SDN LAB Manual

Software Defined Networks (Anna University)

https://www.studocu.com/in/document/anna-university/software-defined-networks/sdn-lab-manual/85980852?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=sdn-lab-manual
https://www.studocu.com/in/course/anna-university/software-defined-networks/6743483?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=sdn-lab-manual

RECORD NOTE BOOK

Name : e
Register NO o
Subject Code/Title 1. .o.oviiiiiii e,

Y Al / SEMESIEL. ettt e,

KCG College of Technology

Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

[CCS365 SOFTWARE DEFINED NETWORKS LABORATORY]

FIFTH SEMESTER

CONTENTS

EX.NO

DATE

NAME OF THE
EXPERIMENTS

PAGE
NO

MARKS

FACULTY
SIGNATURE

Setup your own virtual SDN lab
1)VirtualBox/Mininet Environment
for SDN - http://mininet.org
ii) https://www.kathara.org
iii) GNS3

Create a simple mininet topology with
SDN controller and use Wireshark to
capture and visualize the OpenFlow
messages such as OpenFlow FLOW
MOD, PACKET IN, PACKET OUT
etc.

Create a SDN application that uses the
Northbound API to program flow table
rules on the switch for various use
cases like L2 learning switch, Traffic
Engineering, Firewall etc

Create a simple end-to-end network
service with two VNFs using vim-emu
https://github.com/containernet/vim-
emu 5) Install OSM and onboard and
orchestrate network service.

http://mininet.org/
https://www.kathara.org/

Setup your own virtual SDN lab

EX.NO: 1 DATE: i) Virtualbox/Mininet Environment for SDN -
http://mininet.org

ii) https://www.kathara.org

seeN <~ AT

AIM:

To Setup your own virtual SDN lab using one of the three options:
Virtualbox/Mininet, Kathara, or GNS3

PROCEDURE:

1) Virtualbox/Mininet Environment for SDN - http://mininet.org

1. Download and install Virtualbox from its [official website].

2. Download and install Mininet from its [official website]. You can
choose to install Mininet as a virtual machine image, a native
installation, or a source code installation.

3. Launch Mininet and create a virtual network using the command
line interface or the graphical user interface. You can also use
predefined network topologies or custom scripts to create your
network.

4. Connect your virtual network to an SDN controller, such as
OpenDaylight, using the OpenFlow protocol. You can download and
install OpenDaylight from its [official website].

5. Test and run different SDN applications and scenarios on your virtual
network using the Mininet commands or the SDN controller
interface.

http://mininet.org/
https://www.kathara.org/
http://mininet.org/

OUTPUT:

¥ Oracle VM VirtualBox Manager = a X
File Machine Help

U Tools ;; v
5 Mew Settings Discard Start
i B General M Ppreview
ﬁ: Name: Mininet-VM

| Operating System: Ubuntu (32-bit)

[#] system

Base Memory: 1024 MB
Boot Order: Floppy, Optical, Hard Disk
Acceleration: WT-x/AMD-V, Nested Paging, PAE/NX, KVM Paravirtualization

M Display

Video Memary: 16 MB
Graphics Controller: VBoxVGA
Remote Desktop Server: Disabled
Recording: Disabled
l2! Storage

Controller; SCSI

SCSI Port 0: mininet-vm-i386.vdi (Normal, 8,00 GB)
Audio

Host Driver: Windows DirectSound
Controller: ICH ACS7

& Network
Adapter 1: Intel PRO/1000 MT Server (NAT)
(7 use

USB Controller: OHCT
Device Filters: 0 (0 active)

[] shared folders
None
& Description

None

buntu 14.04.4 LTS mininet—wvm tiyl

ininet-vm login: mininet
[Password :
Tue Mar Z1 21:13:43 PDT 2017 on ttyso
elcome to Ubuntn 14.94.4 LTS (GHU-Linux 4 .Z2.0-Z27-—generic i686)

+=* Documentation: http=s:r-rhelp . .ubuntu.comns
ininetEnininet—un:~%

RESULT:

Thus, the setup of VirtualBox/Mininet Environment for SDN was installed
successfully.

EX.NO:2 DATE: Create a simple mininet topology with SDN
controller and use Wireshark to capture and
visualize the OpenFlow messages such as
OpenFlow FLOW MOD, PACKET IN,

PACKET OUT etc..

