Design Analysis and Algorithms
INTRODUCTION
Algorithm: An algorithm is a step by step procedure to represent the
solution for a  given problem. It consists of a sequence of steps
representing a procedure defined in a simple language to solve the

problem.

It was proposed by Persian mathematician, ABU JAFAR
MOHAMMED IBN MUSA AL KHOWARIZMI IN 825 A.D.
Characteristics of an Algorithm:

1) An algorithm must have finite number of steps.

2) An algorithm must be simple and must not be ambiguous.

3) It must have zero or more inputs.

4) It must produce one or more outputs.

5) Each step must be clearly defined and must perform a specific
function.

6) There must be relationship between every two steps.

7) It must terminate after a finite no. of steps.

How to develop an algorithm

1.  The problem for which an algorithm is being devised has taken
precisely and clearly defined.
2. Develop a mathematical model for the problem. In modeling

mathematical structures that are best suited are selected.



3. Data structures and program structures used to develop a
solution are planned.

4. The most common method of designing an algorithm is step
wise refinement. Step wise refinement breaks the logic into series of
steps. The process starts from converting the specifications of the
module into an abstract description of an algorithm containing a few
abstract statements.

5. Once algorithm is designed, its correctness should be verified.
The most common procedure to correct an algorithm is to run the
algorithm on varies of test cases. An ideal algorithm is characterized
by its run time and space occupied.

How to analyze an algorithm:

Analysis of algorithm means estimating the efficiency

of algorithm in terms of time and storage an algorithm requires.

1. First step is to determine what operations must be done and what
are their relative cost. Basic operations such as addition,

subtraction, comparison have constant time.

2. Second task is to determine number of data sets which cause

algorithm to exhibit all possible patterns.



It requires to understand the best and worst behavior of

algorithm for different data configurations.



The analysis of algorithm two phases,

1) Priori Analysis: In this analysis we find some functions which
bounds algorithm time and space complexities. By the help of
these functions it is possible to compare the efficiency of

algorithms.

2) Posterior Analysis: Estimating actual time and space when an

algorithm 1s executing is called posterior analysis.

Priori analysis depends only on number of inputs and
operations done, where as posterior analysis depends on both
machine and language used, which are not constant. Hence

analysis of most of the algorithms is made through priori analysis.

How to validate an algorithm:

The purpose of the validation of an algorithm is to
assure that this algorithm will work correctly independently of the
issues such as machine, language, platform etc. If an algorithm is
according to given specifications and is producing the desired outputs

for a given input then we can say it is valid.



TIME & SPACE COMPLEXITIES

Space complexity:

It is defined as the amount of memory need to run to
completion by an algorithm.
The memory space needed by an algorithm has two
parts
1. One 1s fixed part, such as memory needed for local variables,
constants, instructions etc.
2. Second one is variable part, such as space needed for reference

variables, stack space etc. They depend upon the problem instance.

The space requirement S(P) of an algorithm P can be
written as S(P) = ¢ + Sp, where c is a constant(representing fixed
part). Thus while analyzing an algorithm Sp (variable part) is

estimated.



Time Complexity:

The time T(P) taken by a program is the sum of
compile time and run time. The compile dos not depend upon the
instance characteristics, hence it is fixed. Where as run time depends
on the characteristics and it is variable. Thus while analyzing an

algorithm run time Tp is estimated.

Order of magnitude:

It refers to the frequency of execution of a
statement. The order of magnitude of an algorithm is sum of all
frequencies of all statements. The running time of an algorithm

increases with size of input and number of operations.

Ex1: In linear search, if the element to be found is in the first position,
the basic operation done is one. If it is some where in array, basic

operation (comparison) is done n times.

If in an algorithm, the basic operations are done same number of
times every time then it is called ‘Every time complexity analysis”

T(n).



ExI1:

Addition of n numbers
Input : n
Alg:  forlton
Sum = sum+n,
T(n) =n;
Ex:2:
Matrix multiplication
Input : n
Alg:  fori=1tom
forj=1ton
multiplying a[i] * afj]
T(n) = n’;
Worst case: w(n)
It is defined as maximum number of times that an algorithm
will ever do.
Ex: Sequential search
Inputs: n
Alg: comparison
If x 1s last element, basic operations are done n times.

w(n)=n



Best case: B(n)

It is defined as minimum numer of times algorithm will do its
basic operation.
Ex: Sequential search

If x 1s first element B(n) = 1

Average case: A(n)

It is average number of times algorithm does basic
operations for n.
Ex: Sequential search

Inputs: n

Case 1:
If x 1s in array
Let probability of x to be in Kth slot = 1/n
If x 1s in Kth slot, no. of times basic operation done is K.

