Problems on Dynamic Programming
Problem 1 -- Minimum cost

Write a program To Calculate the minimum cost to reach the destination city from the
source city

Given a N*N matrix where each cell of the matrix(i,j) indicated the cost of the direct flight
from city i to city j.Find the minimum cost to reach the destination city N-1 from the
source city 0.

Note that the entries(j<i) in the matrix are irrelevant.

Input and Output Format:

Refer sample input and output for formatting specifications.
All text in bold corresponds to input and the rest corresponds to output.

Sample Input :
Enter the value of n

3
Enter the costs to reach from one city to another city
02030
20015
30150
Sample Output:
The minimum cost is 30
SNo Name Input Output
1 TC 4 3 Enter the value of n
02515 Enter the costs to reach from one city to another city
25020 The minimum cost is 15
15200
2 TC 3 4 Enter the value of n
0355570 Enter the costs to reach from one city to another city
3501520 The minimum cost is 55
5515010
7020100
3 TC 2 4 Enter the value of n
02030100 Enter the costs to reach from one city to another city
2001575 The minimum cost is 80
3015050
10075500

SNo Name Input Output

4 TC 1 3 Enter the value of n
02030 Enter the costs to reach from one city to another city
20015 The minimum cost is 30
30150

5 TC 5 3 Enter the value of n
02035 Enter the costs to reach from one city to another city
20010 The minimum cost is 30
35100

Problem 2 - Tiles game

Write a program to find number of ways to fill a n x 4 matrix with 1 x 4 tiles

Given a n*4 matrix where n is a positive number, find number of ways to fill the matrix
with 1*4 tiles

For example,there are 3 ways to place 1*4 tiles in a 5*4 matrix -

1.Place all 5 tiles horizontally.

2.Place 4 tiles vertically in the first four rows and 1 tile horizontally in the last row.
3.Place 1 tile horizontally in the first row and adjust 4 tiles vertically in the remaining
rows.

similarly,there are 4 ways to place 1*4 tiles in a 6*4 matrix -

1.Place all 6 tiles horizontally.

2.Place 4 tiles vertically in the first four rows and remaining 2 tiles horizontally in the last
two rows.

3.Place 2 tiles horizontally in the first two rows and adjust the remaining 4 tiles vertically
in the remaining rows.

4 Place 2 tiles horizontally in the first & the last row and adjust the remaining 4 tiles
vertically in the middle rows.

Input and Output Format:

Refer sample input and output for formatting specifications.
All text in bold corresponds to input and the rest corresponds to output.

Sample Input:

Enter the value of n
5

Sample Output:

Total number of ways are 3

Test Cases

SNo Name Input Output

1 TC3 3 Enter the value of n
Total number of ways are 1

2 TC4 4 Enter the value of n
Total number of ways are 2

3 TCS 9 Enter the value of n
Total number of ways are 10

4 TC 1 6 Enter the value of n
Total number of ways are 4

5 TC 2 5 Enter the value of n
Total number of ways are 3

Problem 3 - Collect Coins

Write a program to Collect maximum value of coins in a matrix

Given a M x N matrix where each cell contains a coin of some denomination, collect
maximum value of coins by traversing the grid.

The first traversal starts from the top-left corner of the matrix and end at the bottom-left
corner and the second traversal starts from the top-right corner and end at the
bottom-right corner. From any cell (i, j) in the matrix, we are allowed to move to cell
(i+1, j+1) or (i+1, j-1) or (i+1, j) . If both traversals passes through a same cell, only one
can collect coin of that cell.

Input and Output Format:

Refer sample input and output for formatting specifications.
All text in bold corresponds to input and the rest corresponds to output.

Sample Input :

Enter the value of m

4

Enter the value of n

5

Enter the value of coins
23451

34512

56789
24321

Sample output:

The maximum coins collected is 30

Test Cases

SNo Name Input Output

1 TC4 4 Enter the value of m
5 Enter the value of n
12365 The maximum coins collected is 45
67895
12569
53647

2 TCS 4 Enter the value of m
4 Enter the value of n
1593 The maximum coins collected is 94
2654
12369
3265

3 TC3 4 Enter the value of m
5 Enter the value of n
23451 The maximum coins collected is 30
34512
56789
54321

4 TC?2 5 Enter the value of m
4 Enter the value of n
0241 The maximum coins collected is 47
4837
2362
9783
1594

5 TC 1 4 Enter the value of m
4 Enter the value of n
0241 The maximum coins collected is 37
4837
2362

9783

Problem 4 - Count of paths

Count all paths in a matrix from first cell to last cell

Given a rectangular grid, efficiently count all paths starting from the first cell to the last
cell in the grid. We can either move down, or move towards right from a cell.

