
 DEDAUB.COM

Liquity v2

Smart Contract Security Assessment

August 28, 2024

 DEDAUB.COM

ABSTRACT

Dedaub was commissioned to perform a security audit of the Liquity v2 (BOLD) protocol,
focusing on both the smart contract code and the overall logic of the system. The
codebase was of high quality, with extensive comments and a detailed README that
thoroughly describes all the aspects of the protocol. Additionally, the protocol is
supported by an extensive test suite.

BACKGROUND

Liquity v2 is a decentralized lending protocol that mints a stablecoin called BOLD. The
core mechanics are the same as in Liquity v1: users deposit collateral, and the protocol
mints BOLD tokens. As long as a user's collateral ratio stays above a certain threshold,
they remain safe from liquidation. However, if their collateral ratio drops below this
threshold, anyone can trigger the liquidation process. The debt and collateral from a
liquidated trove are absorbed by the stability pool, with any excess distributed
proportionally to other troves based on their collateral. BOLD is redeemable at its face
value of $1. It’s important to note that while Liquity v2 shares similarities with v1, the two
protocols are entirely independent.

Key Differences and New Features in Liquity v2:

1.​ Multi-Collateral Support: Liquity v2 introduces support for multiple collateral
types, including wrapped ETH and various LSTs. Each collateral type forms its own
branch with a separate set of troves and a dedicated stability pool.

2.​ Interest Rate Mechanism: Instead of paying a one-time fee when opening a trove,
users in Liquity v2 select an annual interest rate, which they will pay over time.
The interest is split between stability pool depositors and other liquidity providers,
such as AMM LPs for pools containing BOLD. The percentage of interest allocated
to the stability pool is fixed at deployment and cannot be changed.

1

 DEDAUB.COM

3.​ Redemption Process: When redeeming BOLD tokens, users cannot choose which
collateral they will receive. Instead, redemptions are distributed across the
various collateral branches in proportion to their unbacked BOLD (i.e., total BOLD
minted by the branch minus the amount of BOLD held in the branch's stability
pool). Troves within each branch are ordered by their annual interest rate, with
redemptions first targeting troves with lower interest rates. To avoid being
targeted by redemptions, trove owners must adjust their interest rates. The
protocol simplifies this process by allowing batch interest delegation. Any user
can open an interest manager, charge a fee, and let trove owners join the
manager to have their interest rates managed and updated.

SETTING & CAVEATS

This audit report covers the contracts of the at-the-time private repository
https://github.com/liquity/bold, branch dev, of the Liquity v2 protocol at commit
2a859733eff540aae2996d13b06a9c5d334e7616.

2 auditors worked on the codebase for 4 weeks on the following contracts:

src/
├── ActivePool.sol
├── AddressesRegistry.sol
├── BoldToken.sol
├── BorrowerOperations.sol
├── CollateralRegistry.sol
├── CollSurplusPool.sol
├── DefaultPool.sol
├── Dependencies/
│ ├── AddRemoveManagers.sol
│ ├── AggregatorV3Interface.sol
│ ├── Constants.sol
│ ├── IOsTokenVaultController.sol
│ ├── IRETHToken.sol
│ ├── IStaderOracle.sol

2

https://github.com/liquity/bold

 DEDAUB.COM

│ ├── LiquityBase.sol
│ ├── LiquityMath.sol
│ └── Ownable.sol
├── GasPool.sol
├── HintHelpers.sol
├── MultiTroveGetter.sol
├── PriceFeeds/
│ ├── CompositePriceFeed.sol
│ ├── ETHXPriceFeed.sol
│ ├── MainnetPriceFeedBase.sol
│ ├── OSETHPriceFeed.sol
│ ├── RETHPriceFeed.sol
│ ├── WETHPriceFeed.sol
│ └── WSTETHPriceFeed.sol
├── SortedTroves.sol
├── StabilityPool.sol
├── TroveManager.sol
├── TroveNFT.sol
├── Types/
│ ├── BatchId.sol
│ ├── LatestBatchData.sol
│ ├── LatestTroveData.sol
│ ├── TroveChange.sol
│ └── TroveId.sol
└── Zappers/
​ ├── GasCompZapper.sol
​ └── WETHZapper.sol

The audit’s main target is security threats, i.e., what the community understanding
would likely call "hacking", rather than the regular use of the protocol. Functional
correctness (i.e. issues in "regular use") is a secondary consideration. Typically it can
only be covered if we are provided with unambiguous (i.e. full-detail) specifications of
what is the expected, correct behavior. In terms of functional correctness, we often
trusted the code’s calculations and interactions, in the absence of any other
specification. Functional correctness relative to low-level calculations (including units,
scaling and quantities returned from external protocols) is generally most effectively
done through thorough testing rather than human auditing.

3

 DEDAUB.COM

In this audit, we identified several accounting bugs, most of which are related to the
batch interest delegation feature. Additionally, the Liquity team, who conducted an
internal review and testing of the code in parallel with this audit, discovered a few more
bugs (although these bugs are not included in this report, we have reviewed the fixes).
The relatively high number of accounting bugs and the complexity of the batch
delegation feature suggest that further testing and potentially a second round of
auditing are necessary before deployment.

