AAA
ADVANCED

ANIMATOR
API

User Manual

\
2

© Jondob Games &j:

https://en.jondobgames.com/

Introduction

Congratulations On your purchase of AAA: Advanced Animator API, a whole new
world of easy to use animator functions, with improved animator events, custom
multiple tags per animator state, and easy to access states from the data of the
animator state, and even have the animator automatically control game objects,
they will make using the animator in your project a breeze to use, and lots of fun.

ADVANCED

ANIMATOR API

+ (JG_Animator Body Part Tag Base) e 3t i % « (JG_Animator Event) @ 3 ¢
State Name : AbsoluteArmor State Name : RedAnim
Animation Clip Name : AbsoluteArmor Animation Clip Name : CustomAnimClip
Animation Duration Name : 35 Animation Duration Name : 1
State Speed : 1 State Speed: 1
Layer Index : 0 Layer Index : 0
Script JG_AnimatorBodyPartTagBase Script JG_AnimatorEvent
Read Only Read Only
Entries Count 0 Entries Count 0
Total Run Time As Percent 0 Total Run Time As Percent 0
Advanced Tag Settings Animator Event Settings
Tags 0 Anim Events 2
AttackTag Settings A_EnableFire
Auto Add Simple Body Part Tag v E Name A_EnableFire
Auto Add Def Attack Tag v Play On On Enter -
Play Point 0
Damage Control .
Body Parts Controls 2 Send Mode Unity Message -
Can Send Self
¥ Left Armor Body B 0
Body Part Tag Left Armor Body
Range: duration Read Only
0.1 0.9 Loops Count 0
0 4 I 1 ¥ A DisableFire
Right Armor Body E Name A_DisableFire
Body Part Tag Right Armor Body Play On On Exit -
Range: duration Play Point 0
0.1 0.9 Send Mode Unity Message -
0 4 I 1 Can Send Self
+ - Extra Data 0
Read Only Read Only
Cached Damage Controls 0 Loops Count 0

ADVANCED
ANIMATOR
API

About This Package:

What Are The Main Contents?

A large collection of extensions for unity's animator that make working with unity
animator far easier, more flexible with many easily extensible behaviors, such as
advanced custom animator events, tags, body parts/objects control, and accessing
states data like duration or time.

Why Do | Want To Use This Package?

Unity animator is powerful, but the functions that are provided by unity’s default
api are rather limited, for example, you can not get the currently running state in a
specific layer, or the duration of the current animation clip, or the name of the
clip, or how far did the current running animator state progress through, or if it's a
looping animation, we can’t find out how long it had looped, or what about
animation events? They’re great, but you’re bound to scripts that exist on the
animator component itself, and if you change the animation, then you’d have to
recreate your events all over again, which can be time consuming, and very error
prone which could literally break the game.

This package solves all of these problems, and more, | did not design this package
to be a highly specialized hyper complex asset that only works in a certain type of
game, that is difficult or time consuming to set up.

Instead my main goal was just a few scripts you can throw around that are stable
and easy to use, integrate into your existing code, reuse and extend when you
need to, that solve all of these problems.

ADVANCED
ANIMATOR
API

What Kind Of Games Can | Use This For?

Simply put, if your game uses the animator, if you code in C# in your project, and
interact with the animator, then this asset is for you, regardless of the game type
you’re building, there are so many moments where your life would become far
simpler when dealing with the animator in code, it can be used in fully fledged
games, or even simple game jam games, this asset is easy to use, and it's main

purpose is to save time.

What Are The Core Features?

Fig 4: Control Game Objects Through Animators

¥ & « (JG_Animator Tag Advanced)

Fig 5: Multiple Custom Tags Per Animation

Animator Event Settings

Anim Events

State Name : SpeedyAndimmortal - v enabieFire
Animation Clip Name : SpeedyAndGhost EINE':;"
ay On

Animation Duration Name : 2 Play Point
State Speed : 1 Send Mode

Can Send Self
Layer Index : 0 » ExtraData
Script JG_AnimatorTagAdvanced Read Only

Loops Count
Read Only =¥ DisableFire

Entries Count 0
Total Run Time As Percent 0

Fig 5: Easy To Access Information From
Any Animator State

E Name
Play On
Play Point
Send Mode

EnableFire

On Enter -
]

Reciever -
0

0

DisableFire

On Exit v
]

[Unity Message - l

Fig 6: Advanced Animator Events That
HasTwo Modes (Inspector And Code Based)

ADVANCED
ANIMATOR
API

Custom Animator Events: typically unity animation events are tied to the clip
itself, if you decide to change the animation clip then you'd need to recreate the
animation events on the new clip, of course, all of that in the past, with the
Custom Animator Events you can keep all flags, events and messages, and change
the clips with no worries.

1. You can send events at any point in time, whether it's at the when you enter
the animator state, when you exit or when it reaches a point in time.

2. You can send UnityMessages (functions to scripts) you can also delegate
them to different game objects

3. You can send a message to an AnimatorEventRecievers which UnityEvents,
similar to OnClick in the buttons.

Connect Game Objects With Animator States: a versatile BodyPartsController is
included, that allows you to control specific game objects that game enabled and
disabled based on where you are in the animation and configure it to multiple
body parts at same time without writing a single line of code

Define Custom Animator Tags:

1. Give an entire animator state, a tag,
2. Give portions of animator states some specific tags

Information Accessing: You can access information from any animator state at any
moment of time such as:

Is the state running or not

how long has it been running

Duration of the state

The speed that the state is running

The layer index in which the state exists in
The name of the animation clip

o vk wWNPRE

Fully Documented And Source Included: the asset is completely documented with
a manual to read and utilize, the source code is also included into the asset and
finally, the source code is also fully documented

ADVANCED
ANIMATOR
API

A Bonus: on top of the core content of the asset, there are also over 120 modular
reusable components for you to use into your project and explore, handling things
from separating triggers from collider game objects, decal stickers, or positional
arrangement scripts like arranging game objects automatically in an arc, a
debugger system, and an Automatic Y Sorter for your isometric 2D games, and
many more.

Quick Start

Demo Scenes

Advanced Animator Api comes with a variety of examples, showcasing the api
abilities and the possible applications.

v = 01_JG_Lib
¥ [@JG Lib
v @ AnimatorAdvancedAPI

= AnimatorEvent

> e Animatorinfo

» W AnimatorTag

» Bm TexturesAndSprites
= Utilities

v (@ Z_Demo

I 00_Intro
Im 01_DisplaylnfoFromAnimations

v (@ 0Z_AnimatorEvents
I AnimatorReciever
Im UMessages
i 03_AnimatorTags
B Animations
= Materials
B Scripts

@ 04_BodyParts

= Animations
= Materials
Im Prefabs

Fig 1: Folder Locations Of Demo Scenes In The Project

ADVANCED
ANIMATOR
API

00_intro

This is the most bare minimum demo for the animator, where it modifies the
animator states, by adding JG_AnimatorStatelnfo component on them to collect
information about the different states of the animator

¥ # v (JG_Animator State Info) e

State Name : Show

Animation Clip Name : Show

Animation Duration Name : 1.2

State Speed : 1

Layer Index : 0

Script JG_AnimatorStateinfo

Read Only

Entries Count

Total Run Time As Percent 0 Aoysiate

Fig 2: Most Basic Example

01_DisplayinfoFromAnimations

We expand on the previous demo, by displaying the information that we added to
the animator states on the Ul, while the game is running.

State Name : Shown
Clip Name ShownXXX

Layer Index O

State Speed 1

Anim Dur 1

Run Time (Loop) Percent 214.44
Run Time (Loop) Seconds 214.44
Run Time (No Loop) Percent 0.44
Run Time (No Loop) Secopgds 0.44

State Name : RedAnim

Clip Name RedAnimClip

Run Time As Percent (Loop) 0.00
Anim Dur 1

Is State Entered

This Demo Shows You, How To Get An Animator State Information, And Display
Then, So You Could Use Them Elsewhere However You Want.

