
dev.cc branch plan
(golang.org/s/dev.cc)

Russ Cox

November 2014

This document serves as supporting documentation for the CLs made in the dev.cc branch, to
avoid repeating that information in each CL. It also holds the list of TODOs identified during the
code review process. The plan is to get everything running first and clean things up second.

The goal of the dev.cc branch is to eliminate all C code from the Go libraries and then remove
the C compiler that we have been maintaining as part of the toolchain (the cmd/5c, cmd/6c,
cmd/8c, and cmd/cc directories). As of Go 1.4, the only C code compiled with that compiler is in
package runtime. Therefore the work involved is mainly the conversion of package runtime
completely to Go.

There is a separate effort to rewrite the Go compiler (the cmd/5g, cmd/6g, cmd/8g, cmd/gc
directories) in Go, but that is unrelated. That code compiles with the host compiler (gcc or
clang); it does not depend on cmd/5c etc.

A full list of CLs is at the end of the document.

runtime Go conventions (or lack thereof)

The most obvious requirement is that all the src/runtime/*.c files need to become *.go files. I
have been converting these using a variant of the C->Go translator I built for converting the Go
compiler. The contexts are sufficiently different that it doesn’t do a perfect job, but it’s a better
starting point than the original files. I edit the result by hand to fix things it doesn’t convert well
(such as pointer arithmetic).

In the initial conversion, all type names are lowercased completely: the C struct GCStats
becomes the Go type gcstats, and so on. This creates conflicts with variable names. These
have been adjusted in an ad-hoc fashion so far, and I’m not yet going to try to clean up what’s
already happened. A list of conflicts follows. Keep in mind that the intent is to clean up them all
later.

●​ the G struct and the g global thread-local variable. In many by-hand conversions g was
renamed to gp, but this violates the previous convention in the runtime package that g
was always the local goroutine and gp was always some other goroutine. In Go, the g
thread-local variable must be read using the function call getg(), but then a name must
be given to the result. Using “g := getg()” breaks code that goes on to refer to the type
(G, now g). Using “gp := getg()” breaks code that already has a gp variable. For the

conversions that remain, We use “_g_ := getg()”. This is obviously ugly, but it avoids both
of those problems and it will be very easy to find and clean up later.

●​ the M struct and variables m of type *M. Same as with G/g: the m variable shadows the
m type, breaking code that tries to refer to the m type later. We use _m_ when
necessary.

●​ the P struct and variables p of type *P. Same. We use _p_ when necessary.
●​ the MStats struct and the mstats global variable. C had a #define mstats memstats, so

now the Go code always refers to ‘memstats’ for the variable.
●​ the MHeap struct and the mheap global variable. C had a #define mheap meap_ [sic], so

now the Go code always refers to ‘mheap_’ for the variable.

The current runtime contains auto-generated Go definitions for C constants. The rule in the
converter is that an upper case C constant like PageSize is prefixed by an underscore,
producing the Go const _PageSize. Some ad-hoc conversions had already introduced separate
definitions for initial-lower-cased names like pageSize. When the auto-generator was added, we
rewrote those definitions to say things like “pageSize = _PageSize” so that there was still just
one point of truth (the C sources). The newly converted files use mostly the _ form, but in some
of the malloc code where the lower case form is more prevalent, We changed the script to use
those. Regardless, no attempt is being made right now to settle on a single form. Like the
type-vs-variable name conflicts, they will be cleaned up later.

The initial conversion is meant to proceed a file at a time, so that the C and Go equivalent code
can be diffed easily. Because some files have already been partially converted, this means we
end up with multiple files that should be a single file. For now we just keep creating new files by
numbering them: runtime.c becomes runtime1.go, runtime2.go; then runtime.h becomes
runtime3.go. And so on. The code will be rearranged into better file boundaries (and ideally
package boundaries) later.

runtime signal handling

The Unix signal handling code makes unfortunate use of various #define macros to approximate
portability. This code needs to be rewritten to use simple functions instead. Since the Go
compiler can be counted on to inline them, the performance will be comparable (not that it really
matters) and the code will be cleaner. But the code is not a direct line-for-line translation.

assembler help

The current runtime contains assembly header files (zasm_darwin_amd64.h and so on)
auto-generated from the C sources. These files give #defines for struct field offsets and constant
values. When we remove the C sources, we will still have assembly files that need this
information, so it must be generated by the Go compiler instead.

We will change cmd/gc to add a -asmhdr flag that causes it to write an assembly header to the
named file. Assembly files can #include that instead of zasm_darwin_amd64.h. We will change
cmd/dist and cmd/go to arrange for writing of an assembly header to “go_asm.h” in the
per-package work directory before invoking the assembler on any assembly files. The assembly
files will say ‘#include “go_asm.h”’. There is a little bit of TLS-specific information that cmd/dist
adds to the assembly header as well. That will move out of cmd/dist into a separate file
“src/runtime/go_tls.h”.

cmd/go could use the -asmhdr flag to provide a “go_asm.h” for any package containing
assembly, not just package runtime. It could be limited to package runtime but it’s not clear why
we should.

cgo help

C is also used outside the runtime in the implementation of cgo wrappers. Cgo writes C files in
order to get at two features provided by the C compiler: #pragmas that turn into directives
passed along to the linker, and the ability to control the fully qualified “linker” symbol name (for
example, plain X instead of import/path.X). These features need to be provided by the Go
compiler instead.

Each current #pragma cgo_xxx accepted by the C compiler will turn into a //go:cgo_xxx
comment accepted by the Go compiler.

To control the linker symbol name, the Go compiler will also accept a comment of the form

​ //go:linkname <local-name> <link-name>

to specify that the global variable named by <local-name> should be referred to as <link-name>
in the object files being written. For example, in order to define a uint32 usable by gcc-compiled
C code as go_var_x, one can write:

​ package p
​ //go:linkname anything go_var_x
​ var anything uint32

Assuming p is imported as just “p”, the default linkname for var anything would be p.anything.
The //go:linkname directive changes it to go_var_x. Most often the important part is dropping the
import path prefix, since ordinary gcc-compiled C code cannot refer to names containing . or /.
Note that this makes go:linkname meaningful even if the variable were also named go_var_x.
That is, in this code snippet:​

​ package p
​ //go:linkname go_var_x go_var_x

​ var go_var_x uint32

the //go:linkname line is NOT a no-op. It is forcing the linkname of the Go variable to omit the
usual import path prefix.

This control over linker name also allows a package to name symbols in other packages without
resorting to assembly files. The current src/runtime/thunk.s can be replaced with uses of this
mechanism instead, which will be easier to maintain. However, because of the possible
abstraction violation that can be done with //go:linkname, we may choose to limit its use to
certain packages or source files. To start, we require that a source file that contains a
//go:linkname line also imports “unsafe”.

cmd/dist changes

For the most part, cmd/dist just gets simpler. The Go generated from C goes away. The -asmhdr
flag on the Go compiler will write out exactly what is needed, instead of cmd/dist having to
massage a different output format from the C compiler. The only real generated code it needs to
write is things like the current version and experiment strings and maybe some constants about
which GOOS and GOARCH are in use.

I think we can get to the point where cmd/dist writes no GOOS+GOARCH-specific files (only
GOOS-specific or GOARCH-specific). That would let us have “go tool dist bootstrap” just write
all the possible files during the first make.bash, with no new make.bash invocations required to
start cross-compiling.

TODO​

This section lists work left to be done in future CLs, other than the work already mentioned
above. It is a place to record suggestions made during the code review process that cannot be
done right then.

●​ restore GOEXPERIMENT support
●​ stop generating zsys_GOOS_GOARCH.s; it’s only used on Windows and can be done in

runtime directly with go generate. then there are no GOOS-GOARCH-specific files.
●​ generate all GOOS-specific files during dist, not just the current GOOS
●​ generate all GOARCH-specific files during dist, not just the current GOARCH
●​ in signal code, drop _NSIG in favor of len(sigtable)

CLs

(Each is at https://codereview.appspot.com/#########.)

170320044​ build: disable API check until all systems build

169330045​ cmd/cgo: generate only Go source files
172960043​ cmd/dist: adjust for build process without cmd/cc
169360043​ cmd/gc: changes for removing runtime C code
171470043​ cmd/go: adjust go, cgo builds & disable cc
171480043​ liblink: resolve bss vs other conflict regardless of order found
167520044​ reflect: interfaces contain only pointers
168500043​ runtime/cgo: convert from C to Go
174860043​ runtime: convert arch-specific .c and .h files to Go
168510043​ runtime: convert assembly files for C to Go transition
170330043​ runtime: convert basic library routines from C to Go
171490043​ runtime: convert defs_$GOOS_$GOARCH.h to Go
167550043​ runtime: convert header files to Go
167540043​ runtime: convert memory allocator and garbage collector to Go
174830044​ runtime: convert operating system support code from C to Go
166520043​ runtime: convert panic and stack code from C to Go
172250043​ runtime: convert parallel support code from C to Go
172250044​ runtime: convert race implementation from C to Go
172260043​ runtime: convert scheduler from C to Go
168500044​ runtime: convert signal handlers from C to Go

