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One of the most prevalent methods
employed in medical research involves

1. Introduction

Abnormal cell growths in the brain or surrounding tissues are known as brain tumors. Brain tumors
can be classified as malignant (cancerous) or benign (non-cancerous), with the latter being more
aggressive and perhaps fatal[1,2]. The classification system established by the World Health Organization
(WHO) categorizes brain tumors into several primary groups. Gliomas are one of the most common
forms; they are derived from glial cells. Gliomas can be further subdivided into ependymomas,
oligodendrogliomas, and astrocytomas based on the particular glial cell that is implicated and the tumor's
histological features. Another category of brain tumors is meningiomas, which develop from the
meninges, the protective membranes enveloping the brain and spinal cord. Meningiomas are typically
benign tumors characterized by a slow growth rate. Furthermore, pituitary tumors are identified by the
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WHO classification scheme. These tumors originate in the pituitary gland, which is located near the base
of the brain. The pituitary gland is responsible for regulating hormone production. Pituitary tumors can
disrupt hormonal balance and manifest in various symptoms|3].

Brain imaging techniques refer to the various methods used to visualize the brain's structure, function, and
connectivity. These techniques allow researchers and clinicians to study the brain and diagnose
neurological conditions. Magnetic resonance imaging (MRI), computed tomography (CT),
electroencephalography (EEG), positron emission tomography (PET), and functional magnetic resonance
imaging (fMRI) are a few frequently utilized brain imaging modalities[4]. Among these techniques, MRI
is considered one of the most versatile and widely used methods due to its exceptional anatomical detail,
non-invasiveness, ability to capture functional and physiological data, and superior soft tissue contrast[5].

In order to interpret radiological and pathological pictures, sophisticated software systems called
computer-aided detection and diagnosis (CAD) combine computer vision and artificial intelligence
approaches. To help radiologists correctly diagnose a range of disorders in distinct anatomical locations,
these cutting-edge technologies have been developed[6].

Machine learning has significantly accelerated the advancement of CAD systems. In recent times,
machine learning has been applied to classify objects of interest, such as lesions, by leveraging input
features. Machine learning enables the discovery and learning of informative features that effectively
capture patterns and regularities in data. Unlike traditional approaches, where human experts design
features based on domain knowledge, machine learning offers the ability to automate feature extraction.
However, it should be noted that the complexity of living organisms far exceeds the superficial linear
relationships detectable by traditional machine learning methods[7]. This highlights the need for more
sophisticated approaches to uncover the intricate biology underlying disease detection and diagnosis.

2. Material and method

The fundamental difference between a traditional classifier and a deep Convolutional Neural Network
(CNN) lies in their approach to feature extraction and pattern recognition. Traditional classifiers rely on
manually engineered features, which are typically designed by domain experts[10]. These handcrafted
features are based on prior knowledge and understanding of the problem domain. However, deep CNNs
are made to automatically identify and extract pertinent features from unprocessed input, especially from
material that resembles a grid, like pictures. Convolutional, pooling, and fully connected layers are just a
few of the layers that CNNs use to learn hierarchical feature representations. Deep CNNs are able to
automatically extract non-trivial features from the data, including spatial correlations and minute details
that would be difficult for conventional classifiers to identify. As a result, deep CNNs are particularly
effective in image-related tasks and have demonstrated superior performance in various domains specially
in medical domain.

This paper provides an overview of research articles published between 2018 and 2022 that delve into the
realm of brain tumor classification This overview focuses on using transfer learning techniques in
conjunction with Convolutional Neural Networks (CNNs). Through the use of a transfer learning
methodology, the research reviewed in this paper improves CNN models' classification performance in
brain tumor analysis by utilizing prior information gleaned from extensive datasets.The paper aims to
present a scientific overview of the advancements made in this domain during the specified time frame.
This section is formulated as follows.

Figure 1 illustrate the basic structure of CNN.
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Fig. 1 Basic structure of CNN

Table 1 The comparison between transfer learning models.

Parameters
Model Year Number of . Notable Feature
Layers (according to
ImageNet)
Deep
VGGI16 2014 16 138 million architecture,
uniform structure
VGG19 2014 19 144 million | Deeper version of
VGG16
Depth wise
MobileNet 2017 28 4.2 million separable
convolutions
Remdgal ResNet 2015 Varies (up to Varies
connections 152)
Inception 2014 Varies (up to 4) Varies Multiple parallel

3. Conclusion:

Transfer learning models are a promising approach for brain tumor detection in medical imaging.
Compared to traditional machine learning algorithms and CNNs, transfer learning models offer several
advantages, such as improved accuracy, reduced training time, and the ability to generalize well to new
datasets.

Recent studies have demonstrated the effectiveness of transfer learning models in detecting brain
tumors in MRI scans, achieving high accuracy levels even with small datasets. By leveraging pre-trained
models that have already learned features from large datasets, transfer learning models can effectively
extract meaningful features from MRI scans and enable accurate tumor detection.

While CNNs and traditional machine learning algorithms have also shown promise in detecting brain
tumors, transfer learning models offer a more efficient and effective approach for this task. Moreover,
transfer learning models can be easily adapted to different types of imaging modalities and can be
fine-tuned on new datasets to achieve even higher accuracy levels.
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