On The Left, We Get the Current Active State

ADVANCED

ANIMATOR API

On The Left, We Get And Display The Information Of The Animator State Named:

"RedAnim"

r-'_:"jljﬂ?o"tl‘can Trigger that state, by going to the Animator Window, and Clicking on the

trigger "Custom™.

Fig 3: Displaying animator state information while game is running on Ul components

ADVANCED
ANIMATOR
API

02_AnimatorEvents

Animator events, they’re different
from animation event, you can
use them to send Unity Messages
or call them through the inspector
from a component named
JG_AnimatorEventsReciever, a

State Name :

Animation Clip Name :

State Speed :
Layer Index :

Script
Read Only

Entries Count
Total Run Time As Percent

major benefit of using those over Hide | imator vent sevings
animation events is that even if I m——
you change the animation clip, Py o1

you do not have to remap and e

re-add your animation events,
they will still stay, because they
are attached to the animator state
itself.

AnimatorReciever Located At

Can Send Self
¥ Extra Data

Read Only
Loops Count

Animation Duration Name :

v # v (JG_Animator Event)

01_JG_Lib/JG_Lib/AnimatorAdvancedAPl/Z_Demo/02_AnimatorEvent

s/AnimatorReciever/

In this demo we call AnimatorEvents from the animator and respond to them,

through the inspector, there are 2 key game objects, the “Canvas” which contains
the animator, which in turn contains the animator states, and we send the events
from the corresponding animator states, and the “Animator Events Reciever”

Gameobject.
oL o & @ ¥ Canvas Static v/
A 02_AnimatorEvenmts_ByR: } -
1) Main Camera Tag Untagged v Layer Ul A

71 Directional Light

1) Animator Events Reciever | = <+ RectTransform e =
» [7] Canvas » [®] v Canvas o
> %E:i?;s::tem » W v Canvas Scaler o
» I v Graphic Raycaster 9
v » v Animator o
Controller % Logo_SendRecieverEvel @
Avatar None (Avatar) ®
Apply Root Motion
Update Mode Normal
Culling Mode Always Animate v

a: Al I
&4 02_AnimatorEvenmts_ByR: :
) Main Camera
1) Directional Light
@ Animator Events Reciever
» (7] Canvas
() EventSystem
» (7] Particles

@ 3t
Shown
Shown
1
1
0
JG_AnimatorEvent
0
o]
1
ShowLogoSparkle
On Time b
L 0.65
Reciever v
0
(o}
T
@ ¥ Animator Events Reciever Static ~
- Tag Untagged ¥ Layer Ul -
> o Rect Transform 9 3
¥ # + JG_Animator Event Receiver (Sc1 @ 3¢ !
Script JG_AnimatorEventRecei
Animator = Canvas (Animator) O]
¥ Event Behaviors 5

=¥ ShowLogoSparkle

E ShowLogoSparkle

U Event ()

~ Runtime = ParticleSystem.Play v

¥Energ @ | v

=P ShowlntroRocks

+ =

ADVANCED
ANIMATOR
API

UMessages
UMessages stands for Unity Messages, in other words, you specify the function
you want to call by writing its name in the Animator

event, and then in a script attached to the same ¥ % (JG_Animator Event) L
. . State Name : RedAnim
game object that has the animator, then the Animation Clip Name : CustomAnimCiip
function that you wrote its name will get called. St S e :
Layer Index : 0
public void Demo_©2 UnityMessages : Monobehaviour Script JG_AnimatorEvent
{ Read Only
//This component must be attached to the i:‘t:::::':;wspmem g
//anlmétor‘, or'.plugged in :?\ JG_AnimMessagesDelegator Animator Event Settings
private void A EnableFire() ¥ Anim Events 2
{ =¥ A_EnableFire
//Enable fire behavior ShEmE iEnabehie
Play On On Enter -
Play Point 0
Send Mode Unity Message -
Can Send Self
ADVANCED
ANIMATOR

API

10

03_AnimatorTags

Say you have a large game, with many different abilities, where for as long as the
ability is running an animation is active, some abilities woulds give a speed boost,
while others would give you want to tag certain parts, you could define all of that
in code, or, you could simply create a system where you play the animation, and
the animation just decides what special powers the abilities give, which is what
animator tags stand for, so you can give special tags to certain pieces of
animations.

¥ # v (JG_Animator Tag Advanced) @ 3 i

State Name : SpeedyAndimmortal
Animation Clip Name : SpeedyAndGhost
Animation Duration Name : 2

State Speed : 1

Layer Index : 1]

Script JG_AnimatorTagAdvanced

Read Only
Entries Count 0
3 i Total Run Time As Percent 0

Auto Live Link

Advanced Tag Settings
¥ Tags 2
=¥ SpeedBoostTag
Tag SpeedBoostTag
SpeedyAndimmortal Range: duration
0.1 0.9
0 —— 4 1
=¥ GhostTag
Tag GhostTag
Range: duration
0.1 0.9
o — 4 1

Fig 3: Animator Tags

Example, we defined the animator state “SpeedyAndimmortal” above, gave it the tag,
“SpeedBoostTag” and “GhostTag”, now in the code base, based on tag as follows:

void Update()
{

if (animator.IsAnimatorTagActive(ref collector, "SpeedBoostTag"))

{

mover.maxMoveSpeed = defaultMaxMoveSpeed * speedyMaxSpeedMulti;

}

if (animator.IsAnimatorTagActive(ref collector, "GhostTag"))

{

health.isImmortal = true;
IsGhost = true;

ADVANCED
ANIMATOR
API

04_BodyParts

11

Similarly to Animator Tags, you may want to enable/disable game objects during
attack or different abilities, for that, all you need is to do modify the animator

state by adding JG_AnimatorBodyPartTagBasic, and attach JG_BodyPartMono to
the target game object,where tag names in JG_BodyPartMono must match ones

defined in the animator state, and finally, you just need to attach
JG_BodyPartsController on game the root game object, and then game objects
will be enabled/disabled automatically, based on the current animator state.

¥ # + (JG_Animator Body Part Tag Base) [7 Rl Ml A o
v Left Armor Body Static =
State Name : AbsoluteArmor ®v
Tag Untagged v | Layer Default v
Animation Clip Name : AbsoluteArmor
v). Transf @ &
Animation Duration Name : 35 ranstorm
State S q: 1 Position X 1.109 Y -0.818553. Z 0
St bl il Rotation X 0 Y 0 Z 45
Layer Index : 0 Scale 82 X 15 ¥ 1.5 81
Script JG_AnimatorBodyPartTagBase » [&] v sprite Renderer o
e T » [~ Box Collider 2D o
ead On
Entries C:unt o ¥ | # JG_Body Part (Script) o
_ Script JG_BodyPart
Total Run Time As Percent 0 ¥ Body Parts Tags 1
Advanced Tag Settings = Element0 Left Armor Body
> Tags 0 + -
Set Tags To Obj Name
AttackTag Settings © Inspector 3
Auto Add Simple Body Part”™ v _
Auto Add Def Attack Ta v @ + Right Armor Body Static «
J - Tag Untagged ~ | Layer Default v
Damage Control ¥). Transform @ 3
¥ Body Parts Controls 2 Position X 1.109 Y 0.5956602 Z 0
—v Left Armor Body Rotation X 0 Y 0 Z -45
Scale & X 15 Y 15 Z1
Body Part Tag Left Armor Body
Range'duration » gl v Sprite Renderer o
0.1 0.9 » O v Box Collider 2D @ 3t
0 ¢ T D 1 Y14 JG.Body Pant (Seript) @
—v Right Armot Bc:dy Script JG_BodyPart
¥ Body Parts Tags 1
Body Part Tag Right Armor Body -
= Element0 Right Armor Body
Range: duration
+ -
‘0'1 0.9 - Set Tags To Obj Name
Fig 3: Animator Body Parts
ADVANCED
ANIMATOR
API

12

Package Structure

The package is structured as follows:

v Assets
v = 01_JG_Lib
v @ JG_Lib
= AnimatorEvent
» m Animatorinfo
> e AnimatorTag
> I TexturesAndSprites
I Utilities
> I Z_Demo
> Im General_Components
> m Systems

To keep everything organized and easy to access, all package assets are contained
in one root folder named 01_JG_Lib, this ensures that your project files are
separated from the asset files, so it can be very easily imported into any unity
project.