AIM:

1. Create a simple Mininet network with an SDN controller (Ryu).

2. Capture OpenFlow messages, including FLOW_MOD, PACKET _IN, and
PACKET OUT, using Wireshark.

3. Visualize the captured OpenFlow messages for analysis.

PROCEDURE:

1. Install Mininet:

Ensure you have Mininet installed on your system. You can use a Linux distribution for
this task.

2. Install Ryu SDN Controller:

Install Ryu, a popular SDN controller, using pip:
pip install ryu

3.Create the Mininet Topology:
Create a Python script (e.g., ‘mininet_topology.py") to define your Mininet network
topology and start Mininet with the Ryu controller. Here's an example topology with a
single switch and two hosts:

““python

from mininet.net import Mininet

from mininet.topo import SingleSwitchTopo

from mininet.node import RemoteController

Create a Mininet instance

net = Mininet(topo=SingleSwitchTopo(2), controller=RemoteController)

Start Mininet

net.start()

4. Start the Ryu Controller:
In a separate terminal, start the Ryu controller:

ryu-manager

5. Capture OpenFlow Messages with Wireshark:
e Start Wireshark and select your network interface (e.g., ‘eth0").
e Apply a display filter to capture only OpenFlow messages. Use the
filter expression: "of".
e Begin capturing packets by clicking the "Start" button in Wireshark.

6. Generate OpenFlow Messages:
In the Mininet terminal, you can use the Mininet CLI to generate OpenFlow messages. For
example, you can add a flow rule (FLOW_MOD) or generate traffic (PACKET _OUT).

To add a flow rule (FLOW_MOD):

mininet> h1 ovs-ofctl add-flow s1 in_port=1,actions=output:2
To generate traffic (PACKET_OUT):

mininet> h1l ping -c 1 h2

7. Stop Wireshark Capture:
Stop capturing packets in Wireshark when you've generated enough OpenFlow messages.

OUTPUT:

o The Wireshark capture should display OpenFlow messages exchanged between
the Ryu controller and the Mininet switch. You will see messages like
FLOW_MOD, PACKET IN, and PACKET OUT, along with their details.

o Use Wireshark's visualization tools to analyze and inspect the captured OpenFlow
messages. You can filter, sort, and drill down into specific messages to understand the
communication between the controller and switches.

RESULT:

This setup allows you to observe and analyze the OpenFlow messaging in a simple SDN
network. You can further customize the Mininet topology and generate more complex
OpenFlow scenarios for testing and analysis.

EX.NO: 3 DATE: Create a SDN application that uses the

Northbound API to program flow table rules
on the switch for various use cases like L2

learning switch, Tratfic Engineering, Firewall
etc

AIM:

Develop an SDN application that uses the Northbound API to program flow table
rules on SDN switches for different use cases: L2 learning switch, Traffic Engineering, and
Firewall.

PROCEDURE:

1. Set Up the Development Environment:
Install the Ryu SDN controller and any necessary Python libraries.

2. Create the Ryu SDN Application:
Create a Python script for your Ryu SDN application, which will implement the
Northbound API to program flow rules.

3. L2 Learning Switch Use Case:

In your Ryu application, use the Northbound API to program flow rules for basic L2
learning. For example, when a packet arrives, add a flow entry to the switch's flow table
based on the source MAC address and port.

4. Traffic Engineering Use Case:

Implement traffic engineering rules using the Northbound API. For instance, you can
define flow rules to optimize traffic paths or prioritize specific traffic based on application
requirements.

5. Firewall Use Case:
Implement firewall rules using the Northbound API to drop or allow specific traffic based
on criteria such as source/destination IP addresses, ports, or protocols.

6. Run the SDN Application:
Start your Ryu SDN application with the Ryu manager using the following command:

ryu-manager your application.py
7. Test the SDN Application:

Create a virtual network or use a Mininet topology for testing your SDN application.
Generate traffic to see how the application programs the flow table rules.

OUTPUT:

e For the L2 learning switch use case, the application should program flow rules
that enable the switch to learn and forward traffic based on MAC addresses.

e In the traffic engineering use case, the application should optimize traffic paths
or prioritize certain types of traffic as per your defined rules.

e In the firewall use case, the application should allow or block traffic based on your
defined criteria.

e The application's output should include log messages or other forms of
feedback, showing that it is functioning correctly.

RESULT:

The result is a working SDN application that leverages the Northbound API to program flow
table rules on SDN switches for different use cases. The application should effectively
control network traffic based on the specified policies and rules.

EX.NO: 4 DATE: Create a simple end-to-end network

service with two VNFs using
vim-emu

https://github.com/containernet/vim
-emu 5) Install OSM and onboard
and orchestrate network service.
AIM:
e C(reate a simple end-to-end network service with two VNFs using vim-emu.
e Install OSM and onboard and orchestrate the network service.