$ct) (o) wo
A(n): =l n) = n 2 = 2

Case 2:

If x 1s not in array

Probability that x is in Kth slot = p/n
Probability that x is not in array = 1-P

w20 = o ey a2




Order
It 1s sum of all frequencies of execution of statements in a
program.

1. Algorithm with time complexities of O(n) and 100n are called
linear time algorithms since time complexity is linear with input
size.

2. Algorithm such as O(n?), 0.0ln* are called quadratic time
algorithms.

3. Any linear time algorithm 1s efficient than quadratic time

algorithm.

Set of all complexity functions that can be classified with
pure quadratic functions is called ¢ (n?).
0  (n?) is called quadratic time algorithm.
In priori analysis, all factors regarding machine and
long are ignored and only inputs and no. of operations are taken

into account. For this purpose ~ O-notation can be used.

Big O:
O(f(n)): For a function f(n), O(f(n)) is the set of complexity
functions g(n) for which there exist a constant C and N such that

for all n>N



G(n) < C*f(n)

Where g(n) is computing time

n-number of inputs

O(f(n)) — algorithm complex time

If g(n) € O(f(n)) then g(n) is Big O(f(n)). It puts an asymptotic

upper bound on a function.

Ex: Let g(n) = n’ + 10n
F(n) =n’

G(n) < O(f(n)
When C=2 and N=10
For c=2
G(n) = n*+10n and c f(n) = 2n’
Time complexity of g(n) > ¢ f(n)
For n<i0
If n>10 then g(n) < f(n)
Thus N = 10 keeps an upper bound complexity of a 40 function.
If algorithm is run on same complexity on same type of data, but
with higher magnitude of n, the resulting time is less than some
constant time f(n).
Thus
O(1) < O(log n) <O(n)<O(nlogn)<O(n’) < O(2") for a given N.
O(f(n)) — stands for a quantity that is not explicitly known.

10



Every appearance of O(f(n)) means, there are positive constants C
and N such that there occurs a number x, represented by O(f(x))
such that for all n>N

X, =cf(n)
1 1
Ex: IP+2°+ 324 n’ = gn(n+5)(n+1)
_ %n3+%n2+gn

S0
PP+ 437 - n’ = O(n*) may be
YRR AR A n’ = O(n’) strong
1?4224 32 n = §n3+0(n2)stmng
Theorem:

If P(n) = aj+ant---------- a,n™ show that P(n) =
O(n™)
Proof:

P(n) <|ay| +|a;n+------------ |a,,/n™
(e
N
when n>1
let C= [ag|+|a; [+---------- [
P(n) <Cn"

P(n) = O(n™)

11



The symbol O(f(n)) stands for set of all functions g of integers
such that

g(n) < cf(n)

Contest of O-notation identifies the variable that is involved and
the range of variable.

Ex: Show that n* +10n €0(n?)

C =11 for N=1

n*+10n € O(n?)

Big Q
Qf(n)): It 1s the set of complexity functions g(n) for which there
exists C and N for all n>N so that g(n) > cf(n). Always it

represents the lower boundary.

Big 0
0(f(n)) = O(t(n)) N Q (f(x))

It is the set of complexity functions g(n) for which there
exists some +ve real constants ¢, d and N such that

c(f(x) < g(n) <d f(x)

n(n—1)
Ex:T(n)= 2 =0m)=8Q )

= )

12



If g(n) = O0(f(n)) then f(n) is both upper and lower
bounds.

Small O: O(f(n))
g(n) ~ O(f(n))

if exact computing time of g(n) is known we can find f(n), such that

g is asymptotic to f.

= 0"
and f(n) ~ O(an")

13



Divide and Conquer

Introduction:

It is similar to top down approach but, TD approach is a
design methodology (procedure) where as DAC is a plan or policy
to solve the given problem.

TD approach deals with only dividing the program into
modules where as DAC divides the size of input.

It splits ‘n’ inputs into K distinct sets, yielding k sub
problems. These sub problems must be solved and sub solutions

are combined to form solution.

Control Abstraction:

Procedure DAC(p,q)

{
If RANGE (p,q) is small
Then return G(p,q)

Else
{ m=DIVIDE(p,q)
return (COMBINE (DAC(p,m), DAC(m+1,q))

i

14



Stepl: If input size (range) (q-p+1) is small, find solution G(p,q)
Step2: If input size is large split range into two data sets (p,m) and
(m+1, q) and repeat.

Step3: Repeat the process until sub problem is small enough to
solve.