AdvancedAnimatorAPI

This is the main directory that contains the core of the asset, which has all
Components and AnimatorStateMachines scripts that are required to use all of
the features.

ADVANCED
ANIMATOR
API

13

Animatorinfo

Assets > 01_JG_Lib » JG_Lib » AdvancedAnimatorAPl > Animatorinfo
s Editor

Fig 7: Animator Info Directory
This sub-directory contains one single script:

JG_AnimatorStatelnfo: this script is the basis of the entire asset, and most other classes for this
asset inherit from it, you can attach it to animator states, and it will make the information
related to the animator state easily accessible.

O Inspector a i
4 ridden o=t
Tag
Motion “ None (Motion) ©
Speed 1
Multiplier v Parameter
Motion Time Parameter
Mirror Parameter
Cycle Offset (4] Parameter
Foot IK
Write Defaults v
Transitions Solo Mute
Listis Empty
¥ # v (JG_Animator State Info) @
State Name : Hidden
Animation Clip Name :
Animation Duration Name : 0
State Speed : 1
Layer Index : 0
Script JG_AnimatorStatelnfo
Read Only
Entries Count 0

Total Run Time As Percent O

Fig 8: JG_AnimatorStatelnfo attached to the animator state named Hidden

Then inside of any script you can do as follows:

animator.GetAnimatorStateInfo(ref infoCollector, "Hidden");

activeInfo.GetStateName;
activeInfo.GetClipName;
activeInfo.GetLayerIndex;
activeInfo.GetStateSpeed;
activeInfo.GetAnimDur;
activeInfo.GetTotalRunTimeAsPercent;

activeInfo.GetTotalRunTimeInSeconds;
activeInfo.GetRunTimeAsPercent;

activeInfo.GetRunTimeInSeconds;

ADVANCED
ANIMATOR
API

14

AnimatorEvent

Assets » 01_JG_Lib » JG_Lib » AdvancedAnimatorAPl > AnimatorEvent

JG_AnimatorEvent
JG_AnimatorEventReceiver

=+ | =

Fig 9: Animator Event Directory
This sub-directory contains two main scripts

JG_AnimatorEvent: is the script that gets attached to animator states, so you can
customize and call any event from these states.

® Inspector a i

.,' RedAnim 0!

Tag

Motion 4 CustomAnimClip ®
Speed 1
Multiplier Parameter

Motion Time Parameter
Mirror Parameter
Cycle Offset 0 Parameter
Foot IK
Write Defaults v

Transitions Solo Mute

List is Empty

¥ # < (JG_Animator Event) @ 3 i
State Name : RedAnim

Animation Clip Name : CustomAnimClip

Animation Duration Name : 1

State Speed : 1

Layer Index : 0

Script JG_AnimatorEvent

Read Only

Entries Count 0

Total Run Time As Percent 0

Animator Event Settings
I Anim Events 2

=¥ EnableFire
E Name EnableFire
Play On On Enter -
Play Point]
Send Mode Reciever -
Can Send Self

> Extra Data 0

Read Only
Loops Count (o]

= I DisableFire

Fig 10: Animator Event Attached To An Animator State Named Red Anim

It contains a field named “Anim Events” which holds a reference to all events that get triggered
by this animator state.

ADVANCED
ANIMATOR
API

15

AnimatorEvent Variables:

Animator Event Settings
¥ Anim Events 1

=¥ ShowlLogoSparkle

E Name ShowlLogoSparkle
Play On On Time -
Play Point L 0.65
Send Mode Reciever v
Can Send Self

» Extra Data 0
Read Only
Loops Count 0

Fig 11: Animator Event Variables In Inspector
E Name: is the event name of the event

Play On: is the moment we want to play the event, On Time means it gets played on a specific
point in time (from 0 to 1) and is determined by Play Point variable, there are also two types
which are On Enter, which gets called the moment we enter the animator state, and On Exit
which is called when we leave the animator state.

Play Point: is only used if we are using On Time mode for the Play On variable, and it represents
the point that the event will be played at.

Send Mode: there are 3 supported send modes, which are Unity Message which will send a
unity message to the game object that contains the animator (which can be delegated to
another game object using JG_AnimMessagesDelegator component and a receiver mode,
which uses our custom inspector named JG_AnimatorEventReciever (in same directory).

Can Send Self: is only used in Unity Message, and Both modes, however even when using
Both, the receiver will not receive that data being sent, if this variable is true, then
for the unity function call, we will send the Animator Behavior itself, as the first
element of the list.

Extra Data: is also used only in Unity Message and Both Modes, and even when
using the “Both” mode, then the data will only be sent through the Unity
Message, note if Can Send Self is set to true, then the “Self” which is the behavior,
will get added as the first element in the list.

void ShowLogoSparkle(List<object> objs) {

b
void ShowlogoSparkle(){

ADVANCED
ANIMATOR
API

16

JG_AnimatorEventReciever

Assets » 01_JG_Lib » JG_Lib » AdvancedAnimatorAPl > AnimatorEvent

JG_AnimatorEvent
JG_AnimatorEventReceiver

3+ | 3%

Fig 11: Animator Event Directory

JG_AniamtorEventReceiver: The second script in the AnimatorEvent Directory,
now if we used any animator event that utilizes the “Both” send mode, and the
“Receiver” send mode, then for these events, we can use this script.

= Hierarchy 2 i | @ Inspector =1
> o Al .
+ = n @ @ ¥ Animator Events Reciever Static -
02_AnimatorEvenmts_ByRi } -
7) Main Camera Tag Untagged ~ | Layer Ul A

) Directional Light

an =
f7) Animator Events Reciever |~ <+ RectTransform O
» [{] Canvas ¥ # + JG_Animator Event Receiver (Script) e
[EventSystem : - S
» @ Particles Script JG_AnimatorEventReceiver
Animator » Canvas (Animator) ®
¥ Event Behaviors 5
=¥ ShowlLogoSparkle
E ShowlLogoSparkle
U Event ()
= Runtime Only ~ ParticleSystem.Play v

¥ EnergyExplo: @ | v

= ShowlntroRocks

— b DlavNuetEffant

Fig 12: JG_AnimatorEventReciever Component On A GameObject

You can attach this component to any game object, and all you need to do is plug the exposed
“Animator” variable, and then fill whatever events you need.

Animator: the animator that you want to connect to, and listen to.
E: the name of the event you want to listen to

U Event: is the unity event that will be called based on the animator event, think of it like On
Click from the Ul Button but instead of it being called when you click on the ui component
button, it gets called on the Animator Event, that you defined previously in the animator, and
that you wrote it's name here, then you can do any actions inside of it like playing particles or
calling other functions.

ADVANCED
ANIMATOR
API

17

AnimatorTag

Assets » 01_JG_Lib > JG_Lib > AdvancedAnimatorAPl > AnimatorTag

e BodyParts
JG_AnimatorTagAdvanced

JG_ﬁ.nimatanai Base

Fig 12: AnimatorTag Directory

3% |3

3¢

There are three main scripts in this directory, and a subdirectory named BodyParts.