PROCEDURE:

1. Set Up the Environment:

Make sure you have a Linux system. You can set up a virtual machine or a dedicated
system.

- Install the required dependencies, including Docker and Docker Compose.

2. Install vim-emu:

Follow the instructions in the vim-emu GitHub repository
(https://github.com/containernet/vim-emu) to install
vim-emu.

3. Create Network Topology:

Define a network topology using vim-emu. You can create a Python script that specifies
the network, VNFs, and their interconnections. For example, create a file named
‘network_topology.py:

““python

from mininet.net import Containernet
from mininet.node import Docker
from mininet.link import TCLink
from mininet.cli import CLI

net = Containernet()
vnfl = net.addDocker('vnfl', dimage="vnfl_image'")

vnf2 = net.addDocker('vnf2', dimage="vnf2_image'")
net.addLink(vnfl, vnf2, cIs=TCLink)

net.start()

CLI(net)
net.stop()

4. Create VNF Docker Images:
Build Docker images for your VNFs. Create a "Dockerfile’ for each VNF, specifying its
requirements and configurations. Build the images using Docker commands.

5. Launch the Network Topology:
Run your network topology with vim-emu:

ARRY

sudo python network topology.py

This will start the network and deploy the VNFs.

6. Install OSM:
Follow the instructions on the OSM GitHub repository (https://osm.etsi.org) to install
OSM, which includes installing the OSM client and server components.

7. Onboard the Network Service:
Use the OSM client to onboard your network service. You'll need to provide a descriptor
(e.g., a TOSCA YAML file) for your service.

ARRY

osm ns-create <your_network_service_descriptor_file>

8. Instantiate the Network Service:
Instantiate the network service using OSM:

ARRY

osm ns-instantiate <ns-instance-name> <your_network service name>

AR RY

Replace “<ns-instance-name>" with a suitable name for your instantiated service.

OUTPUT:

When running the network topology script with vim-emu, you should see the network and
VNFs being deployed. You can test connectivity and traffic between VNFs.

After installing OSM and onboarding the network service descriptor, you should see your
network service listed within OSM.

When instantiating the network service, OSM will orchestrate the deployment of the VNFs
and connect them according to your descriptor.

RESULT:

The result is a fully orchestrated end-to-end network service with two VNFs, established
using vim-emu and OSM. The network service is now ready to accept and process traffic as
specified in your descriptor.

	SDN LAB Manual
	Software Defined Networks (Anna University)
	Name :​………………………………………. Register No : ……………………………………… Subject Code/Title :……………………………………..... Year/Semester: …….……………………………….
	[CCS365 SOFTWARE DEFINED NETWORKS LABORATORY]

	CONTENTS
	Setup your own virtual SDN lab
	iii)​GNS3
	OUTPUT:
	EX.NO:2 DATE:
	AIM:
	PROCEDURE:
	1.​Install Mininet:
	2.​Install Ryu SDN Controller:
	pip install ryu
	4.​Start the Ryu Controller:
	ryu-manager
	5.​Capture OpenFlow Messages with Wireshark:
	6.​Generate OpenFlow Messages:
	To add a flow rule (FLOW_MOD):
	mininet> h1 ovs-ofctl add-flow s1 in_port=1,actions=output:2
	To generate traffic (PACKET_OUT):
	mininet> h1 ping -c 1 h2
	7.​Stop Wireshark Capture:

	OUTPUT:
	RESULT:
	EX.NO: 3 DATE:
	AIM:
	PROCEDURE:
	1.​Set Up the Development Environment:
	2.​Create the Ryu SDN Application:
	3.​L2 Learning Switch Use Case:
	4.​Traffic Engineering Use Case:
	5.​Firewall Use Case:
	6.​Run the SDN Application:
	7.​Test the SDN Application:

	OUTPUT:
	RESULT:
	EX.NO: 4 DATE:
	AIM:
	PROCEDURE:
	1.​Set Up the Environment:
	2.​Install vim-emu:
	3.​Create Network Topology:
	4.​Create VNF Docker Images:
	5.​Launch the Network Topology:
	sudo python network_topology.py
	6.​Install OSM:
	7.​Onboard the Network Service:
	osm ns-create <your_network_service_descriptor_file>
	8.​Instantiate the Network Service:
	osm ns-instantiate <ns-instance-name> <your_network_service_name>

	OUTPUT:
	RESULT:

