ПРАКТИЧЕСКАЯ РАБОТА

Тема: Расчет искусственного освещения.

Цель: Закрепление теоретических знаний и получение практических навыков расчета искусственного освещения производственных помещений.

Инструктаж: Сделайте запись условия задания и оформите решение в соответствии с установленными требованиями.

Методические рекомендации

Рациональное освещение рабочих мест и помещений создает у работников определенный психологический тонус, предупреждает зрительное и общее утомление, способствует высокопроизводительному труду. Оптимальным считается такое освещение, при котором усталость органов зрения наименьшая. Недостаточное освещение рабочих мест может быть косвенной причиной несчастных случаев на производстве.

Искусственное освещение подразделяется: по назначению - на рабочие, аварийное, эвакуационное и специальное, по конструктивному исполнению - на общее, местное и комбинированное.

При использовании искусственного света нормируют величину освещенности, которая измеряется в люксах (лк). Нормы освещенности находятся в пределах от 10 до 5000лк. Освещенность рабочих поверхностей в машинных и аппаратных отделениях холодильных установок создается рабочим (общим) освещением и должна составлять не менее 75лк при использовании ламп накаливания и не менее 150лк при использовании люминесцентных ламп.

Уровень освещенности на рабочем столе пользователя ЭВМ, в зоне размещения документов должна быть в пределах 300...500лк. Во всех производственных и складских помещениях, непосредственно связанные с ведением технологического процесса, светильники должны иметь закрытое исполнение.

В производственных и административно-общественных помещениях, где преимущественно выполняются работы с документами, допускается применять систему комбинированного освещения.

Общее освещение устраивается в виде сплошных или прерывистых линий светильников, располагаемых в стороне от рабочих мест (преимущественно слева) параллельно линии зрения работающих.

В качестве источника искусственного света используют, как правило, люминицентные лампы типа ЛБ. Допускается применять в светильниках местного освещения также и лампы накаливания. Светильники местного освещения должны иметь полупрозрачный отражатель света с защитным углом не менее 40° .

Таблица 1. Исходные данные

Ва	А, м	В, м	Нр, м	Коэффициент отражения, %		Вид помещения	Тип светильника
ант				ρ потолка	р стены		
1	110	36	6	30	10	торговые залы магазина	глубокоизлучат ель
2	10	16	4	50	30	кладовые для товаров	-//-
3	60	28	4	50	30	административны е помещения	-//-
4	60	42	4	70	50	административны е помещения	дуговые ртутные ДРЛ
5	80	36	5	50	30	торговые залы магазина	-//-
6	100	30	6	30	10	торговые залы магазина	глубокоизлучат ель
7	60	24	50	70	50	торговые залы магазина	-//-
8	12	16	8	50	30	кладовые для товаров	дуговые ртутные ДРЛ
9	60	30	5	70	50	административны е помещения	-//-
10	96	24	5	30	10	торговые залы магазина	-//-

Для расчета системы освещения необходимо выбрать схему размещения светильников и, исходя из схемы, найти их количество.

Наиболее часто используются схемы квадратного или прямоугольного размещения светильников.

Расстояние между светильниками L признают по данным таблицы 2, в которой приведены оптимальные соотношение расстояния между светильниками L и высоты подвеса светильника над рабочей поверхностью Hp.

Таблица 2. Оптимальные соотношения расстояния между светильниками

Тип светильника	Соотношение L/Hp
Дуговые ртутные ДРЛ	$0.7 \div 1.4$
Глубокоизлучатель	0,8 ÷ 1,4

По данной величине L, согласно выбранной схеме размещения светильников, определяем количество светильников по длине и ширине помещения, а также их общее количество –N.

Таблица 3. Нормы освещения и коэффициент запаса

Вид помещения	Освещенность рабочих поверхностей, лк	Коэффициент запаса
Торговые залы магазина	300	1,4
Кладовые для товаров	50	1,3
Административные помещения	200	1,3

Таблица 4. Коэффициент использования светового потока осветительной установки (светопоказатель)

р р Коэффициент использования ή (%) при индексе помещения і							b)						
потолка		0,5	0,6	0,8	1	1,25	1,5	2	2,5	3	3,5	4	5
Глубокоизлучатель													
70	50	25	31	38	41	43	46	49	52	53	54	55	57
50	30	21	27	34	38	41	43	46	49	51	52	52	54
30	10	16	24	32	365	39	41	44	47	49	50	51	52
	Дуговые ртутные ДРЛ												
70	50	30	35	44	49	54	58	63	67	69	70	71	72
50	30	24	30	38	43	49	53	59	62	64	66	68	71

30	10	21	26	34	40	45	49	55	59	61	63	65	67
1	- "									-	""		• .

Таблица 5. Светотехнические характеристики источников освещения

Источник	Тип	Параг	метры	
освещения	светильника	Мощность, Вт	Световой поток,	
			ЛМ	
	HB-100	100	1240	
	HB-150	150	1900	
Гнубакананунатан	HB-200	200	2700	
Глубокоизлучатель	HB-300	300	4350	
	HB-500	500	7100	
	HB-750	750	13100	
	ДРЛ-80	80	2000	
	ДРЛ-125	120	4800	
Дуговые ртутные	ДРЛ-250	250	10000	
ДРЛ	ДРЛ-400	400	18000	
	ДРЛ-700	700	33000	
	ДРЛ-1000	1000	50000	

Пример

Рассчитать систему общего равномерного освещения » в помещении торгового зала методом «светового потока. Размеры помещения: длина (A) = 120м, ширина (B) = 80м, высота подвеса светильников Hp = 10м. Коэффициенты отражения: рпотолка = 50%; рстен = 30%. Для освещения использовались светильники типа «глубокоизлучатель».

Решение

1. Определяем схему размещения светильников.

Чаще всего используются схемы квадратного или прямоугольного размещения светильников.

Принимаем прямоугольную схему размещения светильников.

2. По **таблице 2** находим оптимальное соотношение расстояния между светильниками L и высоты подвеса светильника Hp над рабочей поверхность для светильников типа «глубоко излучатель».

$$L / Hp = 0.8L = 0.8 \cdot Hp = 0.8 \cdot 10 = 8 M$$

3. Определяем количество светильников по длине помещения.

$$N_A = A / L = 120 : 8 = 15 \text{ m}$$
.

4. Определяем количество светильников по ширине помещения.

$$N_B = B / L = 80 : 8 = 10 \text{ m}$$

5. Определяем общее количество светильников в помещении.

$$N = N_A \cdot N_B = 15 \cdot 10 = 150 \text{ m}$$
.

6. Рассчитываем индекс (светопоказатель) помещения.

$$i = \frac{A \cdot B}{Hp \cdot (A + B)} = \frac{120 \cdot 80}{10 \cdot (120 + 80)} = 4.8$$

7. Согласно найденных значений ρ потолка = 50%; ρ стен = 30%., типа светильника и i = 4,8, по **таблице 4** находим коэффициент использования светового потока ламп.

$$\dot{\eta} = 54 \%$$

8. Нормативную минимальную освещенность для торгового зала и значение коэффициента запаса определяем по **таблице 3**.

$$E_{H} = 300 \text{ лк}; \qquad K = 1,4$$

9. Рассчитываем световой поток для одной лампы:

$$\mathbf{F}_{n} = 100 \cdot \mathbf{E}_{H} \cdot \mathbf{S} \cdot \mathbf{K} \cdot \mathbf{Z} \cdot \mathbf{\acute{\eta}}$$

Гле:

 $E_{\scriptscriptstyle H}$ - нормированная минимальная освещенность, лк;

S - площадь освещаемого помещения, M^2 ;

К - коэффициент запаса;

- Z коэффициент минимальной освещенности, характеризующий соотношение средней освещенности к минимальной:
 - для ламп накаливания равен -1,15,
 - для люминесцентных ламп равен -1,1;

N - количество светильников, шт;

 $\acute{\eta}$ - коэффициент использования светового потока лампы (%), которых зависит от типа светильника, коэффициента отражения потолка (рпотолка) и стен (рстен), индекса (светопоказателя) помещения i.

$$\mathbf{F}_{_{\mathrm{I}}} = \begin{array}{ccc} \frac{100 \cdot 300 \cdot 120 \cdot 80 \cdot 1,4 \cdot 1,15}{150 \cdot 54} & = & \frac{463680000}{8100} & = 57244,4 \ \mathrm{лм} \end{array}$$

10. Согласно полученному значению светового потока F_{π} из **таблицы 5** выберем источник освещения с ближайшим большим световым потоком F_{π} .

В данном случае необходимо взять: 5 ламп HB-750 (F_{π} = 13100 лм), ω (мощность) 750 Вт.

11. Определяем фактическую освещенность помещения:

$$\mathbf{E}_{\phi \text{akt.}} = \frac{\mathbf{F}_{\phi \text{akt.}} \cdot \mathbf{E}_{\text{H}}}{\mathbf{F}_{\text{I}}} = \frac{(13100 \cdot 5) \cdot 300}{57244,4} = \frac{19650000}{57244,4} = 343 \text{ JK}$$