JG_AnimatorTagBase:
This script is an abstract class that all animator tags inherit from.

JG_AnimatorTagBasic Variables:

¥ # v (JG_Animator Tag) o =+ i
State Name : RedAnim

Animation Clip Name : CustomAnimClip

Animation Duration Name : 1

State Speed: 1

Layer Index : 0

Script JG_AnimatorTag

Read Only

Entries Count 0

Total Run Time As Percent 0

Animator Tag Settings

r Tags 2
= Element0 StrongTag
= Element1 [AnotherCustomTag]
+ -

Fig 13: JG_AnimatorTag

This is the simplest animator tag, you simply attach it to some animator state, and the animator
state will use the tag, you can define them in the “Tags” list, in the code you can detect whether
the current running animations have a specific tag as follows:

if (animator.IsAnimatorTagActive(ref collector, "SpeedBoostTag"))

{

mover .maxMoveSpeed defaultMaxMoveSpeed * speedyMaxSpeedMulti;
mover.acceleration = defaultAcceleration * speedyAccelMulti;

ADVANCED
ANIMATOR
API

18

JG_AnimatorTagAdvanced Variables:

¥ # + (JG_Animator Tag Advanced) L7 LA
State Name : SpeedyAndimmortal

Animation Clip Name : SpeedyAndGhost

Animation Duration Name : 2

State Speed : 1

Layer Index : 0

Script JG_AnimatorTagAdvanced

Read Only

Entries Count 0

Total Run Time As Percent 0

Advanced Tag Settings

¥ Tags 2
=¥ SpeedBoostTag
Tag SpeedBoostTag
Range: duration
0.1 0.9
0 —4{ I —— 1
=¥ GhostTag
Tag GhostTag
Range: duration
0.1 0.9
0 —4 I — 1

+_

Fig 14: JG_AnimatorTagAdvanced

This is exactly the same as JG_AnimatorTag but with the difference that the “Tags” that you
define in this script are time based (as percent), where the tag will only be active for the
specified duration, example SpeedBoostTag will run while the animation is between 0.1 to 0.9, if
the animator state is at 0.95 for example, then even though we are in the animator state, it will
register has if it's not running.

And we can access these tags through code, in fact we do not need to change the code at all
compared to the JG_AnimatorTag, we can in fact reuse exactly the same code to detect whether
a tagis running or not.

if (animator.IsAnimatorTagActive(ref collector, "SpeedBoostTag"))

{

mover.maxMoveSpeed = defaultMaxMoveSpeed * speedyMaxSpeedMulti;

mover.acceleration = defaultAcceleration * speedyAccelMulti;

ADVANCED
ANIMATOR
API

BodyParts

19

Assets > 01_JG_Lib » JG_Lib > AdvancedAnimatorAPl > AnimatorTag > BodyParts

B Editor

¢+ JG_AnimatorBodyPartTagBasic

+ JG_AnimatorBodyPartTagExtended
+ JG_BodyPartsController

+ JG_BodyPartTag

Fig 15: BodyParts Directory

This sub-directory contains four core scripts, two StateMachineBehaviors and two
Monobehaviors. Before we discuss them, let us recall why we use the BodyParts system? The
answer is simply when we want to control the activity of game objects, in the animator, you
basically decide on a game object you want to control the activity of through animator, then you
attach JG_BodyPartMono to the game object then in the animator state you add

JG_BodyPartTagBasic, and finally on the animator

JG_AnimatorBodyPartTagBasic

This script behave very similarly to
JG_AnimatorTagAdvanced as it gets added
to the animator state, it extra property over
the JG_AnimatorTagAdvanced:

Body Parts Controls: in here you define a
custom tag, that corresponds to a game
object, and you define it's activity duration,
just like you did define for tags previously, so
from 0.1 t0 0.9, the game object tagged with
our special tag, with string of “Left Armor
Body” will be activate for that duration.

v # « [(JG_Animator Body Part Tag Basic)

State Name : AbsoluteArmor

Animation Clip Name : AbsoluteArmor
Animation Duration Name : 3.5
State Speed: 1

Layer Index : 0

Script JG_AnimatorBodyPartTagBasic

Read Only
Entries Count 0

Total Run Time As Percent 0
Advanced Tag Settings
> Tags 0

AttackTag Settings
Auto Add Simple Body Part Tag v
Auto Add Def Attack Tag v

Damage Control
Body Parts Controls 2

-

=W Left Armor Body
Body Part Tag
Range: duration
0.1 0.9
0 1 T 1
= I Right Armor Body

Left Armor Body

Read Only
» Cached Body Parts Controls 0

ADVANCED
ANIMATOR
API

JG_BodyPartMono
© Inspector 2 3
Ga ~ Left Armor Body Static =
T Tag Untagged ~ Layer Default -
»). Transform e i
¥ |# JG_Body Part Mono (Script) e
Script JG_BodyPartMono
» Body Parts Tags 1
Set Tags To Obj Name
» [g] ~| Sprite Renderer o
» O ' Box Collider 2D e
> # Demo_04_Armor (Script) e i

Fig 15: JG_BodyPartMono Attached To A Gameobject

20

Previously in JG_AnimatorBodyPartBasic we defined a custom string, that corresponds to the
game object, now, to attach the game object, and make it visible to the system, we need to tag
it with our special tag which is a component called JG_BodyPartMono.

So we attach JG_BodyPartMono to any game object that is a child of a root game object that
has the component named JG_BodyPartsController, and then we assign the proper string (it
must exactly match the string defined in JG_AnimatorBodyPartBasic) and that would be all we

need to do.

JG_BodyPartsController

You attach this to the root game object
(typically the same game object that has
the animator component), then you make
sure that the animator is plugged.

And finally, this controller will ensure that
game objects will respond properly to the
JG_AnimatorBodyPartBasic behaviors that
you attached to any animator state

@ Inspector

.” v Player
v Tag Player ~ Layer Default

Prefab Open Select Overrides

a

Static v

-

-

» M. Transform

T+

» & Rigidbody 2D

+

» © v circle Collider 2D

T+

» #| v Demo_03_Player (Script)

» # v Demo_03_Ship Mover (Script)

| T+

» # v Demo_03_Health (Script)

T+

» + + Animator

T+

» # v Demo_03_Bullet Shooter (Script)

® o ® O OO O

+

A Demo_03_Player Abilities (Script) (Removed)

> # v Demo_04_Player Abilities (Script)

o ®

T+

¥ # v JG_Body Parts Controller {Script)

Script JG_BodyPartsController
Animator » Player (Animator)

Read Only

Update Body Parts
» Active Body Parts
» All Body Parts

+

ADVANCED
ANIMATOR
API

21

JG_AnimatorBodyPartExtended:

¥ # v (JG_Animator Body Part Tag Extended) e i
State Name : RightArmor

Animation Clip Name : RightArmor

Animation Duration Name : 3.5

State Speed : 1

Layer Index : 0

Script JG_AnimatorBodyPartTagExtended

Read Only

Entries Count 0

Total Run Time As Percent o]

Advanced Tag Settings
> Tags 0

AttackTag Settings
Auto Add Simple Body Part Tac v

Auto Add Def Attack Tag v
Damage Control

* Body Parts Controls 0
Read Only

» Cached Body Parts Controls 0

Extended Settings
Call Attack Enter Exit Event: v v
Call Move Enter Exit Events v v

Add Behaviour

Fig 16: JG_AnimatorBodyPartTagExtended Attached To An Animator State

A simple example where we extend the JG_AnimatorBodyPartTagBasic so that it
can also send two custom messages, and it also utilizes some of our extra
General_Components, mainly the DoubleBool, it can serve as an example to show
how to extend the scripts if needed.

ADVANCED
ANIMATOR
API

22
Utilities

Assets » 01_JG_Lib » JG_Lib » AdvancedAnimatorAPl > Utilities

B AnimatorTagTesting

B8 ExtendedUtilities

s SimpleUtilities

JG_AnimatorStatelnfoCollector
+ JG_AnimMessagesDelegator

Fig 17: Utilities Sub-directory

JG_AnimatorStatelnfoCollector:

This is a helper script that gets attached automatically to the animator when you use the
Extension methods, it is responsible for collecting information from the animator, it holds a
reference to both the running data, and all data contained within the animator.

-+

¥ % v JG_Animator State Info Collector (Script) @ 3 i

Script JG_AnimatorStatelnfoCollector
Animator None (Animator) ®

Read Only

Is Initialized
» Running Anim States 0
» Running Data 0
» All Data 0

Fig 18: JG_AnimatorStatelnfoCollector Attached To A Game Object

Note: you do not need to add this component manually if you use the extensions, but this is just
a picture on how it looks, if you use extensions it gets automatically added, and configured

properly.

JG_AnimMessagesDelegator:

When using the JG_AnimatorEvent, you can choose a mode of “Unity Message” or a mode
named “Both”, for events/messages that are sent this way, they are by default sent to the game
game object that has the animator, if you want to delegate these function calls to another game
object, simply attach this component JG_AnimMessagesDelegator to the same object that has
the animator, and then fill the target.

v |# JG_Anim Messages Delegator (Script) @ 3t
Script JG_AnimMessagesDelegator
Target None (Transform) ®

Fig 19: JG_AnimMessagesDelegator Attached To A Game Object

ADVANCED
ANIMATOR
API

23

ExtendedUtilities

Assets » 01_JG_Lib » JG_Lib » AdvancedAnimatorAPl > Utilities > ExtendedUtilities
7+ JG_AnimatorPlayer

Fig 20: ExtendedUtilities Subdirectory

This directory contains extra helper scripts that extend JG_AnimatorStatelnfo class

JG_AnimatorPlayer:

A simple abstract class for a StateMachineBehavior, it basically controls the flow of the script
such that, an abstract function called “PlayerBehavior(Animator animator)” gets called on one
of three places: OnEnter,OnExit,OnTime.

JG_AnimatorUnityMessage:

A simple script that extends JG_AnimatorPlayer and is used to serve as an
example of how to use the JG_AnimatorPlayer and extend it, it has only one job
which is sending a Unity Message, the JG_AnimatorEvent is a far more advanced
version of this script.

SimpleUtilities:

Assets > 01_JG_Lib > JG_Lib > AdvancedAnimatorAPl > Utilities > SimpleUtilities

7 JG_AnimNumSetter
7 JG_AnimPlayRand
JG_PhysicsBodylnfo

Fig 21: SimpleUtilities Subdirectory

This subdirectory contains scripts that do not inherit from JG_AnimatorStatelnfo.

JG_AnimNumSetter:

This script can be added to any animator state, and it will change the number or
float, based on inputs.

¥ # v (JG_Anim Num Setter) @ i i
Script JG_AnimNumSetter

Set Point On Enter

Rnd Num Type Integer

Use Rand

Variable Key

Max Rand 0

Set Val 0

Add Behaviour

ADVANCED
ANIMATOR
API

24

JG_AnimPlayRand:

¥ 4 « (JG_Anim Play Rand) 0 it
Script JG_AnimPlayRand

Anim Key RandAnim

Anims Count 2

Add Behaviour

Fig 22: JG_AnimPlayRand assigned to an animator state

This script will assign the animator integer value of “Anim Key” to a random value between “0”

and “Anims Count” variable. (returned value will be between 0, and animsCount-1) meaning it's
exclusive.

JG_PhysicsBodylinfo:

v ¥ JG_Physics Body Info (Script) @ 3
Script JG_PhysicsBodylInfo
Target Mask Everything v
¥ Detectable Tags 0

List is Empty

Fig 23: JG_Phyics Body Info Component

Is a simple script that gets attached to a monobehaviour, and it will expose a TargetMask and
DetectableTags, it's sort of an information container for typical physics based filters.

ADVANCED
ANIMATOR
API

d

25

Direct Usage Examples

Accessing Animator Info From Code:

In many situations while you are building your own game, you might want to
access certain information from a specific animator state, or you might want to
get the currently running animator state, and find out maybe the duration of the
animation, or for how long it has been running, or the animator state speed,
advanced animator api allows you to access all of that and more.

First you start by defining a reference to keep track of the animator state info
collector as follows (it is just a simple member variable).

JG_AnimatorStateInfoCollector infoCollector = null;

Then from any function where you want to access the information you can just
write the following line to get the currently running animator state info:

activeInfo = animator.GetRunningAnimatorStateInfo(ref infoCollector);

Note that, you need to use the JG_Lib.Utility and JG_Lib to be able to access this
new extension.

Let us now define 2 more variables, the animator itself, and something to hold the
active currently active state, so now we have a total of three variables as follows:

[SerializeField] Animator animator = null;
JG_AnimatorStateInfo activeInfo = null;
JG_AnimatorStateInfoCollector infoCollector = null;

Then let us say we want to find the currently running animator state and update
some text every frame, you can do so in the Update function, we can easily do so
as follows:

void Update()
{

if (activeInfo == null || !activeInfo.isEntered)
activeInfo = animator.GetRunningAnimatorStateInfo(ref infoCollector,0);

Note: zero that is plugged as second parameter is an optional parameter that
means we get the running animator state in the first layer of the animator.

ADVANCED
ANIMATOR
API

26

Now, we can expand our function so that, it updates some texts every frame, first
we need to expose the texts as follows:

[SerializeField] TextMeshProUGUI stateName = null;
[SerializeField] TextMeshProUGUI clipName = null;
[SerializeField] TextMeshProUGUI animDur = null;

[SerializeField] TextMeshProUGUI animRunTimeAsPercent = null;
[SerializeField] TextMeshProUGUI animSpeed = null;

Now back to the update function, we can fill these these texts with the currently
running animator state as follows:

stateName.text = "State Name : " + activeInfo.GetStateName;
clipName.text = "Clip Name " + activeInfo.GetClipName;
animSpeed.text = "State Speed " + activelnfo.GetStateSpeed;
" + activeInfo.GetAnimDur;

animDur.text = "Anim Dur
animRunTimeAsPercent.text = "Run Time (No Loop) Percent " +
activeInfo.GetRunTimeAsPercent.ToString("0.00");

There are many more properties to check, such as “isEntered” which we have
already used in the Update function, to which we use to check whether the
“JG_AnimatorStatelnfo” instance is entered or not, because as we move between
animator states, we might leave the state, so using the isEntered we can know
whether it is running/entered or not.

The “GetRunTimeAsPercent” property will return a value between 0 and 1, where
0.99 means the animation is almost done, and a value of 0.01 means the
animation has just started and so on, the full script is in our Z_Demos directory
under the name of Demo_01_InfoDisplayer.

Note: in the update function that we used in this example, we only update the
state when needed, but do keep in mind, the entire state of the animator is
cached automatically, so even if you query it every frame, there will not be an
impact on performance, because you are accessing them from the cache rather
than getting the value directly, so essentially it is as fast as Dictionaries and Lists
are, and obviously if you have an animator with 1000 animator states, then things
might get slower.

