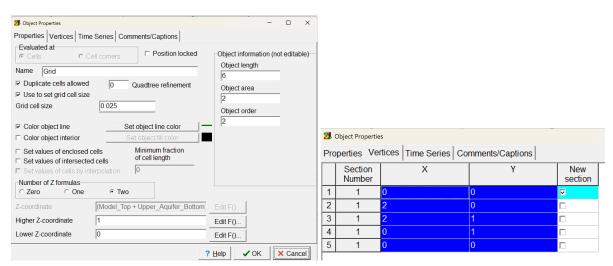
Henry Problem with Model Muse and MF6/Buoyancy package.

By: Chris Russoniello, URI

FLOPY VERSIONs:

1.__USGS:

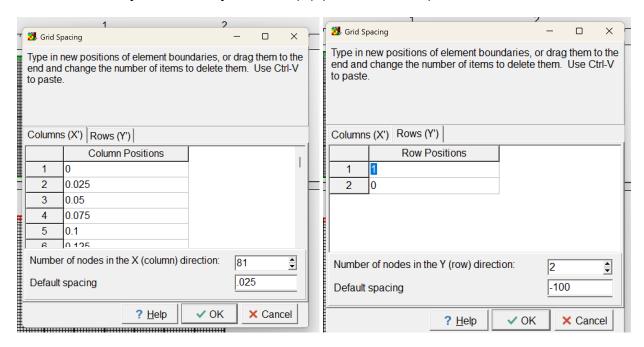

https://modflow6-examples.readthedocs.io/en/latest/_notebooks/ex-gwt-henry.html#Define-parameters

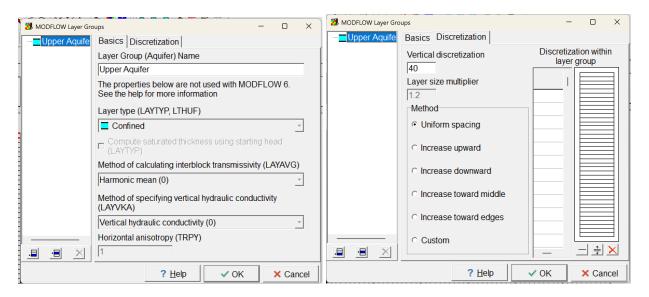
2. This one is edited from USGs version, but shows the density slope/calculation: https://deltares.github.io/imod-python/examples/mf6/Henry.html

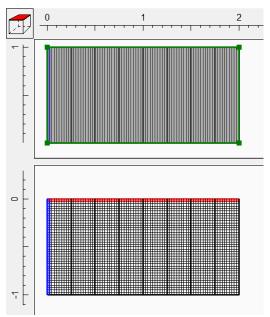
New Project□

save, oftenly...

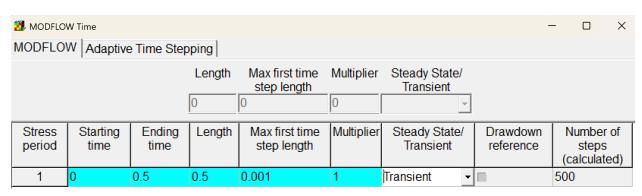
Draw a polygon to generate the grid: (make sure to check the "Use to set Grid cell size" box and give a value of 0.025.

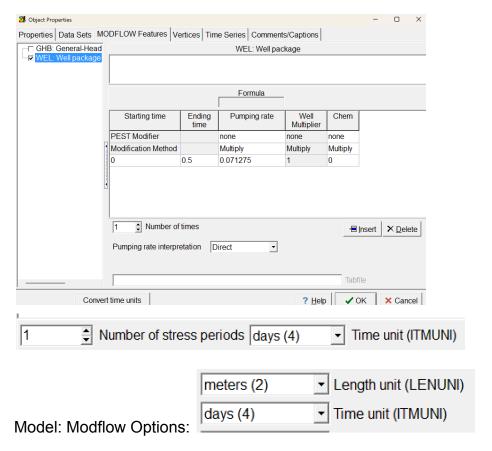

Х	Υ
0	0
2	0
2	1
0	1
0	0


Generate the grid:

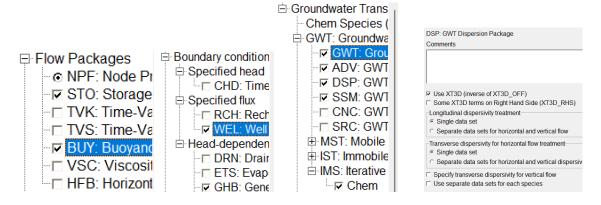

Adjust grid spacing to make only one row (two nodes), but 80 columns (81 nodes = n+1).

Also make sure you have only one row (Y) (2 nodes = n+1).

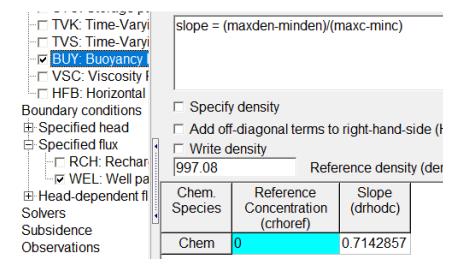

Model □ Model Layers: adjust to make 40 layers, equally spaced. You could alternatively set 40 layers, and manually set them as equally spaced, but because they're all same (no parameters vary between), easier to discretize a single "layer group" 40 times.



Looks like this:

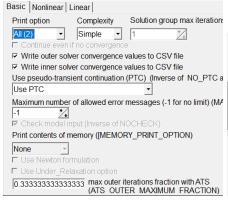

Make sure the top pane only has 1 row (not 40!)!!!

Model □ Packages and Programs


Turn on appropriate packages and adjust settings.

STO: set as Ss

BUY:


slope = (max_density - min_density) / (max_concentration - min_concentration) (1025-1000)/(35-0)=0.7142857

Solvers: Both 1) Solvers□IMS and 2) GWTransp□GWT□IMS

Solver criteria need to be pretty tight for decent pct discrepancy, not sure how tight, but the following are likely overkill (what was set in the USGS FloPy tutorial). Solution did require "BICGSTAB" as linear acceleration (and a checked override box next to it) for solution to converge.

```
print_option="ALL",
outer_dvclose=hclose,
outer_maximum=nouter,
under_relaxation="NONE",
inner_maximum=ninner,
inner_dvclose=hclose,
rcloserecord=rclose,
linear_acceleration="BICGSTAB",
scaling_method="NONE",
reordering_method="NONE",
relaxation_factor=relax,
nouter, ninner = 100, 300
hclose, rclose, relax = 1e-10, 1e-6, 0.97
```


Option	Override	Value
Outer DVClose	V	1e-10
Outer maximum iterations	V	100
Under-relaxation scheme		None
Under relaxation theta		0.7
Under relaxation kappa		0.1
Under relaxation gamma		0.2
Under relaxation momentum		0.001
Backtracking number		10
Backtracking tolerance		10000
Backtracking reduction factor		0.2
Backtracking residual limit		100

	Basic Nonlinear Linear		
_	Option	Override	Va
Ш	Inner maximum iterations	V	300
	Inner DVClose	v	1e-10
	Inner RClose	V	1e-6
- 1	Rclose option		Absolute
-	Linear acceleration		BICGSTAB
	Preconditioner levels		0
	Preconditioner drop tolerance		0
	Relaxation factor	F	0.97
	Number of orthogonalizations		7
	Scaling method		None
	Reordering method		None

Data □ "Edit data sets": Sets these values globally instead of using a polygon.

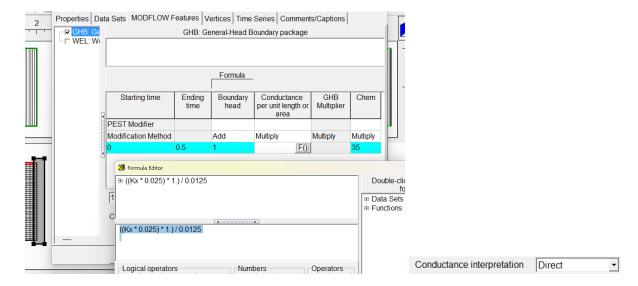
Layer_Definition:		
Model Top	1	m
Model Bottom	0	m
GWT:		
Longitudinal_Dispersivity	0.57024	m2/d
Horizontal_transverse_Dispersivity	0	m2/d
Hydrology:		
Modflow_Initial_Head	1	m
Kx	864.0	m/d
Ку	=Kx	m/d
Kz	=Kx	m/d
Porosity	0.35	-
Specific_Storage (default)	1E-5	/m
MT3DMS:		
Initial_Concentration_Chem	35	-
Longitudinal_Dispersivity	0	m2/d?

hydraulic_conductivity = 864.0 # Hydraulic conductivity (\$m d^{-1}\$)

