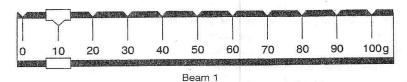
Name	Date:	Secti	on:	7/2017
Laboratory Skills) 	Activit	y 0	3-15
Reading a Balance			•	
Objective: Identify the parts of a balance scanning object.	ale and read a bala	nce scale to determ	ine the m	nass of an
The mass of an object can be measure measure mass is the gram (g). Many different will have a platform or pan where the objects a	kinds of balances a are	are used in the labo		
placed. Some scales will have more than one platform. The second platform is used with	Pa	n Riders E	leams	Pointer
standard masses. Balance scales may have on two, three or four beams.	e,		\	Scale
Part A The Anatomy of a Balance Scale				1
	Adjustmen	nt 🗾	n 8	Pin for
Figure 2	Screw 1.		J. J	Additional Masses
1 Study the main mante of the tainle became held		Base		
1. Study the main parts of the triple beam bala scale shown in <i>Figure 1</i> .	ance			
2. Notice the pointer and scale on the balance	. All balances hav	e some type of poin	nter and s	scale. The
scale is uncalibrated. The center of the scale i adjust the balance so that the pointer is at the z balance is calibrated.	-	-		•
3. Label the parts of the hanging pan balance	in <i>Figure 2</i> .		•	
1.			2.	4.
2.	6.	1. J. v	$\int_{-\infty}^{3}$	
3.	7.	-	<u> </u>	1
5.	/.			
4.		7.		6. 5.
Figu	re 2.			
4. How many beams does the balance in <i>Figu</i>	ure 1 have?			


How many beams does the balance in *Figure 2* have? _____

- _____ 5. Sometimes scales are named by the number of beams they contain. What would be the best name for scale in *Figure 1*?
 - a. single-beam balance
 - b. double-beam balance
 - c. triple-beam balance
 - d. quadruple-beam balance


Part B How to read a balance

Each beam on a laboratory balance represents a different number line. Look at the beams in Figure 3. Beam 1 has notches at the top so that the rider will sit at specific 10-gram points along the beam. Beam 2 has 1-gram markings on the numbered lines along its entire smooth top edge. The rider can be moved smoothly along Beam 2 until the scale is balanced. In between the numbered lines are additional lines that represent the decigrams. Centigrams are determined by estimating the amount of white space in between the unnumbered lines on this scale.

6. How much mass **can be** measured on the scale of Beam 1?

7. What *unit* of measurement is used on the scale?

8. How much mass **can be** measured on the scale for Beam 2?

9. What *unit* of measurement is used on the scale?

10. The sum of all of the riders indicates the mass of the object. What is the mass of the object indicated by the scale containing both of the beams in *Figure 3*?

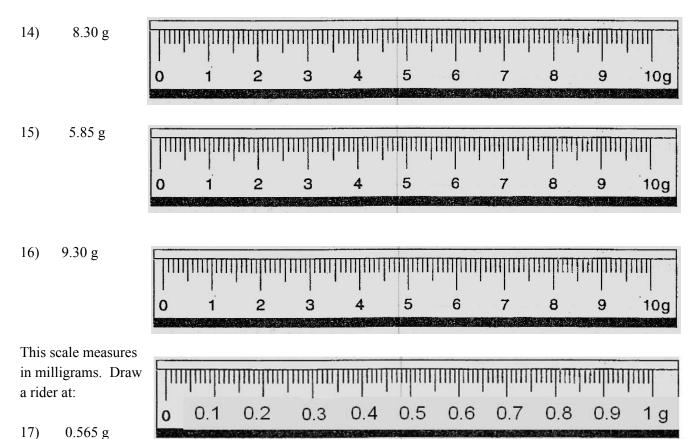
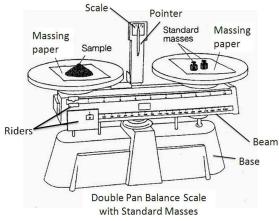


Figure 4.

Look at the beam in *Figure 4*. Notice that the rider is pointing to the right of the number 6. Count the number of black lines to the right of the 6. Black lines on this scale represent decigrams. Notice that the rider is pointing directly at this division and that there is no additional white space. The white space on this scale represents centigrams.

- 11. How many black lines (decigrams) after the 6 did you count?
- 12. Estimate the white space (centigrams) by mentally dividing the area into tenths. If the rider is exactly on a decigram line, indicate that there are no centigrams by putting a zero in the centigram placeholder.
- 13. How would you write the mass measurement in Figure 4?

Directions: On the following beams, draw in a rider at the mass given.


Part C Using Standard Masses

One way to measure mass of an object is to balance it against standard masses. Scientists have agreed to use the kilogram as the standard unit against which all masses are to be determined. The world's standard for the kilogram is a special cylinder made of platinum and iridium that is kept in Paris, France. The small standard masses used in laboratories are all based on this mass.

Balance scales that have two pans use one for the unknown object's mass and the other for the standard masses. Some double pan balance scales will have a beam across the front to balance with decigrams, centigrams, and with some scales even milligrams.

When massing chemicals on any kind of balance scale, be sure to protect the scale by using massing paper or a massing boat to contain the chemical. This will keep the chemical from corroding the pan surface. It will also help keep from getting the scale dirty causing calibration problems.

Figure 5.

To measure an object's mass using standard masses, the pointer of the balance must start at the zero point. Look at *Figure 5*. The unknown sample to be measured is placed on the left-hand pan. The right-hand pan holds the standard masses. The standard masses are added gently to the pan until the balance begins to tip to the right. Then, the smallest mass is removed. The riders on Beam the beam are adjusted until the pointer reaches the zero point, and then the mass can be determined. The object's mass is equal to the sum of the standard masses and the readings on the beam.

- 18) How many 10-gram standard masses would it take to balance a 1-kilogram object? _____
- 19) Notice that the sample being massed is placed on massing paper so that it does not touch the pan. Why is there also massing paper on the pan with the standard masses when they aren't going to spill or corrode the pan of the scale?
- 20) Suppose you balanced a sample against three 10-gram masses and the reading on the beam is 7.85 g. What is the mass of your sample?
- 21) Suppose you have determined the mass of an object to be 2.1 kg on another scale. Could someone use only the following standard masses to find the mass of the object: 1 g, 2 g, 5 g, 10 g, 20 g, 50 g, 100 g, 200 g, 500 g, and 1 kg? Why or Why not?