PROTOCOL-LEVEL CONSIDERATIONS

ID Description STATUS

P1
Risk of bad debt and potential loss of peg in the case of
branch shutdown

INFO

The new version of Liquity supports multiple collaterals, with each collateral
associated with its own branch, with its own set of troves and stability pool. While
certain risks are isolated within each branch—such as liquidations being contained to
the branch’s stability pool and redistributions affecting only its troves—not all risks are
similarly contained.

We are particularly concerned about the potential impact on other branches if one is
shut down due to low collateralization (TCR < SCR) caused by a significant decrease
in the collateral asset’s price. In such a scenario, it’s possible that the total collateral
of the affected branch may not cover its total debt, leading to bad debt.

Even if the total collateral value across all branches exceeds the total remaining BOLD,
theoretically ensuring that BOLD is fully backed, in practice, not all BOLD might be
redeemable. This could trigger BOLD holders to rush for redemptions, leading to a
decrease in BOLD’s market price and potentially causing it to lose its peg.

4

 DEDAUB.COM

P2 Aggressive shutdown triggered by failed oracle calls INFO

The protocol relies on Chainlink oracles to obtain the price for the collateral. If an
oracle call fails, or returns an invalid (zero) value or stale price, the protocol
immediately initiates the shutdown procedure. While we understand that it is
challenging to determine on-chain whether an oracle failure is temporary or
permanent, the current approach of instantly shutting down the branch is overly
aggressive. A failed oracle call could be due to a temporary issue, such as an error
during an update to the Chainlink contracts, which may be resolved shortly. Instead of
an immediate shutdown, the protocol could monitor for multiple consecutive failed
oracle calls over a set period and temporarily freeze the branch during this time. This
would allow the system to handle temporary disruptions more gracefully.

5

 DEDAUB.COM

VULNERABILITIES & FUNCTIONAL ISSUES

This section details issues affecting the functionality of the contract. Dedaub generally
categorizes issues according to the following severities, but may also take other
considerations into account such as impact or difficulty in exploitation:

Category Description

CRITICAL
Can be profitably exploited by any knowledgeable third-party attacker
to drain a portion of the system’s or users’ funds OR the contract does
not function as intended and severe loss of funds may result.

HIGH
Third-party attackers or faulty functionality may block the system or
cause the system or users to lose funds. Important system invariants
can be violated.

MEDIUM

Examples:
●​ User or system funds can be lost when third-party systems

misbehave.
●​ DoS, under specific conditions.
●​ Part of the functionality becomes unusable due to a programming

error.

LOW

Examples:
●​ Breaking important system invariants but without apparent

consequences.
●​ Buggy functionality for trusted users where a workaround exists.
●​ Security issues which may manifest when the system evolves.

Issue resolution includes “dismissed” or “acknowledged” but no action taken, by the
client, or “resolved”, per the auditors.

6

 DEDAUB.COM

CRITICAL SEVERITY:

[No critical severity issues]

HIGH SEVERITY:

ID Description STATUS

H1
Lack of access control in
CollateralRegistry::setTroveManager

RESOLVED

CollateralRegistry::setTroveManager() has no access control, which means
anyone can set and change the TroveManager of any branch.

CollateralRegistry::setTroveManager():69-72

function setTroveManager(​
 uint256 _branch,​
 ITroveManager _troveManager​
) external {​
 require(_branch < totalCollaterals, "Branch too high");​
 troveManagers[_branch] = _troveManager;​
}

The CollateralRegistry contract is responsible for routing redemptions to the
various collateral branches based on the unbacked portion of BOLD tokens. The
unbacked portion is calculated as the total amount of BOLD tokens minted by the
branch minus the amount deposited into the stability pool of that branch. To perform
this calculation, the CollateralRegistry interacts with the TroveManager contract
of each branch.

Without access control on the setTroveManager() function, a malicious actor could
deploy a TroveManager contract with altered logic and set its address in the
CollateralRegistry. This could result in incorrect routing of redemptions.

7

 DEDAUB.COM

This issue is probably related to the TODO comment in the declaration of the
troveManagers storage variable, which used to be immutable.

MEDIUM SEVERITY:

ID Description STATUS

M1 Add Managers can grief debt repayments RESOLVED

In BorrowerOperations::_adjustTrove, if the _troveChange.debtDecrease > 0,
it is enforced that vars.trove.entireDebt >= _troveChange.debtDecrease. If the
trove owner has allowed anyone (or a malicious party) to be able to decrease the
trove's debt (by being an “add manager”), there exists the danger of someone
frontrunning a debt repayment and blocking it by repaying a specific amount of debt,
essentially DOSing debt repayments. In the general case, the amount of BOLD needed
to deny a partial repayment would be vars.trove.entireDebt -

_troveChange.debtDecrease - MIN_DEBT + 1 (wei), where MIN_DEBT is the
minimum amount of net Bold debt a trove must have. Setting the actual repayment
amount to be the minimum of the vars.trove.entireDebt - MIN_DEBT and
_troveChange.debtDecrease would render any such attack unsuccessful.

M2
BorrowerOperations::applyPendingDebt does not check for
batch inclusion and only reinserts normally

RESOLVED

In BorrowerOperations::applyPendingDebt it is not checked if the trove belongs to
a batch when reinserting it back to the SortedTroves list in case it becomes
redeemable. This omission breaks the SortedTroves list’s invariant about batch troves
and might affect other batch-related operations such as the removeFromBatch one.

BorrowerOperations::applyPendingDebt:808-811

if (​

8

 DEDAUB.COM

 _checkTroveIsUnredeemable(troveManagerCached, _troveId) &&​
 trove.entireDebt >= MIN_DEBT​
) {​
 troveManagerCached.setTroveStatusToActive(_troveId);​
 sortedTroves.insert(​
 _troveId, trove.annualInterestRate, _upperHint, _lowerHint​
);​
}

In contrast, the distinction between batched and non-batched troves is made by the
adjustUnredeemableTrove function as can be seen in the code snippet below:

BorrowerOperations::adjustUnredeemableTrove:520-530

address batchManager = interestBatchManagerOf[_troveId];​
if (batchManager == address(0)) {​
 sortedTroves.insert(​
 _troveId,​
 troveManagerCached.getTroveAnnualInterestRate(_troveId),​
 _upperHint,​
 _lowerHint​
);​
} else {​
 LatestBatchData memory batch =​
 troveManagerCached.getLatestBatchData(batchManager);​
 sortedTroves.insertIntoBatch(​
 _troveId,​
 BatchId.wrap(batchManager),​
 batch.annualInterestRate,​
 _upperHint,​
 _lowerHint​
);​
}

M3 Opening a batched Trove is allowed during shutdown RESOLVED

9

 DEDAUB.COM

When a collateral branch has been shut down, several actions are restricted/disabled
to prevent further deterioration of the protocol's economic state. The documentation
thoroughly describes the set of restricted actions, including the prohibition on opening
a new trove. While the BorrowerOperations::openTrove function implements the
restriction by reverting if the branch has been shut down, the same check is missing
from the BorrowerOperations::openTroveAndJoinInterestBatchManager
function. This omission allows for the opening of batched troves even during a
shutdown, which contradicts the intended restrictions and could lead to potential
economic risks for the protocol.

M4 Missing approval in WETHZapper RESOLVED

The adjustTroveWithRawETH and adjustUnredeemableTroveWithRawETH functions
in the WETHZapper contract are designed to adjust a trove using raw ETH as collateral.
These functions rely on the _adjustTrovePre function to handle pre-adjustment
logic, which, in the case of collateral increase, deposits the ETH sent during the call
and mints WETH for the WETHZapper contract.

WETHZapper::_adjustTrovePre:184-187

// ETH -> WETH​
if (_isCollIncrease) {​
 WETH.deposit{value: _collChange}();
 // Dedaub: raw ETH is deposited to get WETH, but BorrowerOperations​
 // is not being approved to transfer this WETH amount​
}

However, the WETHZapper contract does not approve the BorrowerOperations
contract to transfer the newly minted WETH. As a result, when the
BorrowerOperations functions (adjustTrove, adjustUnredeemableTrove) are
invoked, they attempt to transfer the WETH collateral from the WETHZapper contract to
the active pool but revert due to the lack of approval.

10

https://github.com/liquity/bold?tab=readme-ov-file#shutdown-logic

 DEDAUB.COM

M5
Opening or adjusting a trove will succeed even if the
transaction causes the shutdown of the branch

RESOLVED

A collateral branch can be shut down either if its total collateral ratio (TCR) falls below
a certain threshold (SCR) or if the price oracle fails to return a valid price. After a
shutdown, several actions, such as opening or adjusting a trove, are prohibited to
prevent further risks to the protocol.

The shutdown can occur through two main mechanisms:

1.​ Manual Trigger via BorrowerOperations::shutdown: This function checks if
the TCR is below the SCR, and if so, it initiates the shutdown.

2.​ Automatic Trigger via fetchPrice: If the price oracle fails to return a valid price,
this function will raise the shutdown flag for the branch but will still return the
last valid price (lastGoodPrice) without causing an immediate revert in the
calling function.

The BorrowerOperations::openTrove function first checks if the branch has already
shut down. If the branch is not shut down, it proceeds to call _openTrove, which
internally calls fetchPrice. If fetchPrice triggers a shutdown due to an invalid
oracle price, the shutdown will be executed, but the openTrove action will still
proceed. Consequently:

●​ The new trove will be opened even though the branch has been shut down.
●​ The approximate average rate used to calculate the upfront fee will be zero due

to the hasBeenShutDown flag being raised in the ActivePool.
●​ Since interest is not applied after shutdown, this new trove will also avoid

interest payments.

BorrowerOperations::_openTrove:345-361

vars.price = priceFeed.fetchPrice();
// Dedaub: fetchPrice can trigger a branch shutdown, without

11

 DEDAUB.COM

// reverting the action​
​

// --- Checks ---​
​

_requireNotBelowCriticalThreshold(vars.price);​
​

vars.troveId = uint256(keccak256(abi.encode(_owner, _ownerIndex)));​
_requireTroveIsNotOpen(vars.troveManager, vars.troveId);​
​

_troveChange.collIncrease = _collAmount;​
_troveChange.debtIncrease = _boldAmount;​
​

// For simplicity, we ignore the fee when calculating the approx.
// interest rate​
_troveChange.newWeightedRecordedDebt = _troveChange.debtIncrease *
 _annualInterestRate;​
​

// Dedaub: if fetchPrice has already shut down the branch, the
// getNewApproxiAvgInterestRateFromTroveChange will return 0, therefore
// the upfront fee for opening the trove will be 0.​
vars.avgInterestRate = vars.activePool.
 getNewApproxAvgInterestRateFromTroveChange(_troveChange);​
_troveChange.oldWeightedRecordedDebt = vars.batch.weightedRecordedDebt​
_troveChange.upfrontFee = _calcUpfrontFee(
 _troveChange.debtIncrease, vars.avgInterestRate
);

The functions calling _adjustTrove have the same issues, as _adjustTrove calls
fetchPrice.

M6
BorrowerOperations::_adjustTrove does not apply the
redistribution debt gain of a batched trove to the weighted
recorded debt

RESOLVED

The BorrowerOperations::_adjustTrove() function does not add the

redistBoldDebtGain of a batched trove to the batchFutureDebt that is used in the

12

 DEDAUB.COM

_troveChange.newWeightedRecordedDebt and
_troveChange.newWeightedRecordedBatchManagementFee calculations.

BorrowerOperations::_adjustTrove():628-649

vars.newColl = vars.trove.entireColl +
 _troveChange.collIncrease - _troveChange.collDecrease;
// Dedaub: the new debt includes the trove’s entire debt, which includes
// the trove’s redistribution debt gain​
vars.newDebt = vars.trove.entireDebt +
 _troveChange.debtIncrease - _troveChange.debtDecrease;​
​

address batchManager = interestBatchManagerOf[_troveId];​
bool isTroveInBatch = batchManager != address(0);​
LatestBatchData memory batch;​
uint256 batchFutureDebt;​
if (isTroveInBatch) {
 batch = _troveManager.getLatestBatchData(batchManager);
 // Dedaub: the future debt of the batch should include the entire batch
 // debt without the batch troves’ redistribution debt except from the
 // redistribution debt of the trove that is currently adjusted, thus
 // vars.trove.redistBoldDebtGain should be added to batchFutureDebt​
 batchFutureDebt = batch.entireDebtWithoutRedistribution +
 _troveChange.debtIncrease - _troveChange.debtDecrease;

 // Dedaub: code omitted for brevity
}

As a result, in ActivePool::mintAggInterestAndAccountForTroveChange, this
redistributed debt is not added to the aggWeightedDebtSum and does not accumulate
interest. However, in the call to TroveManager::onAdjustTroveInsideBatch, the
same applied redistributed debt is recorded as it is passed via the _troveChange struct
variable and it is used by _updateBatchShares() to calculate the new total debt of
the batch.

13

 DEDAUB.COM

M7
BorrowerOperations::applyPendingDebt does not apply the
redistribution debt gain of a batched trove to the weighted
recorded debt

RESOLVED

The BorrowerOperations::applyPendingDebt() function does not add the

redistBoldDebtGain of a batched trove to the
batch.entireDebtWithoutRedistribution (similarly to what is described in issue
M6) when calculating the _troveChange.newWeightedRecordedDebt and
_troveChange.newWeightedRecordedBatchManagementFee.

M8 Opening a batched Trove ignores the batch entire debt
when updating the new batch weighted recorded debt

RESOLVED

The computation of the avgInterestRate in BorrowerOperations::_openTrove

appears to be incorrect when the caller of the _openTrove function is
openTroveAndJoinInterestBatchManager. The newWeightedRecordedDebt is set
to _troveChange.debtIncrease * _annualInterestRate when passed to

getNewApproxAvgInterestRateFromTroveChange. However, it appears that the
batch debt should also be included, i.e., newWeightedRecordedDebt =

(_batchEntireDebt+_troveChange.debtIncrease) * _annualInterestRate, as
the oldWeightedRecordedDebt is set to vars.batch.weightedRecordedDebt.

M9 Setting batch interest rate calculates the weighted
management fee incorrectly

RESOLVED

In BorrowerOperations::setBatchManagerAnnualInterestRate, the new
weighted management fee is computed as newDebt * _newAnnualInterestRate.
This calculation incorrectly uses the new annual interest rate instead of the
annualManagementFee.

BorrowerOperations::setBatchManagerAnnualInterestRate:926-929

batchChange.oldWeightedRecordedDebt = batch.weightedRecordedDebt;​
batchChange.newWeightedRecordedDebt = newDebt * _newAnnualInterestRate;​

14

 DEDAUB.COM

batchChange.oldWeightedRecordedBatchManagementFee =​
 batch.weightedRecordedBatchManagementFee;​
batchChange.newWeightedRecordedBatchManagementFee =​
 newDebt * _newAnnualInterestRate;​
// Dedaub: it should be
// batchChange.newWeightedRecordedBatchManagementFee = ​
// newDebt * batch.annualManagementFee

M10 Premature batch interest rate adjustments do not update
the weighted management fee

RESOLVED

In BorrowerOperations::setBatchManagerAnnualInterestRate, in the if branch
where the upfront fee is applied, the batchChange.newWeightedRecordedDebt is
updated accordingly to take the upfront fee into account, but the
batchChange.newWeightedRecordedBatchManagementFee is not.

M11 Incorrect calculation in batched trove redemptions leads to
error in accrued interest and management fee

RESOLVED

First of all, in certain cases TroveManager::_applySingleRedemption handles
differently the calculation of oldWeightedRecordedDebt and
oldWeightedRecordedBatchManagementFee when it should not. More precisely,
troveOldWeightedRecordedDebt, which is equal to the min(trove.entireDebt -
trove.redistBoldDebtGain, boldLot), is used in the calculation of
oldWeightedRecordedDebt. On the contrary, boldLot is used to compute
oldWeightedRecordedBatchManagementFee even though it might be greater than
trove.entireDebt - trove.redistBoldDebtGain.

At the same time, it appears that neither of the two approaches is always correct,
which can lead to errors in the accrued interest and management fee over time. If we
leave out from the calculation contribution of the other troves of the batch and focus
on the one being redeemed, we would expect the total debt to change by

15

 DEDAUB.COM

trove.redistBoldDebtGain - boldLot or the oldWeightedRecordedDebt to be
greater by (boldLot - trove.redistBoldDebtGain) *

batch.annualInterestRate (this can underflow but let’s not focus on that right now)
from the newWeightedRecordedDebt. However, this is not always the case due to how
troveOldWeightedRecordedDebt is calculated at the moment. We can distinguish
the following 3 scenarios:

1.​ if trove.entireDebt == boldLot then
troveOldWeightedRecordedDebt =
trove.entireDebt - trove.redistBoldDebtGain

which is equal to the expected
boldLot - trove.redistBoldDebtGain

2.​ if trove.entireDebt > boldLot and
boldLot > trove.entireDebt - trove.redistBoldDebtGain then​
troveOldWeightedRecordedDebt =
 trove.entireDebt - trove.redistBoldDebtGain
which is greater than the expected​
boldLot - trove.redistBoldDebtGain

3.​ if trove.entireDebt > trove.entireDebt - trove.redistBoldDebtGain
and trove.entireDebt - trove.redistBoldDebtGain > boldLot then
troveOldWeightedRecordedDebt = boldLot
which is greater than the expected​
boldLot - trove.redistBoldDebtGain

In scenarios 2 and 3 the troveOldWeightedRecordedDebt is incorrect, leading to
errors in accrued interest and management fee over time.

16

 DEDAUB.COM

M12
BorrowerOperations::openTroveAndJoinInterestBatchMana
ger does not take into account the accrued batch
management fee

RESOLVED

In function BorrowerOperations::openTroveAndJoinInterestBatchManager,
vars.change should also store the batch.accruedBatchManagementFee, as
otherwise this amount does not reach the
ActivePool::mintAggInterestAndAccountForTroveChange (called by
_openTrove) to be minted as debt, while it is passed everywhere else
(TroveManager::onOpenTroveAndJoinBatch and _openTrove) through the
vars.batch.entireDebtWithoutRedistribution to update the state of the batch.

M13 TroveManager::onOpenTroveAndJoinBatch does not update
the trove’s lastInterestRateAdjTime

RESOLVED

The TroveManager::onOpenTroveAndJoinBatch function does not set the trove's
lastInterestRateAdjTime to the block.timestamp as one would expect. In
contrast, TroveManager::onSetInterestBatchManager, which essentially performs
the JoinBatch part of the onOpenTroveAndJoinBatch function, updates the
lastInterestRateAdjTime . As a result, when removing from a batch a trove that has
been added to it by onOpenTroveAndJoinBatch, if the interest adjustment is
considered premature because not enough time has passed since joining the batch, no
premature adjustment fee will be paid as the lastInterestRateAdjTime has not
been tracked correctly.

M14 BorrowerOperations::removeFromBatch interest rate
premature adjustments checks are not strict enough

RESOLVED

The function BorrowerOperations::removeFromBatch checks if the removal of the
trove from the batch will lead to a new interest rate for the trove and if this is true,
checks if the last interest adjustment of the batch is old enough to not incur any
interest rate premature adjustment fees.

17

 DEDAUB.COM

BorrowerOperations::removeFromBatch:1072-1078

if (​
 vars.batch.annualInterestRate != _newAnnualInterestRate &&​
 block.timestamp < vars.batch.lastInterestRateAdjTime +​
 INTEREST_RATE_ADJ_COOLDOWN​
) {​
 vars.trove.entireDebt = _applyUpfrontFee(​
 vars.trove.entireColl,​
 vars.trove.entireDebt,​
 batchChange,​
 _maxUpfrontFee​
);​
}

However, the trove’s individual lastInterestRateAdjTime is not taken into account
in the aforementioned checks, meaning that if a trove joins the batch and is removed
before INTEREST_RATE_ADJ_COOLDOWN has passed, there will be no upfront fee paid in
case the last interest rate adjustment for the batch happened more than
INTEREST_RATE_ADJ_COOLDOWN seconds ago. Instead, the time check should use the
vars.trove.lastInterestRateAdjTime, which is equal to the maximum of the the
lastInterestRateAdjTime of the trove and of its ex-batch.

LOW SEVERITY:

ID Description STATUS

L1 Incorrect requirement in CollateralRegistry’s constructor RESOLVED

18

 DEDAUB.COM

In the CollateralRegistry constructor, the condition of the second require
statement should be numTokens <= 10 instead of numTokens < 10, since there are
variables for at most 10 tokens (token0 - token9).

L2 No way to revoke a Remove Manager RESOLVED

Currently there is no way to invalidate a “remove” manager by setting its receiver to
0 after it is set to a non-zero address value. However, the function
AddRemoveManagers::_requireSenderIsOwnerOrRemoveManager requires that
msg.sender == _owner when receiver == address(0) and at the same time
returns the _owner as the receiver, thus there is no reason to not allow setting a
remove manager’s receiver to 0.

L3 Looser modifier in BoldToken::returnFromPool RESOLVED

BoldToken::returnFromPool requires that its caller is either the TroveManager or
the StabilityPool (_requireCallerIsTroveMorSP()) when the current
TroveManager implementation does not call BoldToken::returnFromPool.

BoldToken::returnFromPool:133-138

function _requireCallerIsTroveMorSP() internal view {​
 require(​
 troveManagerAddresses[msg.sender] ||​
 stabilityPoolAddresses[msg.sender],​
 "Bold: Caller is neither TroveManager nor StabilityPool"​
);​
}

Thus, it should be enough to use _requireCallerIsStabilityPool().

L4
Incorrect order of values in TroveUpdated and
BatchedTroveUpdated events

RESOLVED

19

 DEDAUB.COM

The last two fields of the TroveUpdated and BatchedTroveUpdated events are
_snapshotOfTotalDebtRedist and _snapshotOfTotalCollRedist. When these
two events are used however, L_coll is assigned to _snapshotOfTotalDebtRedist
and L_boldDebt is assigned to _snapshotOfTotalCollRedist.

L5 Trove’s interest rate delegate’s restrictions affect the owner RESOLVED

The BorrowerOperations::_requireInterestRateInDelegateRange function,
which is called only by adjustTroveInterestRate, checks if the trove’s owner has set
an interest rate delegate and if this is the case requires the new interest rate to be
between the min and max values set for this delegate. However, the function does not
distinguish the case in which the caller is the owner and thus should be able to bypass
the restrictions that exist for the delegate.

BorrowerOperations::_requireInterestRateInDelegateRange:1273-1280

function _requireInterestRateInDelegateRange(​
 uint256 _troveId, uint256 _annualInterestRate​
) internal view {​
 InterestIndividualDelegate memory individualDelegate =​
 interestIndividualDelegateOf[_troveId];​
 // Dedaub: the condition does not take into account the msg.sender​
 if (individualDelegate.account != address(0)) {​
 _requireInterestRateInRange(​
 _annualInterestRate,​
 individualDelegate.minInterestRate,​
 individualDelegate.maxInterestRate​
);​
 }​
}

The condition should be changed to individualDelegate.account != address(0)
&& msg.sender != owner or just to individualDelegate.account ==

msg.sender.

20

 DEDAUB.COM

L6
BorrowerOperations::setInterestIndividualDelegate is
missing value sanitization checks

RESOLVED

The function BorrowerOperations::setInterestIndividualDelegate does not
check that the _delegate parameter is not address(0). Also, it does not ensure that
_minInterestRate and _maxInterestRate are valid interest rates according to
_requireValidAnnualInterestRate and that _minInterestRate <
_maxInterestRate.

L7
StabilityPool::claimAllCollGains can be called even if the
caller’s stashed collateral balance is 0

RESOLVED

Anyone is able to call StabilityPool::claimAllCollGains to claim their stashed
collateral balance, even if it is 0. The function will mint any pending aggregate interest
first and then it will set the caller's stashed collateral balance to 0 and send them their
previously stashed amount.

StabilityPool::claimAllCollGains:377-389

function claimAllCollGains() external {​
 _requireUserHasNoDeposit(msg.sender);​
 // Dedaub: check that the caller’s stashed balance is not 0​
​

 activePool.mintAggInterest();​
​

 uint256 collToSend = stashedColl[msg.sender];​
 stashedColl[msg.sender] = 0;​
​

 emit DepositOperation(msg.sender, Operation.claimAllCollGains,
 0, 0, 0, 0, 0, collToSend);​
 emit DepositUpdated(msg.sender, 0, 0, 0, 0, 0, 0, 0);​
​

 _sendCollGainToDepositor(collToSend);​
}

21

 DEDAUB.COM

Even though claiming a 0 balance does not appear to cause any harm, we would
advise in favor of disallowing this possibility.

L8
StabilityPool::DepositOperation events do not take into
account the keptYieldGain for the deposit change

DISMISSED

StabilityPool::provideToSP emits a DepositOperation event with
_depositChange == int256(_topUp), ignoring the keptYieldGain amount, which
might be also adding to the deposit. The same is true for the DepositOperation event
in withdrawFromSP where _depositChange should equal
-int256(boldToWithdraw) + int256(keptYieldGain)

L9
Inaccuracy in the upfront fee calculation due to
approximation in the weighted average interest rate

ACKNOWLEDGED

When a user opens or adjusts the debt of a trove or updates its interest rate within a
short interval (sooner than the INTEREST_RATE_ADJ_COOLDOWN period), the protocol
charges an upfront fee based on the UPFRONT_INTEREST_PERIOD of the average
weighted interest rate. This average weighted interest rate is calculated by the
ActivePool::getNewApproxAvgInterestRateFromTroveChange function.

