определение плотности бензинов проводится в соответствии с ГОСТ 3900-83. Для этого:
 - 5.4.1. в цилиндр налейте испытуемый бензин.
- 5.4.2. чистый и сухой ареометр медленно и осторожно опустите в бензин, держа его верхний конец. После того как ареометр установится, произвести отсчет по верхнему краю мениска.
 - 5.4.3. температуру бензина измерьте термометром.
 - 5.4.4. приведите полученную плотность при температуре испытаний к плотности

$$\rho_4^{20}$$
 по формуле $\rho_4^{20} = \rho_4^t + \gamma(t - 20)$

где ρ_4^t - плотность при температуре испытаний;

 γ - температурная поправка;

t – температура испытаний, С

Таблица 3 - Температурные поправки плотности

Плотность, г/см 3	Температурная поправка на 1 °C	Плотность, г/см 3	Температурная поправка на 1 °C
0,7000-0,7099	0,000897	0,7500-0,7599	0,000831

0,7100-0,7199	0,000884	0,7600-0,7699	0,000818
0,7200-0,7299	0,000870	0,7700-0,7799	0,000805
0,7300-0,7399	0,000857	0,7800-0,7899	0,000792
0,7400-0,7499	0,000844	0,7900-0,7999	0,000778

6. Форма отчета о работе

Лабораторная работа №	
Фамилия, инициалы обучающегося	
Дата выполнения работы	=.
Тема работы:	
Цель работы	
Задание	
Оснащение работы.	
Результаты выполнения работы	

Таблица 2 - Результаты экспериментальных данных

Наименование	Нормаль-80	Регуляр-92	Премиум-95
показателя			
Испытания на			
медной пластине			
Внешний вид			
Плотность при 20°С,			
г/см			

Заключение	•••	
Вывод		

Контрольные вопросы

- 1. Каким образом можно визуально определить присутствие примеси воды в бензинах? Какое влияние она оказывает на работу и эксплуатационные характеристики двигателя?
- 2. Какие показатели могут быть использованы как первичные признаки качества бензина? Как по цвету и запаху бензина можно предположить, какие антидетонационные присадки использовались при его изготовлении?
- 3. В чем состоит сущность механизма коррозии, вызываемой присутствием соединений серы в топливе? Напишите анодный и катодный процессы коррозии.
- 4. В чем состоит сущность метода «испытание на медной пластине»?

Список литературы

- 1. В.А. Хитрюк, А.К.Трубилов «Автомобильные эксплуатационные материалы» М.Транспорт,2013г.
- 2. И.Л.Трофименко Н.А.Коваленко, В.П.Лобах «Автомобильные эксплуатационные материалы» Мн., Вышэйшая школа, 2008г.