The idea is to start from the top-left corner of the matrix and recur for the next cell which
can be either immediate right cell or immediate bottom cell.

Input and Output Format:

Refer sample input and output for formatting specifications.
All text in bold corresponds to input and the rest corresponds to output.

Sample Input :

Enter the value of m
3
Enter the value of n
3

Sample Output :

Total number of paths are: 6

Test Cases
SNo Name Input Output
1 TC 1 3 Enter the value of m
3 Enter the value of n
Total number of paths are: 6
2 TC5 6 Enter the value of m
5 Enter the value of n
Total number of paths are: 126
3 TC 4 4 Enter the value of m
4 Enter the value of n
Total number of paths are: 20

SNo Name Input Output

4 TC3 5 Enter the value of m
4 Enter the value of n
Total number of paths are: 35
5 TC?2 4 Enter the value of m

5 Enter the value of n
Total number of paths are: 35

Problem 5 - Longest path
Write a program to Find length of longest path in the matrix with consecutive characters

Given a M x N matrix of characters, find the length of longest path in the matrix starting
from a given character. All characters in the longest path should be increasing and
consecutive to each other in alphabetical order.

We are allowed to search the string in all eight possible directions i.e. North, West,
South, East, North-East, North-West, South-East, South-West.

Input and Output Format:

Refer sample input and output for formatting specifications.
All text in bold corresponds to input and the rest corresponds to output.

Sample Input and Output :
Enter the row size of matrix

4

Enter the cloumn size of matrix
4

Enter elements of matrix
abcd

efgh

ijkl

mnop

Enter the starting character
a
The length of longest path with consecutive characters starting from character a is 4

Test Cases

SNo | Input Output
1 3 Enter the row size of matrix
4 Enter the column size of matrix
pagrs Enter the elements of matrix
lkmj Enter the starting character
kiop The length of longest path with consecutive characters starting from character p is 4
p
2 4 Enter the row size of matrix
4 Enter the column size of matrix
abcd Enter the elements of matrix
bder Enter the starting character
poiu The length of longest path with consecutive characters starting from character a is 5
mlkij
a
3 4 Enter the row size of matrix
4 Enter the column size of matrix
abcd Enter the elements of matrix
efgh Enter the starting character
ijkl The length of longest path with consecutive characters starting from character a is 4
mnop
a
4 3 Enter the row size of matrix
3 Enter the column size of matrix
idc Enter the elements of matrix
heb Enter the starting character
gfa The length of longest path with consecutive characters starting from character a is 9
a
5 3 Enter the row size of matrix
3 Enter the column size of matrix
hij Enter the elements of matrix
dfe Enter the starting character
abc The length of longest path with consecutive characters starting from character a is 3
a

Problem 6 -- String wildcard pattern

Given a string and a pattern containing wildcard characters, write an efficient algorithm
to check if the input string matches with the wildcard pattern or not. wildcard character

'?' can match to any character in the input string and the

%1

wildcard character can

match to zero or more characters in the input string.

The time complexity of recursive solution is exponential. We can use Dynamic
Programming to bring down the time complexity to O(m*n) using O(m*n) extra space.

Apply Dynamic Programming solution to solve the given problem using memoization

Input Format:
Input consist of two strings.

Output Format:
The output should be "ture" if input string matches with the wildcard pattern print "false"
otherwise.

Refer sample input and output for formatting specifications.
[All text in bold corresponds to input and the rest corresponds to output]

Sample Input and Output 1:
XYXZZXY

XHHrY

true

Sample Input and Output 2:

XYXZZXY

XX?
false

Sample Input and Output 3:

XYXZZXY
X*Z2Z?7?
true
Test Cases
SNo Name Input Output
1 T6 XYXZZXY false
X***X
2 T5 XKXDDXK true
*X*X?
3 T3 XYXZZXY true
X*Z2Z77?7?
4 T4 XYXZZXY true
5 T1 XYXZZXY true
X***Y

SNo Name Input Output

6 T2 XYXZZXY false
XX?

Problem 7 - Pots of Gold

In Pots of gold game, there are two players A & B and there are 'n' pots of gold
arranged in a line, each containing some gold coins. The players can see how many
coins are there in each gold pot and each player gets alternating turns in which the
player can pick a pot from one of the ends of the line. The winner is the player which
has a higher number of coins at the end. Write a program to “maximize” the number of
coins collected by A, assuming B also plays optimally and A starts the game.

Input and Output Format:

The first line of input consists of an integer 'n' which corresponds to the number of pots.
Next n integer inputs correspond to the number of gold coins in the pots.

The output should display the coins collected by player A and B respectively.

Refer sample input and output for formatting specifications.

[All text in bold corresponds to input and the rest corresponds to output]

Sample Input 1:
4

4623

Sample Output 1:
96

Sample Input 2:
6

614985

Sample Output 2:
18 15

Test Cases

SNo Input Output

1 4 115
2536

2 4 96
4623

3 8 1917
45284193

4 6 18 15
614985

#include<stdio.h>
int main ()
{
int n,a([100],1i,A=0,B=0;
scanf ("%d", &n) ;
for (i=0;i<n;i++)
{
scanf ("%d", &ali]);
}
for (1i=0;i<n; i++)
{
1f (1i%2==0)
A=A+ali];
else
B=B+al[i];
}
if (A<B)
printf ("%d %d",B,A);
else
printf ("%d %d",A,B);
return 0;

Problem 8 - Maximum Profit of Shares

Given a list containing a future prediction of share prices, write a program to find
maximum profit that can be earned by buying and selling shares at most twice with a
constraint that a new transaction can only start after the previous transaction is
complete. i.e. we can only hold at most one share at a time.

Input Format:
The first input consists of an integer which corresponds to the number of shares to buy
and sell.

The next n inputs are the share prices.

Output Format:
The output should display maximum profit that can be earned by buying and selling
shares.

Refer sample input and output for formatting specifications.
[All text in bold corresponds to input and the rest corresponds to output]

Sample Input and Output 1:
7

2475435

The maximum profit is 7
Sample Input and Output 2:
4

8764

The maximum profitis 0

Test Cases

SNo Name Input Output

1 tc3 5 The maximum profit is 2
10683

2 tc2 4 The maximum profit is 0
8764

3 tc 7 The maximum profit is 7
2475435

4 tcd 18 The maximum profit is 18
2547521671223456789

5 tc4 8 The maximum profit is 10
25475216

Problem 9 -- Implement Diff Utility

Write a program to implement your own diff utility. i.e given two similar strings, efficiently
list out all differences between them.

The diff utility is a data comparison tool that calculates and displays the differences
between two text. It tries to determine the smallest set of deletions and insertions to
create one text from the other. Diff is line-oriented rather than character-oriented.

Use the following notations to display the difference between the two strings.
e If a character is absent in the second string but present in the first string, it must
have been deleted (indicated by the ‘" marks).

e Ifitis absent in the first string but present in the second string, it must have been
inserted (indicated by the ‘+’ marks).

Input Format:
Inputs for this problem are two strings.

Output Format:
The output should display the differences between the two strings.

Refer sample input and output for formatting specifications.
[All text in bold corresponds to input and the rest corresponds to output]

Sample Input and Output 1:
XMJYAUZ

XMJAATZ
XMJ-YA-U+A+TZ

Sample Input and Output 2:
ABCDFGHJQZ

ABCDEFGIJKRXYZ
ABCD+EFG-H+IJ-Q+K+R +X +Y Z

Test Cases

SNo Name Input Output

1 TC3 MAXIMUM M-A-X+I+NIMUM
MINIMUM

2 TC4 WEATHER W+HE-ATHER
WHETHER

SNo Name Input Output

3 tc2 ABCDFGHJQZ ABCD+EFG-H+lJ-Q+K+R
ABCDEFGIJKRXY [+X +Y Z
Z

4 tc1 XMJYAUZ XMJ-YA-U+A+TZ
XMJAATZ

5 tch WEATHER -W -E -A-T -H-E -R +w +e +a +t +
weather h +e +r

Problem 10 - Maximum Sum of a subsequence with no
Adjacent Elements

Given an array of integers, write a program to find the maximum sum of a subsequence
of the given array where subsequence contains no adjacent elements.

Hint: Consider the current element only if it is not adjacent to the previous element
considered.

Input Format:

The first input consists of an integer which corresponds to the number of elements
present in the single dimension array.

The next n inputs are the elements in the array.

Output Format:
The output should display the sum of a subsequence of the given array where
subsequence contains no adjacent elements.

Refer sample input and output for formatting specifications.
[All text in bold corresponds to input and the rest corresponds to output]

Sample Input and Output 1:
9
1294504116

Maximum sum is 26

SNo Name Input Output

1 tc2 9 Maximum sum is 26
1294504116

2 tc1 9 Maximum sum is 36
32865781112

3 tc4 10 Maximum sum is 30
12345678910

4 tc3 5 Maximum sum is 19

321615