ADVANCED
ANIMATOR
API

27

Unity Messages As Events Example:

Unity offers us Events in the animations, but, if you were to change the clip, then
you’d need to recreate the animation events on the new clip as well, which is time
consuming, and easy to miss, however advanced animator api allows you to call
functions the same way you’d call them from animation events with the key
difference that they’re tied to the animator state, not the animation clip, meaning
even if you change animation clips, the functions you call through the animator
state, will remain, allowing for vastly improved workflow, and as a bonus, you can
optionally call events and respond to them through the inspector as well, here is a
simple setup from one of the demos.

v # +~ (JG_Animator Event) e 3 i
State Name : RedAnim

Animation Clip Name : CustomAnimClip

Animation Duration Name : 1

State Speed : 1

Layer Index : 0

Script JG_AnimatorEvent

Read Only

Entries Count 0

Total Run Time As Percent 0

Animator Event Settings
¥ Anim Events 2
=¥ A_EnableFire
E Name A_EnableFire
Play On On Enter v
Play Point 0
Send Mode Unity Message v
Can Send Self
» Extra Data 0

Fig 24: JG_AnimatorEvent used to send a unity message A_EnableFire

Now in the code, we attach any monobehaviour on the animator, and ensure that
it had defined a function named “A_EnableFire()” as follows

private void A_EnableFire()

{

firel.Play(true);

For example, in the Demo_02_Messages.cs script from our demos directory, we
have defined this function, which simply plays a particle system.

ADVANCED
ANIMATOR
API

28

Animator Events Using Inspector Example:

But for simple calls, like playing audio, playing particle systems, or anything that is
a simple oneshot, it might be easier and quicker to just call it through the
inspector, and with advanced animator api, we offer you a full solution for that.

¥ # ¥ (JG_Animator Event) @ * i
State Name : Hide

Animation Clip Name : Hide

Animation Duration Name : 1.2

State Speed : 1

Layer Index : (1]

Script JG_AnimatorEvent

Read Only

Entries Count 0

Total Run Time As Percent 0

Animator Event Settings
Anim Events 1

=¥ PlayDustEffect

E Name PlayDustEffect
Play On On Enter -
Play Point 0
Send Mode Reciever -
Can Send Self

» Extra Data 0
Read Only
Loops Count 0

Fig 25: JG_AnimatorEvent used to send a message named “PlaydustEffect” to our custom
receiver

Then from any game object in the scene, we need to attach the component named
JG_AniamtorEventReciever to it, then plug the animator, and then call any functions we want
similar to On Click, from unity’s buttons.

¥ # | JG_Animator Event Receiver (Script) @ it i
Script JG_AnimatorEventReceiver
Animator » Canvas (Animator) ®
¥ Event Behaviors 5

=¥ PlayDustEffect

E PlayDustEffect
U Event ()
Runtime Only ~ | ParticleSystem.Play -

% DustStorm (Parl @ | v

Fig 26: JG_AniamtorEventReciever attached to a game object, and responds to PlayDustEffect

For this entire example, simply head over to 02_AnimatorEvenmts_ByReciever
scene in our demos.

ADVANCED

ANIMATOR
API

d

29

Simple Tags Example:

Let us start by creating a simple abilities system, utilizing tags, so if we press 1 or 2
or 3, then we will play a specific animation, and if the animation is tagged with a
certain tag, we will change the player to respond maybe we will make him take no
damage if he has immortality tag, or we will will make it so nothing can collide
with the player if he has the ghost tag and so on, and that will be our end goal.

using UnityEngine;
using System.Collections.Generic;

using JG_Lib;

First we assign the proper name spaces., we need the JG_Lib namespace, so we
can use the Extension methods that are provided by the package, you can also use
them, using the static class Extensions,

[SerializeField] KeyCode abilityl = KeyCode.Alphal;

[SerializeField] KeyCode ability2 = KeyCode.Alpha2;
[SerializeField] KeyCode ability3 = KeyCode.Alpha3;

[SerializeField] Animator animator = null;
[SerializeField] float speedyMaxSpeedMulti = f;
[SerializeField] float speedyAccelMulti = f;

[SerializeField] List<Collider2D> cols = new List<Collider2D>();

Demo_©3_ShipMover mover = null;
Demo_©03 Health health = null;

float defaultMaxMoveSpeed;
float defaultAcceleration;

public bool IsGhost { get; private set; } = false;

JG_AnimatorStateInfoCollector collector = null;

After that we we defined some variables

All variables of type KeyCode are used to define the keyboard button that we
must press to activate the ability.

ADVANCED
ANIMATOR
API

30

Animator: variable is the animator that we will play the animations on.

speedyMaxSpeedMulti: is the multiplayer that we will apply on the movement
speed when we are in an ability that increases the speed.

speedyMaxAccelMulti: is the multiplayer that we will apply on the acceleration
when we have an ability that increases the speed.

cols: is a list of colliders in the ship

mover: is a component responsible for moving the ship.

health: is the component responsible for the health of the character
defaultMaxMoveSpeed: is the move speed at the start of the game.
defaultAcceleration: is the acceleration of the ship at the start of the game.

IsGhost: is a property that expresses information about whether a ship is in ghost
mode or not.

collector: is the variable to use as ref, by extensions (will be cleared down below).

private void Awake()

{

mover = GetComponent<Demo_03 ShipMover>();
animator = GetComponentInChildren<Animator>();

health = GetComponent<Demo_03 Health>();
defaultMaxMoveSpeed = mover.maxMoveSpeed;
defaultAcceleration = mover.acceleration;

In awake function, we initialize all the components, and set the default max move
speed and default acceleration as well.

ADVANCED
ANIMATOR
API

31

void Update()

{
if (Input.GetKeyDown(abilityl))
{

animator.SetTrigger("Speedy");

}
else if (Input.GetKeyDown(ability2))

{

animator.SetTrigger("Ghost");

}
else if (Input.GetKeyDown(ability3))

{
animator.SetTrigger("SpeedyGhost");

Then in the update function, we read the KeyCode variables, and play an
animation based on each one.

Next, and this is a critical part, for using the tags in code.

if (animator.IsAnimatorTagActive(ref collector, "SpeedBoostTag"))

{

mover.maxMoveSpeed = defaultMaxMoveSpeed * speedyMaxSpeedMulti;
mover.acceleration = defaultAcceleration * speedyAccelMulti;

}

else

{

mover.maxMoveSpeed = defaultMaxMoveSpeed;
mover.acceleration = defaultAcceleration;

IR ERI(=animator. IsAnimatorTagActive(ref collector, "SpeedBoostTag")NUERIIAILE
animator, whether a tag is running or not, this is the core of the entire script
utilizes the AdvancedAnimatorApi in here we essentially check whether there is
an animator state, that has the animator tag “SpeedBoostTag”, and if there is,
then we get a true, thus we are in animation that modifies the speed, thus we
access the mover and update it's speed.

If this is false, then we reset the speed to the default values that it had at the start
of the game.

ADVANCED
ANIMATOR
API

32

In the same manner, we can expand our abilities script as follows:

if (animator.IsAnimatorTagActive(ref collector, "GhostTag"))
{

health.isImmortal = true;

IsGhost = true;

foreach (Collider2D c in cols)

{

if (c.enabled)
c.enabled false;

health.isImmortal false;
IsGhost = false;
foreach (var c in cols)

{

if (!c.enabled)
c.enabled = true;

Again the only code that is unique to Advanced Animator APl is
animator.IsAnimatorTagActive(ref collector, "GhostTag") where as all of the other
lines are some lines unique to the actual ability, now, with this, it does not matter
which or what animator state is running, as long as the animator state is tagged
with “GhostTag”, then this ability will run, which will essentially turn the character
into a ghost that can not take damage, this entire script is in the demo scenes,
under the name Demo_03_PlayerAbilities.cs which you may use as reference.