ActivePool::getNewApproxAvgInterestRateFromTroveChange:138-164

function getNewApproxAvgInterestRateFromTroveChange(
 TroveChange calldata _troveChange
) external view returns (uint256) {​
 // We are ignoring the upfront fee when calculating the approx.
 // avg. interest rate.​
 // This is a simple way to resolve the circularity in:​
 // fee depends on avg. interest rate -> avg. interest rate is
 // weighted by debt -> debt includes fee -> ...​
 assert(_troveChange.upfrontFee == 0);​
​

 if (hasBeenShutDown) return 0;​

22

 DEDAUB.COM

​

 uint256 newAggRecordedDebt = aggRecordedDebt;
 // Dedaub: the pending interest of all the troves is added​
 newAggRecordedDebt += calcPendingAggInterest();
 newAggRecordedDebt += _troveChange.appliedRedistBoldDebtGain;​
 newAggRecordedDebt += _troveChange.debtIncrease;​
 newAggRecordedDebt -= _troveChange.debtDecrease;​
​

 uint256 newAggWeightedDebtSum = aggWeightedDebtSum;​
 // Dedaub: the new weighted debt sum takes into account only ​
 // the change in the trove under consideration and not the ​
 // pending interest of all the other troves​
 newAggWeightedDebtSum += _troveChange.newWeightedRecordedDebt;​
 newAggWeightedDebtSum -= _troveChange.oldWeightedRecordedDebt;​
​

 // Avoid division by 0 if the first ever borrower tries to borrow 0 BOLD​
 // Borrowing 0 BOLD is not allowed, but our check of debt >= MIN_DEBT
 // happens _after_ calculating the upfront fee, which involves getting
 // the new approx. avg. interest rate​
 return newAggRecordedDebt > 0 ?
 newAggWeightedDebtSum / newAggRecordedDebt : 0;
}

As the function's name suggests, the calculated rate is approximate, primarily
because it includes the updated debt of the trove without factoring in the upfront fee to
avoid cyclic dependency (upfront fee depends on the average interest which depends
on the upfront fee). However, further inaccuracies stem from how this average is
computed:

●​ The denominator includes the total recorded debt of all troves, along with the
pending debt.

●​ The numerator, which calculates the weighted sum of interest rates, only adds
the pending interest of the updated trove, neglecting the pending interests of
other troves.

23

 DEDAUB.COM

This leads to the weighted average being calculated with weights that sum to less than
one, potentially making the computed average interest rate lower than all individual
trove interest rates, which is counterintuitive. The inaccuracy increases as the pending
fees become a larger proportion of the total debt.

Comments:
Since this inaccuracy will be negligible under most circumstances, and a fix would
require significant code changes, the Liquity team has decided not to address this
issue. More details for this issue can be found in the list of known issues.

L10
BorrowerOperations::setInterestIndividualDelegate does
not check the status of the Trove

RESOLVED

The function BorrowerOperations::setInterestIndividualDelegate does not
require the trove’s to be active (status == ITroveManager.Status.active) or even
open (status == ITroveManager.Status.active || status ==

ITroveManager.Status.unredeemable).

24

https://github.com/liquity/bold?tab=readme-ov-file#11---inaccurate-calculation-of-average-branch-interest-rate

 DEDAUB.COM

OTHER / ADVISORY ISSUES:

This section details issues that are not thought to directly affect the functionality of the
project, but we recommend considering them.

ID Description STATUS

A1 Applying Trove interest sets Trove properties Twice RESOLVED

In TroveManager::onApplyTroveInterest the coll, debt and
lastDebtUpdateTime properties of a batch are set twice, once outside
_updateBatchShares and once inside it, overriding the first assignment.

A2 Functions that can be external instead of public RESOLVED

The following functions, which are currently public, could be made external:
●​ CollateralRegistry::getEffectiveRedemptionFeeInBold

A3
BorrowerOperations::removeFromBatch does not directly
check if the to be removed trove belongs in a batch

RESOLVED

BorrowerOperations::removeFromBatch does not check early enough that the
trove to be removed does indeed belong to a batch. The execution will revert when the
vars.sortedTroves.removeFromBatch(_troveId) is reached.

A4 Storage variable than can be made immutable RESOLVED

The following storage variables can be made immutable:
●​ CollSurplusPool::borrowerOperationsAddress
●​ CollSurplusPool::troveManagerAddress
●​ CollSurplusPool::activePoolAddress
●​ DefaultPool::troveManagerAddress
●​ DefaultPool::activePoolAddress

25

 DEDAUB.COM

●​ StabilityPool::borrowerOperations
●​ StabilityPool::troveManager
●​ StabilityPool::boldToken
●​ StabilityPool::sortedTroves
●​ LiquityBase::activePool
●​ LiquityBase::defaultPool
●​ LiquityBase::priceFeed
●​ TroveNFT::troveManager
●​ SortedTroves::borrowerOperationsAddress
●​ SortedTroves::troveManager

A5 Deprecated documentation link RESOLVED

The documentation link in GasPool.sol points to the Liquity v1 Github repo.

A6 Uninitialized storage RESOLVED

The StabilityPool contract does not initialize/set the defaultPool storage variable
that inherits from the LiquityBase contract. The DefaultPoolAddressChanged
event defined by the StabilityPool is also not used. We would advise to define a
LiquityBase constructor that would be responsible for initializing its storage.

A7 TroveManager::getLatestBatchData duplicated calculation RESOLVED

The function TroveManager::_getLatestBatchData unnecessarily computes
latestBatchData.recordedDebt * latestBatchData.annualManagementFee
twice.

TroveManager::_getLatestBatchData():1004-1007

latestBatchData.accruedManagementFee =​
 _calcInterest(latestBatchData.recordedDebt *​
 latestBatchData.annualManagementFee, period);​
// Dedaub: weightedRecordedBatchManagementFee could be computed first to​

26

 DEDAUB.COM

// be reused in the calculation of the accruedManagementFee​
latestBatchData.weightedRecordedBatchManagementFee =​
 latestBatchData.recordedDebt * latestBatchData.annualManagementFee;

A8 TroveManager::urgentRedemption could fail early RESOLVED

TroveManager::urgentRedemption does not check that its caller (msg.sender)
holds the specified redeemed amount of Bold tokens (_boldAmount) until the very end
of the function’s execution where the burning of the tokens occurs. Adding the
respective check in the beginning of the function would result in early failures and save
users gas.

A9 TroveManager::urgentRedemption could break early RESOLVED

TroveManager::urgentRedemption loops over the _troveIds array and calls
_urgentRedeemCollateralFromTrove on each one of the provided troves,
decreasing the remainingBold amount in every iteration. The loop could break early in
case remainingBold == 0 to avoid performing another iteration when there are no
more funds available.

A10 Unnecessary storage read RESOLVED

In function TroveManager::batchLiquidateTroves the storage variable
activePool is read twice, once to be stored in the activePoolCached local variable
and once more to execute activePool.

mintAggInterestAndAccountForTroveChange(troveChange, address(0));
when the cached value (activePoolCached) could be used.

A11 Unnecessary call to TroveManager::_computeNewStake RESOLVED

In TroveManager::onRemoveFromBatch, the _computeNewStake function is called to
compute the new stake of the trove when we know that there is no difference between

27

 DEDAUB.COM

the old (in the batch) and new (out of the batch) stake as there has been no direct
adjustment on the trove’s collateral.

A12 Division op can be turned to multiplication RESOLVED

In BorrowerOperations::_requireDebtRepaymentGeCollWithdrawal the
condition _troveChange.debtDecrease < _troveChange.collDecrease *

_price / DECIMAL_PRECISION can be turned to _troveChange.debtDecrease *
DECIMAL_PRECISION < _troveChange.collDecrease * _price.

A13 Deprecated TODO comment RESOLVED

There exists a deprecated TODO comment in
BorrowerOperations::setBatchManagerAnnualInterestRate.

A14 Unused event RESOLVED

The TroveManager::TroveNotOpen error is never used.

A15 Unused internal function RESOLVED

The internal function _requireValidKickbackRate within the StabilityPool
contract is never called by any other function in the codebase and therefore it should
be removed.

A16 Unused return value RESOLVED

BorrowerOperations::closeTrove returns the trove’s entire collateral amount
before closure (trove.entireColl) but no caller uses this information.

A17 Compiler bugs INFO

The code is compiled with Solidity 0.8.18. Version 0.8.18, in particular, has some
known bugs, which we do not believe affect the correctness of the contracts.

28

https://github.com/ethereum/solidity/blob/9fb67f0013ad357b46a4d71c067becaa52260e15/docs/bugs_by_version.json#L1835

 DEDAUB.COM

DISCLAIMER

The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a sufficient assessment of the correctness of the contract.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, a public bug bounty
program, as well as continuous security auditing and monitoring through Dedaub
Security Suite.

ABOUT DEDAUB

Dedaub offers significant security expertise combined with cutting-edge program
analysis technology to secure some of the most prominent protocols in DeFi. The
founders, as well as many of Dedaub's auditors, have a strong academic research
background together with a real-world hacker mentality to secure code. Protocol
blockchain developers hire us for our foundational analysis tools and deep expertise in
program analysis, reverse engineering, DeFi exploits, cryptography and financial
mathematics.

29

	Liquity v2
	ABSTRACT
	BACKGROUND
	SETTING & CAVEATS
	PROTOCOL-LEVEL CONSIDERATIONS
	ID
	P1
	P2

	
	VULNERABILITIES & FUNCTIONAL ISSUES
	CRITICAL SEVERITY:
	HIGH SEVERITY:
	H1

	
	MEDIUM SEVERITY:
	M1
	M2
	M3
	M4
	M5
	M6
	M7
	M8
	M9
	M10
	M11
	M12
	M13
	M14

	
	LOW SEVERITY:
	L1
	L2
	L3
	L4
	L5
	L6
	L7
	L8
	L9
	L10

	
	OTHER / ADVISORY ISSUES:
	A1
	A2
	A3
	A4
	A5
	A6
	A7
	A8
	A9
	A10
	A11
	A12
	A13
	A14
	A15
	A16
	A17

	DISCLAIMER
	ABOUT DEDAUB

