Chapter 16 Summary

Main Concepts (Big Ideas):

Types of Acids and Bases: Arrhenius acid-a substance that transfers a hydrogen ion to water.

Arrhenius base-a substance that transfers a hydroxide ion to water.

Brønsted-Lowry acid-a substance that transfers a hydrogen ion to another substance. Does not have to be water.

Brønsted-Lowry base-a substance that accepts a hydrogen ion from another substance.

Lewis acid-a substance that accepts an electron pair from another substance forming a covalent bond.

Lewis base-a substance that donates an electron pair to another substance forming a covalent bond.

Conjugate acid: The resulting substance after it has accepted a proton from a stronger acid.

Conjugate base: The resulting substance after a relatively strong acid has donated a proton.

Strong acid: a substance that completely donates its proton to another substance. Ex.: HCl, HBr, HI, H₂SO₄, HNO₃, HClO₃, HClO₄

Weak acid: a substance that only partially donates protons to a solution, establishing some level of equilibrium.

pH scale: a logarithmic approach to expressing the concentration of H^+ in an aqueous solution.

Effect of a salt on pH: cations and anions have the ability to react with water, removing a hydrogen or hydroxide and thus increase the concentration of the other in solution. We will cover in more detail in class.

Some important Formulas:

 $pH = -log [H^+]$ definition of pH.

 $K_a = [\underline{\mathbf{H}}_3 \underline{\mathbf{O}}^{\pm}] [\underline{\mathbf{A}}^{\pm}]$ equation of the dissociation of a weak acid. $[\mathbf{H}\mathbf{A}]$

Percent ionization = $\underline{[H+]}_{equilibrium}$ **x 100%** Equation to determine percent of an acid that dissociates.

 $K_a \times K_b = K_w$ the product of the equilibrium constants of the acid and base equals 1.0 x 10⁻¹⁴

Practice Problems:

#17 Designate the Brønsted -Lowry acid and the Brønsted -Lowry base on the left side of each of the following equations, and also designate the conjugate acid and conjugate base of each on the right side:

a)
$$NH_4^+$$
 (aq) + CN^- (aq) \leftrightarrow HCN(aq) + NH_3 (aq)

b)
$$(CH_3)_3N(aq) + H_2O(1) \leftrightarrow (CH_3)_3NH^+(aq) + OH^-(aq)$$

c)
$$HCOOH(aq) + PO_4^{3-}(aq) \leftrightarrow HCOO^{-}(aq) + HPO_4^{2-}(aq)$$

#39 The average pH of normal arterial blood is 7.4. At normal body temperature (37°C), $K_w = 2.4 \times 10^{-14}$. Calculate $[H^+]$, $[OH^-]$, and pOH for blood at this temperature.

#53 A 0.100M solution of chloroacetic acid (ClCH₂COOH) is 11.0 % ionized. Using this information, calculate [ClCH₂COOH⁻], [H⁺], [ClCH₂COOH], and K_a for chloroacetic acid.

#75 Ephedrine, a central nervous system stimulant, is used in nasal sprays as a decongestant. This compound is a weak organic base:

$$C_{10}H_{15}ON(aq) + H_2O(1) \leftrightarrow C_{10}H_{15}ONH^+(aq) + OH^-(aq)$$

A 0.035M solution of ephedrine has a pH of 11.33.

a) What are the equilibrium concentrations of C₁₀H₁₅ON, C₁₀H₁₅ONH⁺, and OH⁻

b) Calculate K_b for ephedrine.
#89 Explain the following observations: a) HNO ₃ is a stronger acid than HNO ₂
b) H ₂ S is stronger acid than H ₂ O
c) H ₂ SO ₄ is a stronger acid than HSO ₄
d) H ₂ SO ₄ is a stronger acid than H ₂ SeO ₄
e) CCl ₃ COOH is a stronger acid than CH ₃ COOH.
All assigned problems for the chapter: #3

All assigned problems for the chapter: #3, 4, 6, 13, 18, 21, 25, 29, 31, 39, 43, 47, 49, 53, 57, 61, 65, 73, 75, 81, 87, 89, 99