
Design Analysis and Algorithms 
INTRODUCTION 

Algorithm: An algorithm is a step by step procedure to represent the 

solution for a   given problem. It consists of a sequence of steps 

representing a procedure defined in a simple language to solve the 

problem. 

​ It was proposed by Persian mathematician, ABU JAFAR 

MOHAMMED IBN MUSA AL KHOWARIZMI IN 825 A.D. 

Characteristics of an Algorithm:  

1)​An algorithm must  have finite number of steps. 

2)​An algorithm must be simple and must not be ambiguous. 

3)​It must have zero or more inputs. 

4)​It must produce one or more outputs. 

5)​Each step must be clearly defined and must perform a specific 

function. 

6)​There must be relationship between every two steps. 

7)​It must terminate after a finite no. of steps. 

How to develop an algorithm 

 
1.​ The problem for which an algorithm is being devised has taken 

precisely and clearly defined.  

2.​ Develop a mathematical model for the problem. In modeling 

mathematical structures that are best suited are selected. 

1 
 



3.​ Data structures and program structures used to develop a 

solution are planned. 

4.​  The most common method of designing an algorithm is step 

wise refinement. Step wise refinement breaks the logic into series of 

steps. The process starts from converting the specifications of the 

module into an abstract description of an algorithm containing a few 

abstract statements. 

5.​ Once algorithm is designed, its correctness should be verified. 

The most common procedure to correct an algorithm is to run the 

algorithm on varies of test cases. An ideal algorithm is characterized 

by its run time and space occupied. 

How to analyze an algorithm: 

​ ​  

​ Analysis of algorithm means estimating the efficiency 

of algorithm in terms of time and storage an algorithm requires. 

 

1.​ First step is to determine what operations must be done and what 

are their relative cost. Basic operations such as addition, 

subtraction, comparison have constant time. 

 

2.​ Second task is to determine number of data sets which cause 

algorithm to exhibit all possible patterns.  

 

2 
 



It requires to understand the best and worst behavior of 

algorithm for different data configurations. 

 

​  

3 
 



The analysis of algorithm  two phases, 

 

1)​Priori Analysis: In this analysis we find some functions which 

bounds algorithm time and space complexities. By the help of 

these functions it is possible to compare the efficiency of 

algorithms. 

 

2)​ Posterior Analysis: Estimating actual time and space when an 

algorithm is executing is called posterior analysis. 

 

 Priori analysis depends only on number of inputs and 

operations done, where as posterior analysis depends on both 

machine and    language used, which are not constant. Hence 

analysis of most of the algorithms is made through priori analysis. 

 

How to validate an algorithm: 

​ ​ ​  

​ ​ ​ ​ The purpose of the validation of an algorithm is to 

assure that this algorithm will work correctly independently of the 

issues such as machine, language, platform etc. If an algorithm is 

according to given specifications and is producing the desired outputs 

for a given input then we can say it is valid.   

 

4 
 



TIME & SPACE COMPLEXITIES 

 

Space complexity: 

​ ​  

​ It is defined as the amount of memory need to run to 

completion by an algorithm. 

​ ​ ​ The memory space needed by an algorithm has two 

parts 

1.​ One is fixed part, such as memory needed for local variables, 

constants, instructions etc. 

2.​ Second one is variable part, such as space needed for reference 

variables, stack space etc. They depend upon the problem instance.     

 

The space requirement S(P) of an algorithm P can be 

written as   S(P) = c + Sp, where c is a constant(representing fixed 

part). Thus while analyzing an algorithm Sp (variable part) is 

estimated. 

 

5 
 



Time Complexity: 

​ ​  

​ ​ ​ The time T(P) taken by a program is the sum of 

compile time and run time. The compile dos not depend upon the 

instance characteristics, hence it is fixed. Where as run time depends 

on the characteristics and it is variable. Thus while analyzing an 

algorithm run time Tp is estimated. 

 

Order of magnitude: 

 

​ ​ ​ ​ It refers to the frequency of execution of a 

statement. The order of magnitude of an algorithm is sum of all 

frequencies of all statements. The running time of an algorithm 

increases with size of input and number of operations. 

 

Ex1: In linear search, if the element to be found is in the first position, 

the basic operation done is one. If it is some where in array, basic 

operation (comparison) is done n times. 

 

If in an algorithm, the basic operations are done same number of 

times  every time then it is called ‘Every time complexity analysis” 

T(n). 

 

6 
 



Ex1:  

 

Addition of n numbers 

Input : n 

Alg: ​ for 1 to n 

​ ​ Sum = sum+n; 

T(n) = n; 

Ex:2: 

Matrix multiplication 

Input : n 

Alg: ​ for i = 1 to m 

​ ​ for j = 1 to n 

​ ​ multiplying a[i] * a[j] 

T(n) = n2; 

Worst case: w(n) 

​ ​ It is defined as maximum number of times that an algorithm 

will ever do. 

Ex: Sequential search 

​ Inputs: n 

​ Alg: comparison 

​ ​ ​ If x is last element, basic operations are done n times. 

​ ​ ​ w(n) = n 

 

7 
 



Best case: B(n) 

​ ​ It is defined as minimum numer of times algorithm will do its 

basic operation. 

Ex: Sequential search 

​ If x is first element B(n) = 1 

 

Average case: A(n) 

​ ​ ​ It is average number of times algorithm does basic 

operations for n. 

Ex: Sequential search 

Inputs: n 

 

Case 1:  

If x is in array 

Let probability of x to be in Kth slot = 1/n 

​ If x is in Kth slot, no. of times basic operation done is K. 

​ A(n) =  = =  

Case 2:   

If x is not in array 

Probability that x is in Kth slot = p/n​  

Probability that x is not in array = 1-P 

A(n) =  = n(1-P) = +n(1-P) = n  

8 
 



 

    Order 

​ It is sum of all frequencies of execution of statements in a 

program. 

1.​ Algorithm with time complexities of O(n) and 100n are called 

linear time algorithms since time complexity is linear with input 

size. 

2.​ ​Algorithm such as O(n2), 0.01n2 are called quadratic time 

algorithms. 

3.​ ​Any linear time algorithm is efficient than quadratic time 

algorithm. 

 

​ Set of all complexity functions that can be classified with 

pure quadratic functions is called (n2). 

​ (n2) is called quadratic time algorithm. 

​ ​ In priori analysis, all factors regarding machine and 

long are ignored and only inputs and no. of operations are taken 

into account. For this purpose      O-notation can be used. 

 

       Big O: 

         O(f(n)): For a function f(n), O(f(n)) is the set of complexity 

functions g(n) for which there exist a constant C and N such that 

for all n≥N 

9 
 



G(n) ≤ C*f(n) 

Where g(n) is computing time  

n-number of inputs 

O(f(n)) – algorithm complex time 

If g(n) ∈ O(f(n)) then g(n) is Big O(f(n)). It puts an asymptotic 

upper bound on a function.  

 

Ex: Let g(n) = n2 + 10n 

       F(n) = n2 

​ G(n) ∈ O(f(n)) 

When C=2 and N=10 

For c=2 

G(n) = n2+10n and c f(n) = 2n2  

Time complexity of g(n) ≥ c f(n) 

For n≤10 

If n>10 then g(n) ≤  f(n)  

Thus N = 10 keeps an upper bound complexity of a 40 function. 

If algorithm is run on same complexity on same type of data, but 

with higher magnitude of n, the resulting time is less than some 

constant time f(n). 

Thus  

O(1) ≤ O(log n) ≤O(n)≤O(nlogn)≤O(n2) ≤ O(2n) for a given N. 

O(f(n)) – stands for a quantity that is not explicitly known. 

10 
 



Every appearance of O(f(n)) means, there are positive constants C 

and N such that there occurs a number xn represented by O(f(x)) 

such that for all n≥N 

Xn ≤cf(n) 

Ex: 12+22+32+-----------n2 =  

​ ​ ​ ​       =  

so  

12+22+32+-----------n2 = O(n4) may be 

12+22+32+-----------n2 = O(n3) strong 

12+22+32+-----------n3 = strong 

Theorem: 

​ ​ ​ If P(n) = a0+a1n+----------amnm show that P(n) = 

O(nm) 

Proof: 

​ ​ ​ P(n) ≤ |a0| +|a1|n+------------|am|nm 

≤ nm 

≤|a0|+|a1 |n+----------|am |nm 

when n≥1 

let C= |a0|+|a1 |+----------|am| 

P(n) ≤Cnm 

P(n) = O(nm)  

11 
 



The symbol O(f(n)) stands for set of all functions g of integers 

such that  

g(n) ≤ cf(n)  

Contest of O-notation identifies the variable that is involved and 

the range of variable. 

Ex: Show that n2 +10n ∈O(n2) 

C = 11 for N=1 

n2+10n∈O(n2) 

 

Big Ω 

Ωf(n)): It is the set of complexity functions g(n) for which there 

exists C and N for all n≥N so that g(n) ≥ cf(n). Always it 

represents the lower boundary. 

 

Big θ 

θ(f(n)) = O(f(n)) ∩ Ω (f(x)) 

​ It is the set of complexity functions g(n) for which there 

exists some +ve real constants c, d and N such that  

c(f(x) ≤ g(n) ≤ d f(x) 

 

Ex: T(n) =  = O(n2) = Ω (n2) 

​ ​ ​ ​ = θ(n2) 

12 
 



​ ​ ​ If g(n) = θ(f(n)) then f(n) is both upper and lower 

bounds. 

Small O: O(f(n)) 

g(n) ~ O(f(n)) 

if exact computing time of g(n) is known we can find f(n), such that 

g is asymptotic to f. 

Ex: f(n) = aknk+ --------a0 

​ ​    = O(nk) 

and f(n) ~ O(aknk) 

13 
 



Divide and Conquer 
 

Introduction: 

​ ​ It is similar to top down approach but, TD approach is a 

design methodology (procedure) where as DAC is a plan or policy 

to solve the given problem. 

​ ​ TD approach deals with only dividing the program into 

modules where as DAC divides the size of input. 

​ ​ It splits ‘n’ inputs into K distinct sets, yielding k sub 

problems. These sub problems must be solved and sub solutions 

are combined to form solution. 

 

Control Abstraction: 

​ ​ Procedure DAC(p,q) 

​ ​ { 

​ ​ ​ If RANGE (p,q) is small 

​ ​ ​ Then return G(p,q) 

Else 

{ m=DIVIDE(p,q) 

return (COMBINE (DAC(p,m), DAC(m+1,q)) 

}} 

​ ​ ​  

 

14 
 



Step1: If input size (range) (q-p+1) is small, find solution G(p,q) 

Step2: If input size is large split range into two data sets (p,m) and 

(m+1, q) and repeat. 

Step3: Repeat the process until sub problem is small enough to 

solve. 

Time Complexity: 

​ T(n) =  

f(n) is time taken to divide and combine 

g(n) is time taken for conquer 

 
let n = 2m 

T(n) = 2T ( ) + f(2m) 

 = ​  

let k=1 

​      =  

 =  

​ ​ = +1 

​ ​ =  

​ ​ = T(1) + m 

​ ​ = m+1 

 

T(2m) = 2m (m+1) 

T(n)​ = n(logn+1) 

​ ​ = O(nlogn) 

15 
 



Ex: Find time complexity for DAC  

a)​If g(n) = O(1) and f(n) = O(n) 

b)​If g(n) = O(1) and f(n) = O(1) 

 

a)​It is the same as above case 

i.e., O(n) = k.2m = f(n) 

T(n) = nlogn 

 

b)​T(n) ​= 2T(n/2) + f(n) 

= 2T(n/2) + O(1) 

= 2(2T(n/4) + 1)+1 

= 2T(n/4)+2+1 

= 2kT(n/2k)+2k-1+---------+2+1 

= nT(1)+  

= n+  

= n+(n-1-1/2) 

=2n-3/2 

T(n)​ =O(n) 

Binary Search: 

Problem: 

​ To search whether an element x is present in the given list. If x is 

present, the value j must be displayed such that aj=x 
16 

 



 

Algorithm: 

Step1: DAC suggests break the input ‘n’ elements I = (a1, a2, ---------an) 

into  

I1 = (a1, a2, ---------ak-1), I2= ak and  

I3 = (ak+1, ak+2, ---------an) into data sets. 

Step 2: If x=ak no need of searching I1, I3. 

Step 3: If x<ak only I1 is searched 

Step 4: If x<ak only I3 is searched 

Step 5: Repeat the steps 

​ K is chosen such that ak is middle of ‘n’ elements k=n+1/2. 

 

Control Abstraction: 

​ Procedure BINSRCH(1,n) 

​ ​ {​ m = n+1/2 

​ ​ ​ if A(m) = x then 

​ ​ ​ ​ { 

​ ​ ​ ​ ​ loc = mid; 

​ ​ ​ ​ ​ return;​ } 

​ ​ else 

​ ​ ​ if A(mid)>x then 

​ ​ ​ ​ BINSRCH(1, m-1) 

​ ​ ​ Else 

​ ​ ​ ​ BINSRCH(m+1, n) 

​ ​ ​ } 

17 
 



Time Complexity: 

 

​ ​ T(n) =  

T(n)= T(n/2) + g(n) 

​ = T  + 2g(n)  

​ = T(n/22)+2g(n) 

​ = T(n/2k)+k g(n) 

if n=2k 

​ = T(1)+k 

​ = k+1 = O(logn) 

 

 

 

it is valid if  

​ n is 2k-1≤n≤2k​ ​ ​ ​ ​ ​ fig. 

square nodes are at levels k and 

k+1, for unsuccessful search ​

n=2k 

​ ​ ​ ​ ​ ​ ​ ​ T(n) = O(logn) 

​ Number of comparisons for successful search is k i.e., O(logn) and 

for unsuccessful k or k-1 O(logn) 

18 
 



Ex: Take instances ​ 12 14 18 22 24 38  

                             ​ ​   1   2    3   4  5   6   

key=24 

mid=3​ ​ ​ ​ low​ ​ high​ ​ mid 

​ ​ 1​ ​ 6​ ​ 3​ ​  

​ ​ 4​ ​ 6​ ​ 5  

thus number of comparisons needed are two.  

 

Theorem: 

 

Prove that E=I+2n, for a binary search tree. 

E ​ ​ = ​ Length of external nodes 

I​ ​ =​ Length internal nodes 

n​ ​ = ​ Internal nodes 

for level 2​ ​ ​ ​ ​ for n=3 

​ E = 22.2=8​​ ​ ​ E = I+2n 

I = 21.1=2​ ​ ​ ​ ​ 8=2+6=8 

​ By induction if we add these branches to form a tree it 

satisfies E=I+2n. 

19 
 



Theorem: 

Prove Average successful search time is equal to average 

unsuccessful search time U, if n�∝ 

 Savg = Uavg 

Uavg = ​ ​ Savg=  

​    =  

​  =  = = Eavg 

U =  

I = U(n+1)-2n 

S=  

S=U-2+1=U-1≅U 

Savg =  

Uavg=  

 

 

 

 

20 
 



MAX-MIN 

Problem:  

​ ​ ​ To find out maximum and minimum elements in a 

given  list of elements. 

Iterative algorithm: 

Procedure: 

​ ​ ​ Max-Min(1 ------n) 

​ ​ ​ for i = 2 to n do 

​ ​ ​ if a[i] > max 

​ ​ ​ ​ then max=A[i] 

​ ​ ​ end if 

​ ​ ​ if A[i]<min 

​ ​ ​ ​ then min = A[i] 

​ ​ ​ endif 

​ ​ ​ endfor 

Algorithm requires (n-1) comparisons for finding largest number 

and (n-1) comparisons for smallest number. 

​ ​ ​ T(n) = 2(n-1) 

If same algorithm is modified as  

​ ​ ​ If A[i]>max 

​ ​ ​ ​ Then max=A[i] 

​ ​ ​ Else  

​ ​ ​ A[i]<min 

21 
 



​ ​ ​ ​ Then min = A[i] 

And if elements are in ascending order  

​ ​ ​ No. of comparisons = (n-1) 

If elements are in descending order  

Number of comparisons = 2(n-1) 

Average no of comp’s = =  

 

Algorithm based on DAC 

Step 1: I = (a[1], a[2]--------a[n]) is divided into  

​ ​ ​ I1 = (a[1], a[2]--------a[n/2]) 

​ ​ ​ I1 = (a[n/2+1], --------a[n]) 

Step 2: Max(I) = large of (Max(I1); Max(I2)) 

​ ​   Min(I) = large of (Min(I1); Min(I2)) 
Procedure MAX-MIN(i,j) 

​ ​ { 

​ if I=j then 

​ max = min = A[I] 

​ ​ else 

​ ​ if j-I=1 

​ ​ if A[I]>A[j] 

​ ​ max = A[j] 

​ ​ min = A[j] 

​ ​ else 

​ max = A[j] 

​ min = A[I] 

​ else 

​ p=  

​ { 

MAX-MIN((I,p),hmax, hmin) 

​ ​ ​ ​ ​

MAX-MIN((p+1,j),lmax, lmin) 

​ Max = large(hmax, hmin) 

​ Min = small(lmax, lmin) 

22 
 



​ ​ ​ ​ ​

} 

Time complexity: 

​ ​ ​ T(n) =  

​  

​ F(n)=2 since there are two operations 

1.​ merging for largest 

2.​ merging for smallest 

T(n)​  = 2T +2 

​ ​ = 2 2T +2}+2 

​ ​ = 22T(n/22)+22+2 

​ ​ = 2k-1T(n/2k-1)+2k-1+-------+-----+2 

let n=2k 

​ ​ = 2k-1T(2)+  

but T(2) = 1 

​ ​ = 2k-1+  

​ ​ = 2k-1+2k-1-1 

​ ​ = 2k/2 +2k-2 

23 
 



​ ​ = 3/2 2k-2 = 3/2 n –2 

T(n) = O(3/2 n) 

 

Assignment Problems 

 
1. Write the algorithm for trinary search and derive the expression 

for its time complexity? 

 

24 
 



Trinary Search 

​ ​ ​ Procedure: TRISRCH(p,q) 

​ ​ ​ ​ { 

​ ​ ​ ​ ​ a=pt((q-p)/3) 

​ ​ ​ ​ ​ b=p+((2*(q-p))/3) 

​ ​ ​ ​ if A[a]=x then 

​ ​ ​ ​ ​ return(a); 

​ ​ ​ ​ else 

​ ​ ​ ​ if A[b]=x then 

​ ​ ​ ​ return(b); 

​ ​ ​ ​ else 

​ ​ ​ ​ if A[b]=x then 

​ ​ ​ ​ return(b); 

​ ​ ​ ​ else 

​ ​ ​ ​ if A[a]>x then  

​ ​ ​ ​ ​ TRISRCH(p,(a-1)) 

​ ​ ​ ​ else​ ​ ​ ​  

​ ​ ​ ​ if A[b]>x then 

​ ​ ​ ​ ​ TRISRCH((a+1),(b-1)) 

​ ​ ​ ​ else 

​ ​ ​ ​ ​ TRISRCH((b+1),q) 

​ ​ ​ ​ } 

Time complexity: 

25 
 



​ ​ ​ T(n) =  

​ ​ ​ T(n)​ ​ =​ T(n/3)+f(n) 

Let f(n)=1 

​ ​ ​ ​ ​ =​ T(n/3/3)+1+1 

​ ​ ​ ​ ​ =​ T(n/32)+2 

​ ​ ​ ​ ​ =​ T(n/3k)+k=k+1 

n=3k 

​ ​ ​ ​ ​ =​ log3n 

​ ​ ​ ​ T(n)​ =​ O(log3n) 

 

2. Give an algorithm for binary search so that the two halfs are unequal. 

Derive the expression for its time complexity?  

 

26 
 



Binary Search:  

(Split the input size into 2 sets such that 1/3rd and 2/3rds) 

procedure BINSRCH(p,q) 

​ ​ { 

​ ​ mid = p+(q-p)/3 

​ ​ if A(mid)=x then 

​ ​ ​ return (mid); 

​ ​ else 

​ ​ if A(mid)>x then 

​ ​ BINSRCH (p, mid-1); 

​ ​ else 

​ ​ BINSRCH(mid+1,q); 

​ ​ } 

​ ​ } 

 

Time Complexity: 

T(n) =  
             Worst case​ ​ ​ ​ best case 
​ T(n) =T(cn/3) + g(n) 
​ ​   = T(ckn/3k)  + kg(n) 
 
let n=3k 
​ T(n) = T(ck)+log3n 
If c=2 
​ T(n) = O(2k)+logn = O(2k) 
C=1 
T(n) = O(1) + logn= logn 

27 
 



3. Give the algorithm for finding min-max elements when the given list 

is divided into 3 sub sets. Derive expression for its time complexity? 

Max-Min 

If each leaf node has 3 elements 
​ If I=j then 
​ ​ ​ Max = min = a[i] 
​ Else 
​ If j-I=1 then 
​ ​ If a[i]>a[j] 
​ ​ ​ Max = a[i]; 
​ ​ ​ Min = a[j]; 
​ ​ Else 
​ ​ ​ Max = a[j] 
​ ​ ​ Min = a[i]; 
​ ​ } 
​ ​ if j-i = 2 then 
​ ​ ​ if a[i]>a[j] 
​ ​ ​ { 
​ ​ ​ if a[i]>a[i+1] 
then 
​ ​ ​ max = a[i]; 
​ ​ ​ { 
​ ​ ​ if a[I]>a[I+1) 
then  
​ ​ ​ min = a(I+1]; 
​ ​ ​ else 
​ ​ ​ ​ min=a[j]; 
​ ​ ​ else 
​ ​ ​ ​ max = 
a[j+1]; 
​ ​ ​ ​ min = a[j]; 
​ ​ ​ } 

​ ​ ​ else 
​ ​ ​ ​ if 
a[j]>a[I+1}then 
​ ​ ​ ​ max=a[j]; 
​ ​ ​ ​ if 
a[I]>a[I+1] then 
​ ​ ​ ​ min = 
a[I+1]  
​ ​ ​ else 
​ ​ ​ ​ min = a[I] 
​ ​ ​ else 
​ ​ ​ ​ max = 
a[I+1] 
​ ​ ​ ​ min = a[I] 
​ ​ ​ } 
​ ​ ​ } 
​ ​ ​ } 
​ ​ else 
​ ​ ​ p = I+j/2 

​ ​ ​
MAX-MIN((I,p),hmax, hmin) 
​ ​ ​
MAX-MIN((p+1,j),lmax, lmin) 
​ ​ ​ fMax = 
large(hmax, hmin) 
​ ​ ​ fMin = 
small(lmax, lmin) 

​ ​ ​ } 

 

28 
 



Time Complexity: 

T(n) =  

T(n) = 2T(n/2)+2 

        = 2(2T(n/4)+2)+2 

​ ​ ​ ​ = 2k(T(n/2k))+2k+------2 

​ ​ ​ ​ 2k=n/3 

kth level there are 3 elements for each node. 

T(n)​ = 2k. T(2)+  

​ ​ = 3. 2k+2k+1-2 

​ ​ = n+2n/3-2 

​ ​ = 5n/3 –2 

          O(n) = O(5n/3) 

 

29 
 



Theorem: 

Prove that T (n) = O(nlogm) 

​ ​  if T(n) = m(Tn/2) +an2 

​ ​ T(n) = nT(n/2)+an2 

​ ​ = m(mT(n/2/2)+an2)an2 

​ ​ = m2T(n./22)+(m+1)an2 

​ ​ = mkT(n/2k)+an2  

n=2k 

​ ​ = mk+an2( -1/m) 

​ ​ = mk+an2  

​ ​ = mk+an2  

​ ​ ≅ mk(1+an2/m) 

if m>>n 

​ ​ = mk= mlogn 

but O(mlogn) = O(nlogm) 

( xlogy = ylogx) 

 

30 
 



Merge Sort: 

 

Problem: Sorting the given list of elements in ascending or decreasing 

order. 

 

Algorithm: 

 

Step 1: Given list of elements 

​ ​ I = {A(1), A(2) --------- A(n)} is divided into two sets 

​ ​ I1 = {A(1), A(2) -------A(n/2)} 

​ ​ I2 = {A(n/2 + 1-------A(n)} 

Step 2: Sort I1 and Sort I2 separately 

Step 3: Merge them 

Step 4: Repeat the process 

 

 

 

 

31 
 



Procedure Merge sort (p,q) 

​ { 

​ ​ If p<q 

​ ​ mid = p+q / 2: 

​ ​ mergesort (p,mid); 

​ ​ merge sort (mid+1, 

q); 

​ ​ merge (p, mid, q); 

​ ​ endif 

​ ​ } 

procedure Merge(p, mid, q) 

​ { 

​ let h=p; I=p; j=mid+1 

​ while (h≤mid and j≤q) do 

​ ​ { 

​ ​ ​ if A(h) ≤ A(j) 

then 

​ ​ ​ B(i) = A(h); 

​ ​ ​ h = h+1; 

​ ​ ​ else 

​ ​ ​ B(i) = A(j); 

​ ​ ​ j = j+1; 

​ ​ ​ end if 

​ ​ ​ I=I+1; 

​ ​ } 

​ ​ If h>mid 

​ ​ ​ For k=j to q 

​ ​ ​ B(i) = A(k); 

​ ​ ​ I = I+1; 

​ ​ ​ Repeat 

​ ​ Else if j>q 

​ ​ ​ For k=h to mid 

​ ​ ​ B(i) = A(k); 

​ ​ ​ I = I+1; 

​ ​ ​ Repeat 

​ ​ Endif 

​ ​ ​ For k=p to q 

​ ​ ​ A(k) = B(k); 

​ ​ ​ Repeat 

 

32 
 



Time complexity: 

​ ​ T(n) ​=  

​ ​ ​ = 2(2T(n/4) + 2cn 

​ ​ ​ = 4T (n/4) + 2cn 

​ ​ ​ = 2kT(n/2k) + kcn 

 

n = 2k 

​ ​ ​ = n.a + kcn 

​ ​ ​ = na + cn logn 

​ ​ ​ = O(n logn) 

​ ​ ​ ​  

Ex : Let us consider the instances 10, 285, 179, 652, 

351,423,861,254,450,520  

​        310, 285,  179 652, 351  423,861,  254, 450,520  

​    1​       2      3     4      5          6      7        8     9   10​ ​ ​

​  

 

For first recursive call left half will be sorted 

(310) and (285) will be merged, then 

(285,310) and 179 will be merged 

 and at last (179,285,310) and (652,351) are merged to give  

179,285,310,351,652 

33 
 



 

Similarly, for second recursive call right half will be sorted to give 

254,423,450,520,861 

 

Finally merging of these two lists produces 

179,254,285,310,351,423,450,520,652,820 

 

Quick sort: 

Problem: Arranging all the elements in a list in either ascending or 

descending order. 

​ File A(1---n) was divided into subfiles, so that sorted subfiles does 

not need merging. This can be achieved if  

​ A[I] ≤A(j) for all I<j<mid 

​ ​ ​ ​   mid+1<j<n 

​ thus A(1----m) and A(m+1, -------n) are independently sorted. 

 

34 
 



Algorithm:  

​ Step 1: Select first element as pivot 

​ Step 2: Two variables are initialized  

​ ​ ​ Lower = a+1​ ​ upper = b 

​ ​ ​ Lower scans from left to right 

​ ​ ​ Upper scans from right to left 

​ Step 3: if lower ≤ right 

Corresponding elements are swapped. When lower and 

upper cross each other, process is stepped. 

​ Step 4: Pivot is swapped with A(upper) which becomes new pivot 

and  

​ ​ ​ repeat the process. 

​ Procedure Quick sort(a, b) 

​ ​ { 

​ ​ ​ if a<b then 

​ ​ ​ k = partition (a,b); 

​ ​ ​ quick sort (a, k-1); 

​ ​ ​ quick sort (k+1, b); 

​ ​ ​ } 

35 
 



Procedure partition (m,p) 

​ { 

​ ​ let x=A[m], I = m; 

​ ​ while (I<p) 

​ ​ { 

​ ​ ​ do 

​ ​ ​ I = I+1; 

​ ​ ​ Until (A[I]≥x) 

​ ​ ​ Do 

​ ​ ​ P = p-1; 

​ ​ ​ Until (A[p] ≤ x) 

​ ​ ​ If I<p 

​ ​ ​ Swap(A[I], A[P]) 

​ ​ ​ } 

​ ​ A[m]=A[p]; 

​ ​ A[p] = x 

​ ​ } 
 

Time Complexity: 
Let us assume file size n is 2m ,​ m= log2n 
Also assume position of pivot is exactly in the middle of array.  
In first pass (n-1) comparisons are made. 
In second pass (n/2-1) comparisons are made. 
Total no. of comparisons = (n-1)+2*(n/2-1)+4(n/4-1)+-------n*(n/2m-1) ∝mn 
​ T(n) = O (nlogn) 
​ If the original file is already sorted, the file is split into sub files of size 
into 0 and n=1.  
Total comparisons =  (n-1)+(n-2)+(n-3)---------(n-n) ∝nn = 0(n2) 

36 
 



STRASSEN’S MATRIX MULTIPLICAITON 

​ Let A and B be two n x n matrices. The product matrix C=AB is 

also an n x n matrix whose i,jth element is formed by taking the 

elements in the ith row of A and the jth column of B and multiplying 

them to get 

​ ​ C(I,j) =∑A(i,k)B(k,j) 

​ For all I and j between 1 to n. To compute C(i,j) using this formula 

we need n multiplications. As the matrix has n2 elements, the time for 

the resulting matrix multiplication algorithm has a time complexity of 

θ(n3). 

​ According to divided and conquer the given matrices A and B are 

divided into four square sub matrices each of dimension n/2 and n/2. The 

product AB can be computed using the product of 2 x 2 matrices. 

 

​ A11    A12​ B11   B12​ ​ ​     C11   C12 

​ A21    A22       B21    B22​​ ​     C21    C22     

 

C11 = A11B11 + A12B21 

 C12 = A11B12 + A12B22 

C21 = A21B11 + A22B21 

C22 = A21B12 + A22B22 

​ To find AB we need 8 multiplications and 4 additions. Since two 

matrices can be added in time cn2 for a constant c.  

37 
 



 

where b and c are constants 

​ This recurrence can be solved in the same way as earlier 

recurrences to obtain T(n)=O(n3). Hence no improvement over the 

conventional method has been made. Since matrix multiplications are 

more expensive than matrix additions O(n3) versus O(n2), we can 

attempt to reformulate the equations for Cij so as to have fewer 

multiplications and possibly more additions. Volker Strassen has 

discovered a way to compute the Cij’s of using only 7 multiplications 

and 18 additions or subtractions. This method involves first computing 

the seven n/2Xn/2 matrices P, Q, R, S, T, U, and V. then the Cij’s are 

computed using the formulas . as can be seen, P, Q, R, S, T, U, and V 

can be computed using 7 matrix multiplications and 10 matrix additions 

or subtractions. The Cij ‘s require an additional 8 additions or 

subtractions. 

​ ​ P = (A11+A22)(B11+B22) 

​ ​ Q = (A21+A22)B11 

​ ​ R = A11(B12 - B22) 

​ ​ S = A22(B21 – B11) 

​ ​ T = (A11+A12)B22 

​ ​ U = (A21-A11)(B11+B22) 

​ ​ V = (A12 - A22)(B21+B22) 

38 
 



​ ​ ​ ​ ​  

​ ​ ​ ​ ​ C11 = P+ S-T+V 

​ ​ ​ ​ ​  C12 = R+T 

​ ​ ​ ​ ​ C21 = Q+S 

​ ​ ​ ​ ​ C22 = P+R-Q+U 

 

The resulting recurrence relation for T(n) is  

  

 

where a and b are constants. Working with this formula, we get 

​ T(n) = an2[1+7/4+(7/4)2+-------+(7/4)k-1]+7kT(1) 

​ ​     ≤ cn2 (7/4)logn+7logn, c a constant 

​ ​    = 0(nlog7) ≈ O(n2.81). 

 

Greedy Method: 

​ According to greedy method, to find a solution for a given 

problem, two parameters must be considered. They are  

1)​Feasibility: Any subset of solutions, that satisfies some specified 

constraints then it is said to be feasible. 

2)​Objective function: This feasible solution must either maximize or 

minimize a given function to achieve the given objective. 

39 
 



A solution which satisfies these two conditions, is called optimal 

solution. Greedy method works in stages, considering one input at a 

time. At each stage, 

​ Step 1: A decision is made regarding whether or not a particular 

input is in an optimal solution. Select an input. 

​ Step 2: If inclusion of input results infeasible solution, then delete 

form solution. 

​ Step 3: Repeat until optimization is achieved. 

 

Control Abstract: 

​ Procedure GREEDY(A[],n) 

​ { 

​ ​ solution = φ 

​ ​ for I = 1 to n do 

​ ​ { 

​ ​ x = select (a) 

​ ​ if FEASIBLE (solution, x) 

​ ​ solution = UNION (solution, x) 

​ ​ } 

​ ​ return(solution); 

​ ​ } 

Optimal storage: 

Problem 1: 

40 
 



 To store n programs on a tape of length L such that mean retrieval 

time is minimum. 

 

Solution: 

​ ​ Let each program  is of length Li, (1≤i≤n), such that the 

length of all tapes must be ≤L. If the programs are in the order I = i1, 

i2---------in, then the time tj to retrieve a program is proportional to  

. 

If all  the programs are retrieved with equal probabilities, mean 

retrieval time MRT = . To minimize MRT, we must store the 
programs such that their lengths are in non decreasing order l1<l2<ln  

MRT =  
Ex: There are 3 programs of length I=(5,10,3). 
1,2,3​​ 5+15+18 = 38 

1,3,2​​ 5+5+18 = 31 

3,1,2​​ 3+8+18 = 29  is the best case where retrieval time is 

minimized, if the next program of least length is added. 

 

Time complexity:  

​ If programs are assumed to be in order, then there is 

only one 

loop in algorithm 

Time complexity = O(n) 

41 
 



If we consider sorting also, sorting requires​ O(nlogn) 

​ T(n) = O(nlogn)+O(n) 

​ ​ = O(nlogn) 

 

Problem 3: 

 To store different programs of lengths l1, l2, l3----------------ln with 

different frequencies f1, f2-----------fn on a single tape so that MRT is less. 

Solution:  

If frequencies are taken into account then MRT, tj = .​ The 

programs must be arranged such that ratio of frequency and length must 

be in non increasing order. 

​ l1≤l2≤l3  ------------- ln 

f1≥f2≥f3--------------fn 

 

 

Knapsack problem:  

​ Given n objects and a knapsack, object i has a weight wi and 

knapsack has capacity of M. If a fraction xi, 0≤xi≤1 of object  i is placed 

into knapsack then a profit pixi is earned. 

Problem: To fill the knapsack so that total profit is maximum and 

satisfies two conditions. 

42 
 



1)​objective =maximum 

2)​feasibility  

 

Types of knapsack: 

1. Normal knapsack: In normal knapsack , a fraction of the last object is 

included to maximize the profit. 

i.e.,  0≤x≤1 so that  

2.O/I knapsack: In 0/1 knapsack, if the last object is able to insert 

completely, then only it is selected otherwise it not selected.​ ​ ​

​ ​ ​ ​    i.e., x= 1/0 so that   

Control Abstract: 

​ P(1:n), w(1:n) contains profits & weights of n objects are ordered 

so that  and  x(1:n) is the solution vector. 

Normal knapsack (p,w,m,x,n) 
{ 
​ x=0; 
​ c=M; 
​ for I=1 to n do 
​ if w[I] ≤c then 

{ 
x[I] = 1; 
c=c-w[I]; 
} 
else 
{ 

x[I]=c/w[I] 
return; 
} 
} 
 
 
 
 
 

O/1 knapsack: 
{ 

x=0 

43 
 



c=M 
for I=1 to n do 
if w[I] ≥c then return 
else 

x[I] = 1 
c=c-w[I] 
} 
} 

 

 

Ex: Find an optimal solution to the knapsack instance n=7 objects and 

the capacity of knapsack  m=15. The profits and weights of the objects 

are given below. 

P1,---------------P7= ​ 10 ​ 5​  15​  7​  6 ​ 18 ​ 3 

W1, -------w7= ​ 2 ​ 3​  5​  7​  1​  4​ 1 

Sol: 

 P1/w1----p7/w7 = ​ 5​ 1.6​ 3​ 1​ 6​ 4.5​ 3 

Arrange in non increasing order of pi/wi 

Order = 5​ 1​ 6​ 3​ 7​ 2​ 4 

P/w​ = 6​ 5​ 4.5​ 3​ 3​ 1.6​ 1 

C=15 x=0 

1)​x[1] = 1​ ​ x=0 

2)​x[2] = 1​ ​ c=15-1=14 

3)​x[3] = 1​ ​ c=14-2=12 

4)​x[4] = 1​ ​ c=12-4=8 

5)​x[5] = 1​ ​ c=8-5=3 

6)​x[6] = 2/3​ ​ c=3-1=2 

7)​x[7] = 0​ ​ c=2-2/3.3=0 

X= 1​ 1​ 1​ 1​ 1​ 2/3​ 0 

44 
 



Rearranging into original form 

X=1 ​ 2/3 ​ 1 ​ 0 ​ 1​  1​  1 

Solution vector for O/I knapsack is X=1010111 

​ Total  profit  ​ = 10+15+0+6+18+3=52 

Theorem: 

If p1/w1≥p2/w2≥----pn/wn then greedy knapsack generate optimal solution.  

 

Proof: Let X=(x1= (x1, -------x2) be solution vector, let j be the least 

index such that xj#1. 

​ Xi=1​​ for 1≤i≤j 

​ Xi=0​​ for 1≤i≤n 

​ Xi=0​​ for 1≤xj≤1 

Let y = (y1-----yn) be optimal solution  

 

let k be least index such that yk#xk and yk<xk 

1)​ if k<j then xk=1, but yk<xk 

2)​ if k=j then , yi=xi for 1<i<j yk<xk 

3)​ if k>j then which is not possible. 

 

If we increase yk to xk and decrease as many of (yk+1----------yn). this 

results a new solution. 

Z= (z1,--------zn) with zi=xi, 1≤i≤k and Σwi(yi-zi) = wk(zk-yk) 

45 
 



Σpizi ​= Σ1<i<npiyi + (zk-yk)wkpk/wk   - Σk<I<n (yi-zi)wipi/wi 

​ = Σ1<i<npiyi + [(zk-yk)wk - Σ1<i<n(yi-zi)wi]pk/wk 

​ = Σ1<i<npiyi 

 

Theorem:  

Why O/I Knapsack does not necessarily yield optimal solution. 

Solution: 

​ ​ If w[i] >c for a certain i then  

w[i] ≤ c-w(i-1) 

In other words remaining capacity at (i-1) stage may have been 

better utilized such that by including w[i], c becomes 0 or minimum. 

Hence it is optimal. 

 

 

 

 

 

 

 

 

Job Sequencing: 

​ Let there are n jobs, for any job i, profit Pi is earned if it is 

completed in dead line di. 

46 
 



Object: Obtain a feasible solution j=(j1,j2,…) so that  the profits i.e., 

is maximum. The set of jobs J is such that each job completes 

within deadline.  

 

Control Abstract: 

​ Procedure JS(D, J, N, K) 

​ { 

​ D(0)=J(0)=0; 

​ K=1, J(1)=1 

For I=2 to n do 

{ 

r=k 

while D(J(r))>max(D(i),r) 

​ { 

r=r-1; 

} 

if D(i)>r then 

for (L=k; l=r+1,l=l-1) 

​ J(l+1)=J(l) 

} 

J(r+1)=i; 

k=k+1; 

} 

47 
 



} 

} 

Ex: Given 5 jobs, such that they have the profits and should be complete 

within dead lines as given below. Find and optimal sequence to achieve 

maximum prodit.   

P1-------P5 = 20​ 15​ 10​ 5​ 1 

d1------d5 = 2​ 2​ 1​ 3​ 3 

 feasible solution​ ​ processing sequence​ ​ value 

1)​ 1,2​ ​ ​ ​ 2,1 or 1,2​ ​ ​ ​ 35 

2) ​ 1,3​ ​ ​ ​ 3,1​ ​ ​ ​ ​ 30 

3) ​ 1, 4​ ​ ​ ​ 1,4​ ​ ​ ​ ​ 25 

4)​ 1,2,3​​ ​ ​ -​ ​ ​ ​ ​ - 

5)​ 1,2,4​​ ​ ​ 1,2,4​​ ​ ​ ​ 40 

optimal solution is 1,2,4 

 

​ ​ Try all possible permutations and if  J can be produced 

in any of these permutations without violating dead line. 

​ If J is a set of k jobs and σ=i1, i2, ------ik, such that 

di1≤di2≤------dik then j is a feasible solution. 

 

 

 

 

48 
 



 

 

Optimal Merge pattern: 

​ Merging of an ‘n’ record file and ‘m’ record file requires 

n+m records 

to move. At each step merge smallest size files. Two way merge pattern 

is 

represented by a merge tree. Leaf nodes (squares) represent the given 

files. File obtained by merging the files is a parent file (circles). Number 

in each node is length of file or number of records. 

 

 

 

​ If di is the distance from root to external node for file fi, qi is 

the length 

of fi,  then total number of record moves in a tree = , Known as 

weighted external path length. 

 

49 
 



Algorithm: 

​ Procedure Tree (l,n) 

​ For I =1 to n  

​ { 

Call GETNODE (T) 

L CHILD(T)=LEAST (L); 

R CHILD(T)=LEAST (L); 

WEIGHT(T) = 

WEIGHT(LCHILD(T))+WEIGHT(RCHILD(T)); 

Call INSERT(L,T); 

​ }  

return(LEAST(L)) 

​ } 

 

ANALYSIS: 

​ Main loop is executing (n-1) times. If L is in non decreasing 

order 

LEAST(L) requires only O(1) and INSERT(L,T) can be done in O(n) 

times. 

​ Total time taken = O(n2) 

 

 

50 
 



Minimum spanning Tree: 

​ Let G=(V,E) is an undirected connected graph. A sub graph 

T=(V,E) of G is a spanning tree of F iff T is a tree.0 

​ Any connected graph with n vertices must have at least n-1 

edges and all connected graphs with n-1 edge are trees. Each edge 

in the graph is associated with a weight. Such a weighted graph is 

used for construction of a set of communication links at a 

minimum cost. Removal of any one of the links in the graph if it 

has cycles will result a spanning tree with minimum cost. The cost 

of minimum spanning tree is sum of costs of edges in that tree. 

​ ​ A greedy method is to obtain a minimum cost spanning 

tree. The next edge to include is chosen according to optimization 

criteria in the sum of costs of edges so far included. 

1)​If A is the set of edges in a spanning tree. 

2)​The next edge (u,v) to be included in A is a minimum cost edge 

and  

     A U (u,v) is also a tree. 

 

PRIMS Algorithm: 

​ The edge (i,j) to be is such that i is a vertex already included in the 

tree, j is a vertex not included and cost of (i,j)must be minimum among 

all edges (k,l) such that k is in the tree and l is not in the tree 

 

51 
 



 

 

 

 

 

 

 

 

Ex: 

​ ​ Edge​​ Cost​ ​ ST​ ​  

​ ​ (1,2)​ ​ 10​ ​ (1) ------2 

 

(1,4)​ ​ 30​ ​  

​ ​  

​ ​ (4,5)​ ​ 20​ ​  

 

​ (5,3)​ ​ 35 

52 
 



Algorithm: 
Procedure PRIM(E, COST, n, mincost, int NEAR(n), T[n][2], I, j, k, l) 

{ 

(k,l)​ = edge with mini cost 

min cost = cost (k,l) 

(T(1,1), T(1,2)) = (k,l) 

for i=1 to n 

{ 

if COST (i,l)<cost(i,k) 

then NEAR(i) = l 

else 

NEAR(i) = k 

} 

} 

NEAR(k) = NEAR(l)=0 

For i =2 to n-1  

{ 

If NEAR(j)=0 find cost(j,NEAR(j))which is mini  

T(i,1), T(i,2) = (j, NEAR(j)) 

Mincost = mincost+cost(j, NEAR(j)) 

NEAR(j)=0 

For k=1to n  

{ 

If NEAR(k) !=0 and cost(k,NEAR(k))>COST(k,j) 

Then NEAR(k) =j; 

}  

}  
53 

 



Time complexity: 

​ The total time required for the algorithm is θ(n2). 

 

Krushkal’s algorithm: 

​ If E is the set of all edges of G, determine an edge with 

minimum 

cost(v,w) and delete from E. If the edge(v,w) does not create any cycle in 

the tree T, add(v,w) to T. 

 
Algorithm: 

Procedure KRUSKAL(E, COST, n, T) 
{ 
construct a heap with edge costs  
I=0 
Min cost=0 
Parent (1,n) = -1, 
While I<n-1 and heap not empty 
Delete minimum cost edge (u,v) 
from heap; 
ADJUST heap; 
J = FIND(u) 
K = FIND(v) 
If j != k 
{ 
I = I+1; 
T(I,1) = u; 
T(I,2) = v; 
Mincost = mincost+cost(u,v) 
UNION(j,k) 
} 
} 
} 

Procedure FIND(i) 
{ 
J=I 
While PARENT(j)>0 
{ 

J=PARENT(j) 
}  
K=I; 
While K!= j 
{ 
T = PARENT(k); 
PARENT(k) = j; 
K = t 
} 
Return(j) 
} 

Procedure UNION(i,j)​
{ 
x=PARENTT(i) + PARENT(j) 

If PARENT(i)>PARENT(j) 
{ 
PARENT(i)=j; 
PARENT(j) = x 
else 
PARENT(j)=i; 
PARENT(i) = x 
} 
} 

54 
 



 

Time Complexity: 

​ To develop a heap the time taken is O(n). To adjust the 

heap it takes a 

time complexity of O(logn). The set of edges to be included in 

minimum cost spanning tree is n,  hence it is O(n). 

Total time complexity is in the order of O(nlogn) 

55 
 


	Design Analysis and Algorithms 
	INTRODUCTION 
	How to develop an algorithm 
	Addition of n numbers 
	Let probability of x to be in Kth slot = 1/n 
	    Order 
	Big Ω 
	 
	Big θ 
	Step 5: Repeat the steps 
	 C12 = A11B12 + A12B22 
	C21 = A21B11 + A22B21 
	​​​​​ C12 = R+T 
	​​​​​C21 = Q+S 
	Order = 5​1​6​3​7​2​4 