Values from FloPy tutorial...

```
ghbcond = hydraulic_conductivity * delv * delc / (0.5 * delr)
ghbspd = [[(k, 0, ncol - 1), top, ghbcond, 35.0] for k in range(nlay)]
flopy.mf6.ModflowGwfghb(
    gwf,
    stress_period_data=ghbspd,
    pname="GHB-1",
    auxiliary="CONCENTRATION",
)

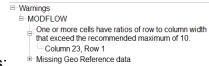
welspd = [[(k, 0, 0), inflow / nlay, 0.0] for k in range(nlay)]
flopy.mf6.ModflowGwfwel(
    gwf,
    stress_period_data=welspd,
    pname="WEL-1",
    auxiliary="CONCENTRATION",
```


Well: inflow a=5.7024, inflow b=2.8512

```
delr = 0.025  # Column width ($m$)
delc = 1.0  # Row width ($m$)
delv = 0.025  # Layer thickness
```

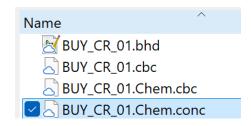
WELL:

Double check your listing file at end to make sure well pumping rates are applied correctly—total rate should equal 5.7024. Above I take that value and divide by 40 to divide between the 40 layers.


GHB:

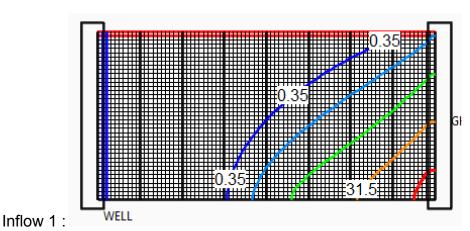
Don't forget to save, oftenly...

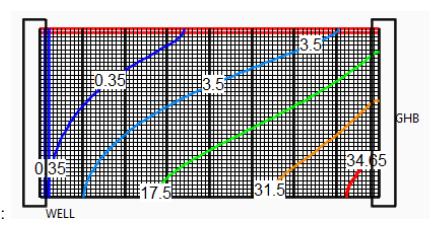
Some warnings and errors I encountered...


- Warnings:
 - □Nothing to be concerned about
- Errors: innerDVclose>= OuterDVclose
 - o Sol'n: not sure this matters, but could adjust
- Error: "cehm produces asymmetric coef matrix, but conj. Grad/ meth was selected,
 - Sol'n use "BICGSTAB" instead" turned "BICGSTAB" back on...

```
https://water.usgs.gov/nrp/gwsoftware/ModelMuse/Help/sms sparse matrix solution pac.htm
Linear acceleration: defines the linear acceleration method used by the
default IMS linear solvers.
CG - preconditioned conjugate gradient method.
BICGSTAB - preconditioned bi-conjugate gradient stabilized method.
```

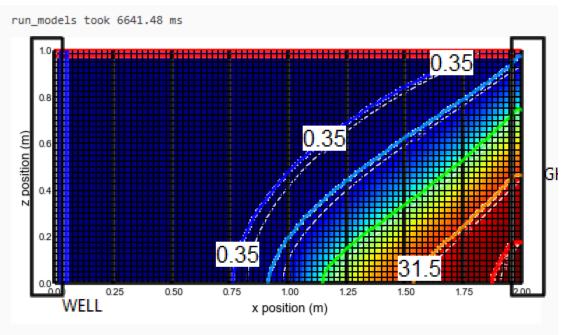
0

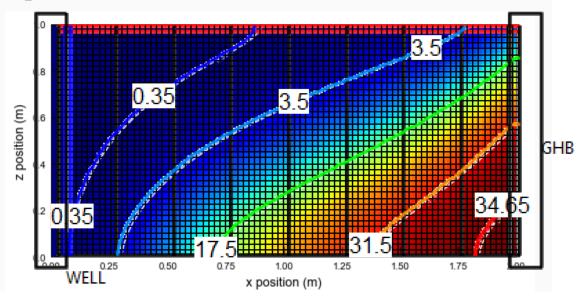

Plot data: +++ +=+



- bhd is heads, (binary heads)
- cbc is fluid fluxes, (cell-by-cell fluxes) use for vectors...
- chem.cbc is chem fluxes, and (chem cell-by-cell)
- chem.conc is concentration (conc)

□ Adjust contours to 1%, 10%, 50%, 90% and 99%




Inflow 2:

Overlay on top of benchmark to see a good match with the FLOPY Henry Mode

Building model...ex-gwt-henry-b

run_models took 6788.65 ms