Time Complexity:

g(n) n is small
T(n) = 2T(n/2)+ f(n) Otherwise

f(n) 1s time taken to divide and combine

g(n) 1s time taken for conquer

let n= 2m T(Zm—m) .
2’” — 2"’[*
T(l’l)=2T( 2 )+f(2m) =T(1)+1’1’1
rem - re"H, f2") = m+l
2m — 2"1 2m
let k=1 T(2™) = 2™ (m+1)
raTh, e T(n) = n(logn+1)
- = O(nlogn)
T(2/’n ) T(21;1—1 ) +1
2 = 2
T(2m—l)

m—1 +1

15



Ex: Find time complexity for DAC
a) If g(n) = O(1) and f(n) = O(n)
b) If g(n) = O(1) and f(n) = O(I)

a) It is the same as above case
i.e, Om)=k2" = f(n)
T(n) = nlogn

b) T(n) =2T(n/2) + f(n)
= 2T(n/2) + O(1)
= 2(2T(n/4) + 1)+1
= 2T(n/4)+2+1
A N0 R — +2+1

&y
=nT(l)+ =0

ﬁz"—l —2
S
=n+(n-1-1/2)
=2n-3/2
T(m) =0(n)

Binary Search:

Problem:
To search whether an element x is present in the given list. If x is

present, the value j must be displayed such that a;=x

16



Algorithm:

Stepl: DAC suggests break the input ‘n’ elements I = (a,, a,, ---------
into

[, = (a, 8, --------- a.1), L= a and

I; = (ag:y, Ayp, -=——--—-- a,) into data sets.

Step 2: If x=a, no need of searching I,, 15
Step 3: If x<a, only I, 1s searched

Step 4: If x<a, only I; 1s searched

Step 5: Repeat the steps

K is chosen such that a, is middle of ‘n’ elements k=n+1/2.

Control Abstraction:

Procedure BINSRCH(1,n)

{ m = n+1/2
if A(m) = x then
{
loc = mid;
return; }
else
if A(mid)>x then

BINSRCH(1, m-1)
Else
BINSRCH(m+1, n)

17



Time Complexity:

g(n) nis<1
T(Il) — |Tm/2)+gn) n>1

T(n)=T(n/2) + g(n)
:
=T ? + 2g(n)
= T(n/2*)+2g(n)
= T(n/2%)+k g(n)
if n=2*
= T(1)+k
=k+1 = O(logn)

it is valid if
n is 25!<n<2k fig.
square nodes are at levels k and
k+1, for unsuccessful search
n=2%
T(n) = O(logn)
Number of comparisons for successful search is k i.e., O(logn) and

for unsuccessful k or k-1 O(logn)

18



Ex: Take instances 12141822 24 38

1 2 345606
key=24
mid=3 low high mid
1 6 3
4 6 5
thus number of comparisons needed are two.
Theorem:

Prove that E=I+2n, for a binary search tree.

E = Length of external nodes

I = Length internal nodes

n = Internal nodes

for level 2 for n=3
E =22.2=8 E =1+2n

[=21=2 8=2+6=8

By induction if we add these branches to form a tree it

satisfies E=[+2n.

19



Theorem:
Prove Average successful search time is equal to average

unsuccessful search time U, if n[]oc

ltn—)oo Savg = ltn—)oo Uan

—+1
Uavg: n+l Savg_
I+2n _I+2n
= n+l n
£+2 1+2n
= n = n _Eavg
I+2n
U= n+l
[=U(n+1)-2n
U(n+1)—2nJrl
S= n

lth e S=U-2+1=U-1=U

Total internal path lengths N
Savg = n

1

Total external path lengths
Uavg: n+1

20



MAX-MIN

Problem:
To find out maximum and minimum elements in a
given list of elements.

Iterative algorithm:

Procedure:
Max-Min(1 ------ n)
fori=2tondo
if a[1] > max
then max=A[i]
end if
if A[i]<min
then min = A[i]
endif
endfor
Algorithm requires (n-1) comparisons for finding largest number
and (n-1) comparisons for smallest number.
T(n) =2(n-1)
If same algorithm is modified as
If A[1]>max
Then max=A[1]
Else

Ali]<min

21



Then min = A[i]
And if elements are in ascending order
No. of comparisons = (n-1)
If elements are in descending order

Number of comparisons = 2(n-1)

(n-D)+2(n-1) 3n

-1

Average no of comp’s = 2 = 2
Algorithm based on DAC
Step 1: [ = (a[1], a[2]-------- a[n]) 1s divided into
I, = (a[1], a[2]-------- a[n/2])
I, = (a[n/2+1], —-—-a[n])

Step 2: Max(I) = large of (Max(1,); Max(I,))
Min(I) = large of (Min(I,); Min(1,))

Procedure MAX-MIN(1,j) min = A[I]

{ else

if I=j then i+)

max = min = A[I] p= 2
else {
if j-1=1 MAX-MIN((Lp), N Diin)
if A[TI]>A[j]
max = A[j] MAX-MIN((p+1,)):lmaxs Lnin)
min = A[j] Max = large(hn.x, hiin)
else Min = small(l,., lmin)

max = A[j]

22



}
Time complexity:

0 n=

S~ 2T(§j+2 n>2

F(n)=2 since there are two operations
1. merging for largest
2. merging for smallest

n

T(n) =2T @ +2

:

/2

2

+21+2
= 2°T(n/2%)+2%+2

= 28 T(n/25 ) +25 4 emeem Fommet2

zz{zT[

let n=2*
k-1
21
= 2k‘1T(2)+ i=1
but T2) =1
k-1
2 -1
=2+ ;
=2kl4Dk 1
=2k/2+2k2

23



=3/2252=3/2n-2
T(n) = O(3/2 n)

Assignment Problems

1. Write the algorithm for trinary search and derive the expression

for its time complexity?

24



Trinary Search

Procedure: TRISRCH(p,q)
{

a=pt((q-p)/3)
b=p+((2*(q-p))/3)
if A[a]=x then
return(a);
else
if A[b]=x then
return(b);
else
if A[b]=x then
return(b);
else
if A[a]>x then
TRISRCH(p,(a-1))
else
if A[b]>x then
TRISRCH((a+1),(b-1))
else

TRISRCH((b+1),q)

25



g(n) n<?2

T(n) = {T(g)ﬂ” ) n>2

T(n) = T(m/3)+f(n)
Let f(n)=1
= T(n/3/3)+1+1
= Tmn/3%)+2
= T(n/3%+k=k+1
n=3"
= logsn

T(n) =  O(logzn)

2. Give an algorithm for binary search so that the two halfs are unequal.

Derive the expression for its time complexity?

26



Binary Search:
(Split the input size into 2 sets such that 1/3" and 2/3rds)

procedure BINSRCH(p,q)
{
mid = p+(q-p)/3
if A(mid)=x then

return (mid);

else
if A(mid)>x then
BINSRCH (p, mid-1);
else

BINSRCH(mid+1,q);

b
b

Time Complexity:

g(n) ifn=1
T(Z—"j + g(n) / T(Ej ()
Tm)= L \3 3
Worst case best case

T(n) =T(cn/3) + g(n)
= T(c*n/3%) +kg(n)

let n=3*
T(n) = T(c*)+logsn
If c=2
T(n) = O(2)+logn = O(2%)
C=1
T(n) = O(1) + logn= logn

27



3. Give the algorithm for finding min-max elements when the given list

is divided into 3 sub sets. Derive expression for its time complexity?

Max-Min

If each leaf node has 3 elements

If I=j then

Else

Max = min = a[i]

If j-I=1 then
If a[i]>a[j]

then

then

a[j+1];

Else

}

Max = a[i];
Min = a[j];

Max = a[j]
Min = a[1];

if j-1 =2 then

if a[1]>a[]]
{

if a[i]>a[i+1]

max = a[i];

{

if a[I]>a[l+1)

min = a(I+1];

else

min=a[j];

else
max

min = a[j];

28

else
if
a[j]>a[I+1 }then
max=al[j];
if
a[I]>a[I+1] then
min =
a[l+1]
else
min = a[]]
else
max =
a[l+1]
min = a[I]
}
}
b
else
p=1+/2

MAX'MIN((Lp)ahmaxa hmin)

MAX-MIN((I)+ 1 )j)almaxa 1min)

large(hmaxo hmin)

Small(lmax9 lmin)

}

fMax

fMin



Time Complexity:

0 n=1
1 n=2
3 n=3
ZT[ﬁj +2 n>3
Tm)= { \?2
T(n) = 2T(n/2)+2
= 2(2T(0/4)+2)+2
= 2X(T(10/25))+2%+ -
2k=n/3

kth level there are 3 elements for each node.
2k
2.2
T(n) =25 T(Q2)+ i=!
=3, 2k+2k 1D
=n+2n/3-2
=5n/3 2

O(n) = O(5n/3)

29



Theorem:

Prove that T (n) = O(n'*¢™)

n=2k

if m>>n

if T(n) = m(Tn/2) +an’
T(n) = nT(n/2)+an?
= m(mT(n/2/2)+an*)an’

= m*T(n./2%)+(m+1)an

zmi—l

= m*T(n/2")+an? i=!

= m*+an’( i=! -1/m)
k-l
= m+an? m—1 _;]
m' -1 1
= m*+an?\ " ! _;]
= m¥*(1+an’/m)
— m*= mploe

but O(m"e") = O(n"e™)

( X]ogy — ylogx)

30



Merge Sort:

Problem: Sorting the given list of elements in ascending or decreasing

order.

Algorithm:

Step 1: Given list of elements
I[={A(l), AQ2) --------- A(n)} 1s divided into two sets
I, ={A(1), A2) ------- A(n/2)}
L={AM0/2+ 1----—--- A(n)}

Step 2: Sort I, and Sort I, separately

Step 3: Merge them

Step 4: Repeat the process

31



Procedure Merge sort (p,q) B(1) = A();

{ j=Jtl;
If p<q end 1f
mid = p+q / 2: I=1+1;
mergesort (p,mid); }
merge sort (mid+1, If h>mid
q); For k=jto q
merge (p, mid, q); B(i) = A(k);
endif [=1+1;
} Repeat
procedure Merge(p, mid, q) Else if j>q
{ For k=h to mid
let h=p; I=p; j=mid+1 B() = Ak);
while (h<mid and j<q) do [=1+1;
{ Repeat
if A(h) < AQ) Endif
then For k=p to q
B(i) = A(h); A(k) =B(k);
h =h+1; Repeat

else

32



Time complexity:

a n=1

2T(§)+cn n>1

T(n) = {
=2(2T(n/4) + 2cn
=4T (n/4) + 2cn
= 2*T(n/2%) + ken

n =2k
=n.a+ ken
=na + cn logn

= O(n logn)

Ex : Let wus consider the instances 10, 285,
351,423,861,254J450 520 L

310, 285, 179 652, 3p1 423,861, 254,450,520

1 2 3 4 5 6 7 &8 9 10

For first recursive call left half will be sorted
(310) and (285) will be merged, then
(285,310) and 179 will be merged

179, 652,

and at last (179,285,310) and (652,351) are merged to give

179,285,310,351,652

33



Similarly, for second recursive call right half will be sorted to give

254,423,450,520,861

Finally merging of these two lists produces

179,254,285,310,351,423,450,520,652,820

Quick sort:

Problem: Arranging all the elements in a list in either ascending or
descending order.
File A(1---n) was divided into subfiles, so that sorted subfiles does
not need merging. This can be achieved if
A[I] <A()) for all I<j<mid
mid+1<j<n

thus A(1----m) and A(m+1, ------- n) are independently sorted.

34



Algorithm:

Step 1: Select first element as pivot
Step 2: Two variables are initialized
Lower = a+1 upper =b
Lower scans from left to right
Upper scans from right to left
Step 3: if lower < right
Corresponding elements are swapped. When lower and
upper cross each other, process is stepped.
Step 4: Pivot 1s swapped with A(upper) which becomes new pivot
and
repeat the process.
Procedure Quick sort(a, b)
{
if a<b then
k = partition (a,b);
quick sort (a, k-1);
quick sort (k+1, b);
b

35



Procedure partition (m,p)

{

let x=A[m], I = m;

while (I<p)

{
do
I=1+1;
Until (A[I]>x)
Do
P=p-1;
Until (A[p] £x)
If I<p
Swap(A[I], A[P])
b

A[m]=A[p];

Alp] =x

b

Time Complexity:
Let us assume file size n is 2™, m= log,n

Also assume position of pivot is exactly in the middle of array.

In first pass (n-1) comparisons are made.

In second pass (n/2-1) comparisons are made.

Total no. of comparisons = (n-1)+2*(n/2-1)+4(n/4-1)+------- n*(n/2™-1) ccmn
T(n) = O (nlogn)
If the original file is already sorted, the file is split into sub files of size

into 0 and n=1.

Total comparisons = (n-1)+(n-2)+(n-3)--------- (n-n) °<nn = 0(n?)

36



STRASSEN’S MATRIX MULTIPLICAITON

Let A and B be two n x n matrices. The product matrix C=AB is
also an n x n matrix whose 1i,jth element is formed by taking the
elements in the ith row of A and the jth column of B and multiplying
them to get

C(L,)) =2A1Lk)B(k,))

For all I and j between 1 to n. To compute C(1,j) using this formula
we need n multiplications. As the matrix has n? elements, the time for
the resulting matrix multiplication algorithm has a time complexity of
0(n’).

According to divided and conquer the given matrices A and B are
divided into four square sub matrices each of dimension n/2 and n/2. The

product AB can be computed using the product of 2 x 2 matrices.

L ) =l

C,=A,;B;+A;,B,
C,=A,;B,+A;,B,,
C,, = A, B, + A,B,,
Cpn=A, B, + ApBy
To find AB we need 8 multiplications and 4 additions. Since two

matrices can be added in time cn? for a constant c.

37



b n<2
T(n) = 2
8T(n/2)+cn” n>2

where b and ¢ are constants
This recurrence can be solved in the same way as earlier

recurrences to obtain T(n)=O(n’). Hence no improvement over the
conventional method has been made. Since matrix multiplications are
more expensive than matrix additions O(n3) versus O(n?), we can
attempt to reformulate the equations for C; so as to have fewer
multiplications and possibly more additions. Volker Strassen has
discovered a way to compute the C;’s of using only 7 multiplications
and 18 additions or subtractions. This method involves first computing
the seven n/2Xn/2 matrices P, Q, R, S, T, U, and V. then the C;’s are
computed using the formulas . as can be seen, P, Q, R, S, T, U, and V
can be computed using 7 matrix multiplications and 10 matrix additions
or subtractions. The C; ‘s require an additional 8 additions or
subtractions.

P = (A, +A,)(B;;tB)

Q= (A, +A,)B,

R=A,(B;;-B,)

S =A,(B;;—B)

T=(A;;tA,)By,

U = (Ay-A)(B;+B,y)

V= (A2~ Ap)(By1tBy,)

38



C, =P+ S-T+V

C,=R+T
G, =Q+S
C,, =P+R-Q+U

The resulting recurrence relation for T(n) 1s

b n<2
T(n) = 2
7T(n/2) +an® n>?2

where a and b are constants. Working with this formula, we get
T(n) = an’[1+7/4+(7/4)*+------- +H(7/4)+7T(1)
<cn? (7/4)"°"+7"°¢" ¢ a constant

— O(nlog7) ~ O(n2.81).

Greedy Method:

According to greedy method, to find a solution for a given
problem, two parameters must be considered. They are
1) Feasibility: Any subset of solutions, that satisfies some specified
constraints then it is said to be feasible.
2) Objective function: This feasible solution must either maximize or

minimize a given function to achieve the given objective.

39



A solution which satisfies these two conditions, is called optimal
solution. Greedy method works in stages, considering one input at a
time. At each stage,

Step 1: A decision is made regarding whether or not a particular
input is in an optimal solution. Select an input.

Step 2: If inclusion of input results infeasible solution, then delete
form solution.

Step 3: Repeat until optimization is achieved.

Control Abstract:
Procedure GREEDY (A[],n)
{
solution = ¢

forI=1tondo

{

x = select (a)

if FEASIBLE (solution, x)
solution = UNION (solution, x)
b

return(solution);

}

Optimal storage:
Problem 1:

40



To store n programs on a tape of length L such that mean retrieval

time 1S minimum.

Solution:
Let each program is of length L; (1<i<n), such that the

length of all tapes must be <L. If the programs are in the order I = 1,,

2l

1y--------- 1,, then the time t; to retrieve a program is proportional to '<k</

If all the programs are retrieved with equal probabilities, mean

1
N PP .
retrieval time MRT = "'=/<» | To minimize MRT, we must store the
programs such that their lengths are in non decreasing order 1,<1,<I,

1

=2 2k

MRT = "1<j<n 1<ks;

Ex: There are 3 programs of length 1=(5,10,3).
1,2,3 5+15+18 =38

1,32 5+5+18 =31
31,2 3+8+18 = 29 is the best case where retrieval time is

minimized, if the next program of least length is added.

Time complexity:

If programs are assumed to be in order, then there is
only one
loop in algorithm
Time complexity = O(n)

41



If we consider sorting also, sorting requires O(nlogn)

T(n) = O(nlogn)+O(n)

= O(nlogn)
Problem 3:
To store different programs of lengths I;, 1,, 15 1, with
different frequencies f,, f,----------- f, on a single tape so that MRT is less.

Solution:

s Ju
If frequencies are taken into account then MRT, t; = <k</ " The
programs must be arranged such that ratio of frequency and length must

be in non increasing order.

R I— L
S e —— f,
]i > Q > fn

Knapsack problem:

Given n objects and a knapsack, object 1 has a weight w; and
knapsack has capacity of M. If a fraction x;, 0<x;<1 of object 1 is placed
into knapsack then a profit p;x; is earned.

Problem: To fill the knapsack so that total profit is maximum and

satisfies two conditions.

42



Zpixi

1) objective lsisn  =maximum

ZWixi <m

2) feasibility 1=i<n

Types of knapsack:
1. Normal knapsack: In normal knapsack , a fraction of the last object 1s

included to maximize the profit.

i.e., 0<x<lI so that 2 wixi =M
2.0/T knapsack: In 0/1 knapsack, if the last object is able to insert

completely, then only it is selected otherwise it not selected.

i.e., x= 1/0 so that 2 vix <M
Control Abstract:
P(1:n), w(1:n) contains profits & weights of n objects are ordered

Pi > Pir1
so that ™ "* and x(1:n) is the solution vector.

Normal knapsack (p,w,m,x,n) x[I]=c/wlI]
{ return;
x=0; §
c=M; }

for I=1 ton do
if w[I] <c then

{

x[1] = 1;

c=c-w[I];

} O/1 knapsack:
else {

{ x=0

43



c=M

for I=1 ton do
if w[I] >c then return

else

Ex: Find an optimal solution to the knapsack instance n=7 objects and

the capacity of knapsack m=15. The profits and weights of the objects

are given below.

WI} """"" W,= 2

Plwl----p7/w7 =

P= 10 5
3

5

5 7 6 18 3
5 7 1 4 1

1.6 3 1 6 45 3

Arrange in non increasing order of p/w;

Order =5 1 6

C=15x=0
D x/1] =1
) x/2] =1
3)x/3] =1
4) x[4] =1
5)x/5] =1
6) x[6] = 2/3
T x[7] =0
X=1 1

3
Pw =6 5 45 3

1

7 2 4
3 1.6 1

x=0

c=15-1=14
c=14-2=12
c=12-4=8
c=8-5=3
c=3-1=2
c=2-2/3.3=0

1 I 2/3 0

44



Rearranging into original form
X=1 2/3 1 0 1 1 1
Solution vector for O/I knapsack is X=1010111

Total profit 2P% = [0+15+0+6+18+3=52
Theorem:

If pi/w>p,/w,>----p,/w, then greedy knapsack generate optimal solution.

Proof: Let X=(x,= (x;, ----—--- X,) be solution vector, let j be the least
index such that x;#1.

X=1 for 1<i<j

X=0 for 1<i<n

X=0 for 1<x<1

Let y = (y;-----y,) be optimal solution

z wix; =M
let k be least index such that y,#x, and y,<x
py 1f'k<j then x,=1, but y,<x;

., ifk=jthen 2" =M y=x for 1<i<j y,<x,

3) if k>j then 2% > M which is not possible.

If we increase y, to X, and decrease as many of (Y. ...
results a new solution.
7= (z,,-------- z,) with z=x; 1<i<k and Xw(y;-z,) = Wi(Z,-yy)

45



2pizi = ZiganbDi¥i T (ZYi) WP/ Wi = Ziaqan (Yi-Z) WiDi/ W5
= 2iciaPiYi T [(Zi-yi) Wi - Z1<in(Yi-Z) Wi [ pi/ Wy
= Xii<nDiYi

Theorem:
Why O/I Knapsack does not necessarily yield optimal solution.
Solution:
If w[1] >c for a certain i then
w[i] < c-w(i-1)
In other words remaining capacity at (i-1) stage may have been
better utilized such that by including w[i], ¢ becomes 0 or minimum.

Hence it is optimal.

Job Sequencing:

Let there are n jobs, for any job 1, profit P; 1s earned if it is

completed in dead line d;.

46



Object: Obtain a feasible solution j=(j1,j2,...) so that the profits i.e.,

Zpi

e/ 1s maximum. The set of jobs J is such that each job completes

within deadline.

Control Abstract:
Procedure JS(D, J, N, K)
{
D(0)=J(0)=0;
K=1, J(1)=1
For I=2 to n do
{
r=k
while D(J(r))>max(D(i),r)
{
r=r-1;
}
if D(1)>r then
for (L=k; I=r+1,1=1-1)
JA+D)=I()
§
J(r+1)=1;
k=k+1;
§

47



h

h
Ex: Given 5 jobs, such that they have the profits and should be complete

within dead lines as given below. Find and optimal sequence to achieve

maximum prodit.
P P;=2015 10 5 I
d------ d,=2 2 I 3 3

feasible solution processing sequence value
1) 1,2 2,1orl2 35
2) 13 3,1 30
3) 1,4 1,4 25
4) 1,2,3 - -
5) L,24 1,2,4 40

optimal solution is 1,2,4

Try all possible permutations and if J can be produced
in any of these permutations without violating dead line.
If J is a set of k jobs and o=i, i, ----- I, such that
d; <d;<------ dy then j is a feasible solution.

48



Optimal Merge pattern:

Merging of an ‘n’ record file and ‘m’ record file requires
n+m records
to move. At each step merge smallest size files. Two way merge pattern
is
represented by a merge tree. Leaf nodes (squares) represent the given
files. File obtained by merging the files is a parent file (circles). Number

in each node is length of file or number of records.

If d; is the distance from root to external node for file f;, q; is

the length

n
Zdi%

of f, then total number of record moves in a tree = =@, Known as

weighted external path length.

49



Algorithm:

Procedure Tree (1,n)

ForI=1ton
{
Call GETNODE (T)

L CHILD(T)=LEAST (L);

R CHILD(T)=LEAST (L);

WEIGHT(T) -
WEIGHT(LCHILD(T))+WEIGHT(RCHILD(T));

Call INSERT(L,T);

h
return(LEAST(L))

b

ANALYSIS:

Main loop is executing (n-1) times. If L is in non decreasing
order
LEAST(L) requires only O(1) and INSERT(L,T) can be done in O(n)
times.

Total time taken = O(n?)

50



Minimum spanning Tree:
Let G=(V,E) is an undirected connected graph. A sub graph

T=(V,E) of G is a spanning tree of F iff T is a tree.0

Any connected graph with n vertices must have at least n-1
edges and all connected graphs with n-1 edge are trees. Each edge
in the graph is associated with a weight. Such a weighted graph is
used for construction of a set of communication links at a
minimum cost. Removal of any one of the links in the graph if it
has cycles will result a spanning tree with minimum cost. The cost
of minimum spanning tree is sum of costs of edges in that tree.

A greedy method is to obtain a minimum cost spanning
tree. The next edge to include is chosen according to optimization
criteria in the sum of costs of edges so far included.

1) If A is the set of edges in a spanning tree.
2) The next edge (u,v) to be included in A is a minimum cost edge
and

A U (u,v) is also a tree.

PRIMS Algorithm:

The edge (1,)) to be is such that 1 is a vertex already included in the
tree, j 1s a vertex not included and cost of (1,j)must be minimum among

all edges (k,l) such that k 1s in the tree and 1 is not in the tree

51



Ex:

Edge
(1,2)

(1,4)

(4.5)

(3,3)

Cost
10

30

20

35

52



Algorithm:
Procedure PRIM(E, COST, n, mincost, int NEAR(n), T[n][2], L, J, k, I)
{
(k,]) =edge with mini cost
min cost = cost (k,])
(T(1,1), T(1,2)) = (k,I)
fori=1ton
{
if COST (i,1)<cost(1,k)
then NEAR(i) =1
else
NEAR() =k
b
b
NEAR(k) = NEAR(1)=0
For1=2 ton-1
{
If NEAR(j)=0 find cost(j, NEAR(j))which is mini
T@,1), T(1,2) = (j, NEAR())
Mincost = mincost+cost(j, NEAR(j))
NEAR(j)=0
For k=1ton
{
If NEAR(k) !=0 and cost(k, NEAR(k))>COST(k,j)
Then NEAR(k) =j;
b
b

53



Time complexity:
The total time required for the algorithm is 6(n?).

Krushkal’s algorithm:

If E is the set of all edges of G, determine an edge with
minimum
cost(v,w) and delete from E. If the edge(v,w) does not create any cycle in

the tree T, add(v,w) to T.

Algorithm: J=PARENT(j)
Procedure KRUSKAL(E, COST, n, T) I}(ZI'
{ 2 —:
construct a heap with edge costs ?hﬂe Ki=)
E?n cost=0 T = PARENT(k),
Parent (1,n) = -1, EAthENT(k) b
While I<n-1 and heap not empty )
Delete minimum cost edge (u,v) .
from heap; l}ietum(])
ADJUST heap; .
J = FIND(u) I{’rocedure UNION(i,))
?f | EIFD(V) x=PARENTT(i) + PARENT(j)
( I If PARENT(1))>PARENT(j)
T4l {
; 0 ISI; . PARENT()=j:
’ ’ PARENT(j) =x
T1,2) =v; else U
Mincost = mincost+cost(u,v) PARENT(j)=i;
;JNION(]’k) PARENT() = x
} i
h
Procedure FIND(1)
{
J=I
While PARENT(j)>0

{

54



Time Complexity:

To develop a heap the time taken is O(n). To adjust the
heap it takes a
time complexity of O(logn). The set of edges to be included in
minimum cost spanning tree is n, hence it is O(n).

Total time complexity is in the order of O(nlogn)

55



	Design Analysis and Algorithms 
	INTRODUCTION 
	How to develop an algorithm 
	Addition of n numbers 
	Let probability of x to be in Kth slot = 1/n 
	    Order 
	Big Ω 
	 
	Big θ 
	Step 5: Repeat the steps 
	 C12 = A11B12 + A12B22 
	C21 = A21B11 + A22B21 
	​​​​​ C12 = R+T 
	​​​​​C21 = Q+S 
	Order = 5​1​6​3​7​2​4 