And here is an example of what the ¥ # ¥ (JG_Animator Tag Basic) @+ :
. . . State Name : Ghost
animator state looks like, you just Animation Glio Name : onost
attach one of the tag behaviors (in the AL N R 2
. State Speed: 1
picture case we used Layer Index : 0
JG_AnimatorTagBasic, to the animator A rEtenadnase
. . Read Only
state itself, and from code, you just deal = [coun o
with it as we did in this example. C i e W
Animator Tag Settings
¥ Tags 1
= Element0 GhostTag
+ -
ADVANCED
ANIMATOR

API

33

Body Parts Controller Example:

Now if you are making some game, that has some sort of melee combat, you may
want to activate/deactivate game objects at key moment in the animation, now
you can achieve that using the animator events discussed previously, but a more
automatic easier to track way is using a combination of three scripts, first
JG_BodyPartMono, which you attach to the game object it self.

© Inspector =

@ v Left Armor Body Static v
- Tag Untagged ~ | Layer Default -

»). Transform o i

¥ | # JG_Body Part Mono (Script) [7 s
Script JG_BodyPartMono

» Body Parts Tags 1

Set Tags To Obj Name

»> E)' v Sprite Renderer @
» O ~ Box Collider 2D o
> # Demo_04_Armor (Script) e 3

Fig 27: JG_BodyPartMono attached to the game object we want to control

Then the second script is JG_BodyPartsController, which must be attached to a
game object that is a parent of all other JG_BodyParts it is okay if it's not a direct
parent but it must be a parent, and preferably, it also must be next to the
animator component.

¥ # + JG_Body Parts Controller (Script) e !
Script JG_BodyPartsController
Animator » Player (Animator) [©]
Read Only
Update Body Parts

» Active Body Parts 0

» All Body Parts 0

Fig 28: JG_BodyPartsController attached to a common parent for all JG_BodyPartMono

And flna”y fOF the JG_BOdyPartTagBaSiC WhICh getS attached tO Script JG_AnimatorBodyPartTagBasic
the animator state itself, and controls the duration/time in peadony .
which we activate the game object tagged as “Left Armor Body” = T™?!funTimessPerent 0
Advanced Tag Settings
» Tags 0

There is a full blown demo scene, that is a mini twin AttackTag Settings

. . Auto Add Simple Body Part Tag v
stick shooter game, under our Z_Demo directory and Auto AGd Def Attack Tag ¥

Damage Control

the scene is named 04_BodyParts, which you may use + seaypans contros 1

=¥ Left Armor Body

to check this in full details. Body Part Tag Left Armor Body

Range: duration
0.1 0.8
0 4 I b 1
+

ADVANCED
ANIMATOR
API

34

Send Custom Data With Unity Messages As Events Example:

In the previous example, Unity Messages As Events Example, we sent Unity
Messages, to call functions, but occasionally you might want to send data along
with the function call, You can tick the “Can Send Self” and it will the instance of
the class itself, and if you want to send more customized data, you will need to
expand the JG_Animator behavior that you attached to whatever animator state
of your choice

¥ # v (JG_Animator Event) @ i i
State Name : RedAnim
Animation Clip Name : CustomAnimClip
Animation Duration Name : 1
State Speed : 1
Layer Index : 0
Script JG_AnimatorEvent
Read Only
Entries Count 0

Total Run Time As Percent 0

Animator Event Settings
¥ Anim Events 3

=¥ A_EnableFireWithData

E Name A_EnableFireWithData

Play On On Time -

Play Point L 0.5

Send Mode Unity Message -

Can Send Self

¥ Extra Data 2

= Element0 @ SomePrefabToSend @

= Element1 None (Object) @
+ -

Read Only

Loops Count 0

Fig 29: JG_AnimatorEvent with Extra Data Unfolded and expanded

Using this field, you can use it to send any unity based type, such as Scriptable Objects, and
prefabs, However, sometimes you just want to send some simple variables, like a float or a
string, for that, i created a set of variables that are stored in a scriptable object, so in the event
you send the scriptable object, and then access the value, first you need to create the scriptable
object, lets say, we want to send a string along side the message, so we need a string variable,
and we need some duration, so we also need a float.

| SSSSSSSSSSNmENSmEEENSEE o Pt —

6 Lib 5 camerens > [e
Create_ ’ Folder Data Storage > SO _Variables > Crossinput
Show in Explorer —— AnimationCurve
Open cript . .

Strings List
Delete Shader » boolg
i >
Rename Testing float
Copy Path Alt+Ctrl+C Playables 4 int
Open Scene Additive Rl Def!n!t!on string
Assembly Definition Reference L Mask
View in Package Manager TextMeshPro 5 Sayi' 8
rite
Imnort New Asset. _ E

Fig 30: Picture of menu that we can use to create primitive variables stored in scriptable objects

ADVANCED
ANIMATOR
API

35

'+ \Var_float
2.05

= War_string
The String variable (some message hello world)

Fig 31: Picture of project files after we created the two new variables (string and float)

Now we created these two variables, now we can easily go back to the inspector of the
animator state, and access the animator event, and just attach this new data, which is the two
scriptable objects.

'+ JG_AnimatorEvent

A_EnableFireWithData

Unity Message

W SomePrefabToSend ©
Gy TheDurationlWantToSend (Var_float) @
G TheStringlWantToSend (Var_string) ®

Fig 32: Picture of updated event where CanSendSelf is true, and we send 1 prefab and 2
scriptable objects.

ADVANCED
ANIMATOR
API

36

Now finally we want to access this data from the code, from Fig 32 we can see that we send 4
things, first “Can Send Self” is true so we send the state machine behavior itself, then we have
the prefab named “SomePrefabToSend” and we have 2 variable “TheDurationlWantToSend”
and “TheStringlWantToSend”, where the two variables, are two scriptable objects, that contain
the primitive data that we want to send, now in our code we define our function as follows:

private void A _EnableFireWithData(List<object> objs)
{

JG_AnimatorStateInfo info = (JG_AnimatorStateInfo)obijs[@];
GameObject thePrefabThatIRecieved = (GameObject)objs[1];

Var_float theFloatIRecieved = (Var_float)objs[2];
Var_string theStringWeRecieved = (Var_string)objs[3];

Now from our code, we are free to use the data however we like, for example, if we want to
debug the data, wae can do as follows

Debug.Log("Name Of State, That Message Was Called In " + info.GetStateName);
Debug.Log("Name Of Prefab We Received " + thePrefabThatIRecieved.name);

Debug.Log("Duration That We Received As Custom Var " + theFloatIRecieved.Value);

Debug.Log("String We Received As Custom Var " + theStringWeRecieved.Value);

And that would be the way, to receive extra data within the animator events, naturally, all of
this section is optional, if you want to just call a function, without sending any data, you can

easily do so as mentioned in the Unity Messages As Events Example, one thing to keep in

mind, is that the Inspector based receiver, will not receive any of the of this data, this data is
only supported in the Unity Messages format.

Of course as per usual, the entire example is included in the package under the name of
Demo_02_Messages.cs.

Note: Null data in the list of “Extra Data” gets fully ignored, as if the element does not exist, we

do not send nulls in the [EESRY RIS BL].

ADVANCED
ANIMATOR
API

37

Send Unity Messages As Events To Different Game Objects Example:

Typically, you send the unity messages to different to the game object that has the animator
itself, but if we want to delegate it, so we send the message to a different game object, than the
one that holds the animator, then for that case all we need to do is attach
JG_AnimMessagesDelegator component to the game object that holds the animator, and then
plug the “target” transform value in it, and the message will be sent to that transform.

¥ }» v Animator o
Controller % Logo_SendMessages ®
Avatar None (Avatar) O]
Apply Root Mation
Update Mode Normal -
Culling Mode Always Animate -

Clip Count: 4

Curves Pos: 0 Quat: O Euler: 4 Scale: 8 Muscles: 0 Generic: 18 PPtr: 0
* Curves Count: 54 Constant: 15 (27.8%) Dense: 0 (0.0%) Stream: 39 (72.2%)

¥ |# JG_Anim Messages Delegator (Script) 7 s
Script JG_AnimMessagesDelegator
Target it Animator Events Reciever (Rect Transfor @

Fig 33: Picture of JG_AnimMessagesDelegator component attached next to the animator and
pointing towards a game object named Animator Events Receiver.

Now, if we take a look at that plugged game object, we can see that it only contains the script
that has these messages functions so it can listen to the animator messages.

¥ |[# Demo_02_Unity Messages (Script) e it
Script Demo_02_UnityMessages
Earth 1 % EarthShatter (1) (Particle System) O]
Earth 2 % EarthShatter (2) (Particle System) ®
Dust % DustStorm (Particle System) ®
Fire 1 % WildFire (Particle System) ®
Energy Explosion % EnergyExplosion (Particle System) ®

Fig 34: Picture of the component on Animator Events Receiver game object.

Now that script will handle listening to all animator events despite the fact that it is not
attached to the animator, the full example is in 02_AnimatorEvents_ByMessages scene.

ADVANCED
ANIMATOR
API

38

Extra Content
Gameplay Related:

Assets > 01_JG_Lib » JG_Lib > General_Components

s CallbacksDelegators
I DebuggingSystem
8 Inspectable Events
» ObjHelpers

s Others

B PersistantScene

8 PlainDataStructures
s SO_Vars

B Special Events

B TopDownSorter

B Transform_Helpers
s Tweeners

Ul

Fig 34: Picture of the directory that contains the extra content

This directory, over a 100 helper scripts that are unrelated to the actual content of Advanced
Animator API you may use these scripts to help you advance your project, they’re modular
components that are easy to digest and use, and here is a brief overview on them.

CallbacksDelegators: unity built in functions/events are typically called on specific game objects
example OnTriggerEnter is called on functions that has a collider, you can use some of the
scripts in this directory to delegate these calls to different game objects through C# Events.

DebuggingSystem: it is self explanatory, this is a full blown debugging system that you can use
for your game, you can debug messages based on channels and priority.

InspectableEvents: are game events, that are created as scriptable objects, and you can connect
to them by C# code, or by custom scripts, and you can determine a priority for functions that
are being called.

ObjHelpers: are a group of smaller properties you can use in other scripts, such as DoubleBool
that is a class that wraps two bools, or SqrFloat which is a float that automatically wraps and
gets the squared value, and the MinMaxRange class which you have seen used in some of the
classes that inherit from JG_AnimatorTag.

Others: is a directory that contains a bunch of scripts that do not fit any of the other categories,
like GOSwitcher which switches a game object or GoCacher, which caches a game object, so it
can point to another.

PersistantScene: a small system where you can create a “PersistantScene” prefab that can hold
all your persistent objects.

ADVANCED
ANIMATOR
API

39

PlainDataStructures: contain classes that wrap around some data structures, currently it wraps
around KeyValuePairs, which should help you create serializable like dictionaries, which can be
used in a saving system.

SO_Vars: is the directory that contains the scriptable object based variables that was discussed
in the example where we send data with the Unity Messages.

Special Events: are a group of scripts that extend around the UnityEvent class, which allows you
to have serializable function calls, but with extra functionality, like wrapping it with a C# event
or extending its sendable types, so you have things like UnityColliderEvent, which sends a
collider.

TopDownSorter: if you are making an isometric or 2.5D game, then this directory is super
helpful for you, you can use this which is a simple script, to automatically update the sorting
order and priority of any sprite renderer, dynamically, so you won’t face any problems with
characters overlapping each other, or your player being stuck behind environment and so on.

Transform_Helpers: a collection of scripts that act as utilities for transforms such as
TransformMatcher which will make objects follow each other, or ChildrenTagApplier which will
apply the tag to all children, and so on.

Tweeners: is a group of scripts that require DOTween to work, and it contains mainly a
TimeScaler to help you control the time scale of your game smoothly.

Ul: it should be self explanatory, and it's a directory to contain helper scripts for the ui.

Editor Related:

Assets > 01_JG_Lib > JG_Lib » Systems > EUtilities

B Editor

B8 ExposedScriptableObject
Ba SharedMatsReplacer

t MatsConverter
NamespaceAdder
PhysicsClearer
ToPrefabReverter
UsedLayerScanner
UsedShadersScanner

S AE-IEJE JE -

Fig 35: Picture of the directory that contains helper scripts

These scripts are mini editor tools that help you speed up the way you create game, by doing
repetitive tasks, such as finding game objects that use specific layer, or finding shaders, or
replacing materials or adding a specific namespace to a group of scripts, or reverting a group of
prefabs to their prefab state all at once.

ADVANCED
ANIMATOR
API

40

Contacts:

Any questions, suggestions or feedback?

Feel Free To Send Me An Email: info@jondobgames.com

Or Join Our Discord: https://discord.com/invite/tCnmcnVpcE

Link On The Asset Store Is : https://assetstore.unity.com/packages/slug/254444

Graphics And Visuals Link:
https://drive.google.com/drive/folders/1oKfsejklOgplafMDmzrYjCaPUHIy5rs

Full Tutorials Playlist Link:
https://www.youtube.com/playlist?list=PLNVG78sXvnGOrJE6FC15D-uelgZEhIv5A

Please leave a review on the asset store for the asset, as it helps us improve the
package and shows your support, thank you very much <3.

ADVANCED
ANIMATOR
API

mailto:info@jondobgames.com
https://discord.com/invite/tCnmcnVpcE
https://assetstore.unity.com/packages/slug/254444
https://drive.google.com/drive/folders/1oKfsejklOqpIafMDmzrYjCaPUHly5rs_?usp=sharing
https://www.youtube.com/playlist?list=PLNVG78sXvnG0rJE6FC15D-uelqZEhlv5A

	AAA
	User Manual
	© Jondob Games
	Introduction
	About This Package:
	What Are The Main Contents?
	Why Do I Want To Use This Package?
	What Kind Of Games Can I Use This For?
	What Are The Core Features?

	Quick Start
	Demo Scenes
	00_Intro
	01_DisplayInfoFromAnimations
	02_AnimatorEvents
	AnimatorReciever Located At 01_JG_Lib/JG_Lib/AnimatorAdvancedAPI/Z_Demo/02_AnimatorEvents/AnimatorReciever/
	UMessages

	
	
	
	
	
	
	
	
	
	03_AnimatorTags
	04_BodyParts

	Package Structure
	AdvancedAnimatorAPI
	AnimatorInfo
	AnimatorEvent
	AnimatorEvent Variables:
	JG_AnimatorEventReciever

	AnimatorTag
	There are three main scripts in this directory, and a subdirectory named BodyParts.
	JG_AnimatorTagBase:
	JG_AnimatorTagBasic Variables:
	JG_AnimatorTagAdvanced Variables:

	BodyParts
	JG_AnimatorBodyPartTagBasic
	JG_BodyPartMono
	JG_BodyPartsController
	JG_AnimatorBodyPartExtended:
	

	Utilities
	JG_AnimatorStateInfoCollector:
	JG_AnimMessagesDelegator:

	ExtendedUtilities
	JG_AnimatorPlayer:
	JG_AnimatorUnityMessage:

	SimpleUtilities:
	JG_AnimNumSetter:
	JG_AnimPlayRand:
	JG_PhysicsBodyInfo:

	Direct Usage Examples
	Accessing Animator Info From Code:
	Unity Messages As Events Example:
	Animator Events Using Inspector Example:
	Simple Tags Example:
	Body Parts Controller Example:
	Send Custom Data With Unity Messages As Events Example:
	Send Unity Messages As Events To Different Game Objects Example:

	Extra Content
	Gameplay Related:
	Editor Related:

	Contacts:

