HiQuake Bibliography

Abd el-aal, A. e. K., F. Al-Jeri, A. Al-Enezi, and H. Saadalla (2024), Local seismicity type of Kuwait revealing tectonic and anthropogenic characteristics. Journal of Seismology, 28, 635–655.

Adams, R. D. (1969), Seismic effects at Mangla Dam, Pakistan, Nature, 222, 1153-1155.

Adushkin, V. V. (2016), Tectonic earthquakes of anthropogenic origin, Izvestiya, Physics of the Solid Earth, 52(2), 173-194.

Adushkin, V. V., I. A. Sanina, I. P. Gabsatarova, G. N. Ivanchenko, and E. M. Gorbunova (2016), Technogenic-tectonic earthquakes of the Dnieper-Donets Aulacogen, Doklady Earth Sciences, 469(2), 828-831.

Adushkin, V. V., V. Rodionov, N, S. Turuntaev, and A. E. Yudin (2000), Seismicity in the oil field.

Adushkin, V. V., and A. Spivak (2015), Underground explosions, DTIC Document.

Agurto-Detzel, H., M. Bianchi, M. Assumpção, M. Schimmel, B. Collaço, C. Ciardelli, J. R. Barbosa, and J. Calhau (2016), The tailings dam failure of 5 November 2015 in SE Brazil and its preceding seismic sequence, Geophysical Research Letters, 43(10), 4929-4936.

Ake, J., K. Mahrer, D. O'Connell, and L. Block (2005), Deep-injection and closely monitored induced seismicity at Paradox Valley, Colorado, Bulletin of the Seismological Society of America, 95, 664-683.

Alba, S. G., C. V. Jiménez, and A. Zang (2020), Evidencing the relationship between injected volume of water and maximum expected magnitude during the Puerto Gaitán (Colombia) earthquake sequence from 2013 to 2015, Geophysical Journal International, 220, 335-344.

Albano, M., S. Barba, G. Tarabusi, M. Saroli, and S. Stramondo (2017), Discriminating between natural and anthropogenic earthquakes: insights from the Emilia Romagna (Italy) 2012 seismic sequence, Scientific reports, 7.

Albano, M., M. Polcari, C. Bignami, M. Moro, M. Saroli, and S. Stramondo (2017), Did Anthropogenic Activities Trigger the 3 April 2017 Mw 6.5 Botswana Earthquake?, Remote Sensing, 9(10), 1028.

Albaric, J., V. Oye, N. Langet, M. Hasting, I. Lecomte, K. Iranpour, M. Messeiller, and P. Reid (2014), Monitoring of induced seismicity during the first geothermal reservoir stimulation at Paralana, Australia, Geothermics, 52, 120-131.

Alber, M. and T. Backers (2015), Erforschung der Mechanismen und Simulation hydraulisch induzierter Risse in geklüfteten Gesteinen für die Optimierung des Aufschlusses geothermischer Lagerstätten.

Alcott, J. M., P. K. Kaiser, and B. P. Simser (1998), Use of microseismic source parameters for rockburst hazard assessment, in Seismicity caused by mines, fluid injections, reservoirs, and oil extraction, pp. 41-65, Springer.

Al-Enezi, A., L. Petrat, R. Abdel-Fattah, and G. D. M. Technologie (2008), Induced seismicity and surface deformation within Kuwait's oil fields, paper presented at Proc. Int. Conf. Geol. Seismol.

Allis, R. G., S. A. Currie, J. D. Leaver, and S. Sherburn (1985), Results of injection testing at Wairakei geothermal field, New Zealand, Trans. GRC, 289-294.

Alvarez-Garcia, I. N., F. L. Ramos-Lopez, C. Gonzalez-Nicieza, M. I. Alvarez-Fernandez, and A. E. Alvarez-Vigil (2013), The mine collapse at Lo Tacón (Murcia, Spain), possible cause of the Torre Pacheco earthquake (2nd May 1998, se Spain), Engineering Failure Analysis, 28, 115-133.

Amidzic, D., S. K. Murphy, and G. Van Aswegen (1999), Case study of a large seismic event at a South African gold mine, paper presented at 9th ISRM Congress, International Society for Rock Mechanics.

Amos, C. B., P. Audet, W. C. Hammond, R. Bürgmann, I. A. Johanson, and G. Blewitt (2014), Uplift and seismicity driven by groundwater depletion in central California, Nature, 509, 483-486.

Anglin, F. M., and A. G. Buchbinder (1985), Induced seismicity at the LG3 Reservoir, James Bay, Quebec, Canada, Bulletin of the Seismological Society of America, 75(4), 1067-1076.

Aochi, H., and A. Burnol (2018), Mechanism of the $M_L4.0$ 25 April 2016 earthquake in southwest of France in the vicinity of the Lacq gas field, Journal of Seismology, 22(5), 1139-1155.

Arabasz, W. J., J. Ake, M. K. McCarter, and A. McGarr (2002), Mining-induced seismicity near Joes Valley dam: Summary of ground-motion studies and assessment of probable maximum magnitude, Technical Report, University of Utah Seismograph Stations, Salt Lake City, Utah, 35 pp. Accessible online at www/seis. utah. edu/Reports/sitla2002b.

Arabasz, W. J., S. J. Nava, M. K. McCarter, K. L. Pankow, J. C. Pechmann, J. Ake, and A. McGarr (2005), Coal-mining seismicity and ground-shaking hazard: A case study in the Trail Mountain area, Emery County, Utah, Bulletin of the Seismological Society of America, 95, 18-30.

Arkhipova, E. V., A. D. Zhigalin, L. I. Morozova, and A. V. Nikolaev (2012), The Van earthquake on October 23, 2011: Natural and technogenic causes, paper presented at Doklady Earth Sciences, Springer.

Armbruster, J. G., D. W. Steeples, and L. Seeber (1989), The 1989 earthquake sequence near Palco, Kansas: A possible example of induced seismicity (abstract), Seismological Research Letters, 60, 141.

Asanuma, H., N. Soma, H. Kaieda, Y. Kumano, T. Izumi, K. Tezuka, H. Niitsuma, and D. Wyborn (2005), Microseismic monitoring of hydraulic stimulation at the Australian HDR project in Cooper Basin, paper presented at Proceedings World Geothermal Congress.

Assumpção, M., L. Schirbel, J. A. Nogueira, J. Carvalho, L. Dias, and M. Bianchi (2025), Seismicity Induced by a Large Open Pit Mine in SE Brazil: Combination of Stress Concentration and Crustal Weakness, paper presented at EGU General Assembly Conference Abstracts.

Assumpção, M., V. Marza, L. Barros, C. Chimpliganond, J. E. Soares, J. Carvalho, D. Caixeta, A. Amorim, and E. Cabral (2002), Reservoir-induced seismicity in Brazil, in The mechanism of induced seismicity, pp. 597-617, Springer.

Assumpção, M., T. H. Yamabe, J. R. Barbosa, V. Hamza, A. E. V. Lopes, L. Balancin, and M. B. Bianchi (2010), Seismic activity triggered by water wells in the Paraná Basin, Brazil, Water Resources Research, 46.

Astiz, L., J. H. Dieterich, C. Frohlich, B. H. Hager, R. Juanes, and J. H. Shaw (2014), On the potential for induced seismicity at the Cavone oilfield: analysis of geological and geophysical data, and geomechanical modeling, Report for the Laboratorio di Monitoraggio Cavone.

Atkinson, G. M., D. W. Eaton, H. Ghofrani, D. Walker, B. Cheadle, R. Schultz, R. Shcherbakov, K. Tiampo, J. Gu, R. M. Harrington, Y. Liu, M. van der Baan, and H. Kao (2016), Hydraulic Fracturing and Seismicity in the Western Canada Sedimentary Basin, Seismological Research Letters, 87, 631-647.

Avouac, J.-P. (2012), Earthquakes: Human-induced shaking, Nature Geoscience, 5, 763-764.

Awad, M., and M. Mizoue (1995), Earthquake activity in the Aswan region, Egypt, in Induced seismicity, pp. 69-86, Springer.

Aziz Zanjani, A., H. R. DeShon, V. Karanam, and A. Savvaidis (2024), Insights into Temporal Evolution of Induced Earthquakes in the Southern Delaware Basin Using Calibrated Relocations from the TXAR Catalog (2009–2016), The Seismic Record, 4(2), 140-150.

Baecher, G. B., and R. L. Keeney (1982), Statistical examination of reservoir-induced seismicity, Bulletin of the Seismological Society of America, 72, 553-569.

Baisch, S., E. Rothert, H. Stang, R. Vörös, C. Koch, and A. McMahon (2015), Continued geothermal reservoir stimulation experiments in the Cooper Basin (Australia), Bulletin of the Seismological Society of America.

Baisch, S., and R. Vörös (2011), Geomechanical study of Blackpool seismicity.

Baisch, S., R. Vörös, R. Weidler, and D. Wyborn (2009), Investigation of fault mechanisms during geothermal reservoir stimulation experiments in the Cooper Basin, Australia, Bulletin of the Seismological Society of America, 99, 148-158.

Baisch, S., R. Weidler, R. Vörös, D. Wyborn, and L. de Graaf (2006), Induced seismicity during the stimulation of a geothermal HFR reservoir in the Cooper Basin, Australia, Bulletin of the Seismological Society of America, 96, 2242-2256.

Baisch, S., and H. P. Harjes (2003), A model for fluid-injection-induced seismicity at the KTB, Germany, Geophysical Journal International, 152(1), 160-170.

Baker, K., D. Hollett, and A. Coy (2014, February), Geothermal technologies office 2013 peer review report.

Balassanian, S. Y. (2005), Earthquakes induced by deep penetrating bombing?, Acta Seismologica Sinica, 18, 741-745.

Balfour, N., E. Borleis, C. Bugden, V. Dent, D. H. Glanville, D. Hardy, D. Love, M. Salmon, M. Sambridge, and A. Wallace (2014), Australian seismological report 2013.

Bao ,X., and D. W. Eaton (2016), Fault activation by hydraulic fracturing in western Canada, Science.

Barbee, J. (2017), Did fracking in Botswana cause Johannesburg to tremble?, Daily Maverick, https://www.dailymaverick.co.za/article/2017-04-04-did-fracking-in-botswana-cause-johannesburg-to-tremble/#.WeB3D1tSzRb, last accessed 13th October 2017.

Bardainne, T., N. Dubos-Sallée, G. Sénéchal, P. Gaillot, and H. Perroud (2008), Analysis of the induced seismicity of the Lacq gas field (southwestern France) and model of deformation, Geophysical Journal International, 172, 1151-1162.

Bardainne, T., P. Gaillot, N. Dubos-Sallée, J. Blanco, and G. Sénéchal (2006), Characterization of seismic waveforms and classification of seismic events using chirplet atomic decomposition. Example from the Lacq gas field (western Pyrenees, France), Geophysical Journal International, 166, 699-718.

Barros, L. V., M. Assumpção, L. C. Ribotta, V. M. Ferreira, J. M. de Carvalho, B. M. Bowen, and D. F. Albuquerque (2018), Reservoir-Triggered Seismicity in Brazil: Statistical Characteristics in a Midplate Environment, Bulletin of the Seismological Society of America.

Barros, L., V. Marza, C. Chimpliganond, and D. Caixeta (2001), Paraguay Seismicity during 2000, In 7th International Congress of the Brazilian Geophysical Society.

Barthwal, H., and M. van der Baan (2020), Microseismicity observed in an underground mine: Source mechanisms and possible causes, Geomechanics for Energy and the Environment, 22, 100167.

Basham, P. W. (1969), Canadian magnitudes of earthquakes and nuclear explosions in south-western North America, Geophysical Journal International, 17, 1-13.

Behm, M., A. Egreteau, M. Afifi, F. Ogliani, A. Voskamp (2014), Temporal and Spatial Variability of Microseismic Events due to Water Flooding: A Case Study from the Tazlau Field (RO), In Fifth EAGE Passive Seismic Workshop.

Bella, F., P. F. Biagi, M. Caputo, E. Cozzi, G. Della Monica, A. Ermini, W. Plastino, and V. Sgrigna (1998), Aquifer-induced seismicity in the central Apennines (Italy), Pure and applied geophysics, 153, 179-194.

Bennett, T. J., M. E. Marshall, K. L. Mclaughlin, B. W. Barker, and J. R. Murphy (1995a), Seismic characteristics and mechanisms of rockbursts, DTIC Document.

Bennett, T. J., K. L. McLaughlin, M. E. Marshall, B. W. Barker, and J. R. Murphy (1995b), Investigations of the seismic characteristics of rockbursts, DTIC Document.

Benz, H. M., N. D. McMahon, R. C. Aster, D. E. McNamara, and D. B. Harris (2015), Hundreds of earthquakes per day: The 2014 Guthrie, Oklahoma, earthquake sequence, Seismological Research Letters, 86, 1318-1325.

Berrocal, J., M. Assumpção, R. Antezana, C. M. Dias Neto, R. Ortega, H. França, and J. Veloso (1984), Sismicidade do Brasil, 320 pp., IAG-USP/CNEN, São Paulo.

Bertani, R. (2012), Geothermal power generation in the world 2005–2010 update report, Geothermics, 41, 1-29.

Bertini, G., M. Casini, G. Gianelli, and E. Pandeli (2006), Geological structure of a long-living geothermal system, Larderello, Italy, Terra Nova, 18, 163-169.

Białoń, W., E. Zarzycka, and S. Lasocki (2015), Seismicity of Czorsztyn Lake region: A case of reservoir triggered seismic process?, Acta Geophysica, 63, 1080-1089.

Bischoff, M., A. Cete, R. Fritschen, and T. Meier (2010), Coal mining induced seismicity in the Ruhr area, Germany, Pure and applied geophysics, 167, 63-75.

Bischoff, M., N. Gestermann, T. Plenefisch, S. Viola, and J. Fritz (2017), Characteristics of seismicity induced by gas production in Northern Germany, paper presented at Schatzalp Workshop on Induced Seismicity, Davos, Switzerland.

Bommer, J. J., S. Oates, J. M. Cepeda, C. Lindholm, J. Bird, R. Torres, G. Marroquín, and J. Rivas (2006), Control of hazard due to seismicity induced by a hot fractured rock geothermal project, Engineering Geology, 83, 287-306.

Bondur, V. G., T. N. Chimitdorzhiev, and A. V. Dmitriev (2024), The Induced Seismicity Effect in Morocco Caused by a Reduced Aquifers Volume according to Stacking-InSAR Method and Gravimetric Data, Doklady Earth Sciences, 517, 1269-1275.

Boucher, G., A. Ryall, and A. E. Jones (1969), Earthquakes associated with underground nuclear explosions, Journal of Geophysical Research, 74, 3808-3820.

Bou-Rabee, F. (1994), Earthquake recurrence in Kuwait induced by oil and gas extraction, Journal of Petroleum Geology, 17, 473-480.

Bou-Rabee, F., and A. Nur (2002), The 1993 M4.7 Kuwait earthquake: Induced by the burning of the oil fields, Kuwait J. Sci. Eng, 29, 155-163.

Bourne, S. J., and S. J. Oates (2014), An activity rate model of induced seismicity within the Groningen field.

Bowers, D. (1997), The October 30, 1994, seismic disturbance in South Africa: Earthquake or large rock burst?, Journal of Geophysical Research: Solid Earth, 102, 9843-9857.

Braun, T., S. Cesca, D. Kühn, A. Martirosian-Janssen, T. & Dahm (2018), Anthropogenic seismicity in Italy and its relation to tectonics: State of the art and perspectives, Anthropocene, 21, 80-94.

Breede, K., K. Dzebisashvili, X. Liu, and G. Falcone (2013), A systematic review of enhanced (or engineered) geothermal systems: Past, present and future, Geothermal Energy, 1, 1-27.

British Columbia Oil and Gas Commission (BCOGC) (2012), Investigation of observed seismicity in the Horn River Basin.

British Columbia Oil and Gas Commission (BCOGC) (2014), Investigation of observed seismicity in the Montney trend.

British Geological Survey (BGS) (2019), Induced Seismicity around the British Isles in the last 50 days, https://earthquakes.bgs.ac.uk/induced/recent_uk_events.html, last accessed 6th August 2019.

Brodsky, E. E., and L. J. Lajoie (2013), Anthropogenic seismicity rates and operational parameters at the Salton Sea geothermal field, Science, 341, 543-546.

Bromley, C. J., C. F. Pearson, and D. M. Rigor (1987), Microearthquakes at the Puhagan geothermal field, Philippines—a case of induced seismicity, Journal of volcanology and geothermal research, 31, 293-311.

Brudzinski, M. R., and M. Kozłowska (2019), Seismicity induced by hydraulic fracturing and wastewater disposal in the Appalachian Basin, USA: a review, Acta Geophysica, 67(1), 351-364.

Brune, J. N., and P. W. Pomeroy (1963), Surface wave radiation patterns for underground nuclear explosions and small-magnitude earthquakes, Journal of Geophysical Research, 68, 5005-5028.

Buchanan, R. C., K. D. Newell, C. S. Evans, R. D. Miller and S. L. Peterie (2015), Induced Seismicity: The Potential for Triggered Earthquakes in Kansas, Kansas Geological Survey.

Buchbinder, G. G. R., F. M. Anglin, and R. McNicoll (1981), La séismicité provoquée au réservoir LG-2, Canadian Journal of Earth Sciences, 18(4), 693-698.

Bukchin, B. G., A. Z. Mostinsky, A. A. Egorkin, A. L. Levshin, and M. H. Ritzwoller (2001), Isotropic and nonisotropic components of earthquakes and nuclear explosions on the Lop Nor test site, China, in Monitoring the comprehensive nuclear-test-ban treaty: Surface waves, pp. 1497-1515, Springer.

Butcher, A., A. L. Stork, J. P. Verdon, J. M. Kendall, K. Plenkers, F. Booth, M. Boneham, and A. Koe (2021), Evaluating rock mass disturbance within open-pit excavations using seismic methods: A case study from the Hinkley Point C nuclear power station, Journal of Rock Mechanics and Geotechnical Engineering, 13(3), 500-512.

Büyükakpınar, P., S. Cesca, S. Hainzl, M. Jamalreyhani, S. Heimann, and T. Dahm (2021), Reservoir-Triggered Earthquakes Around the Atatürk Dam (Southeastern Turkey), Frontiers in Earth Science, 353.

Caciagli, M., R. Camassi, S. Danesi, S. Pondrelli, and S. Salimbeni (2015), Can We Consider the 1951 Caviaga (Northern Italy) Earthquakes as Noninduced Events?, Seismological Research Letters, 86(5), 1335-1344.

Caffagni, E., Fuchs, F., and G. Bokelmann (2018). Aftershocks, seismic efficiency, and fluid diffusion for the Cooper Basin (Australia) geothermal stimulation, paper presented at EGU General Assembly Conference Abstracts 2018.

Calò, M., C. Dorbath, and M. Frogneux (2014), Injection tests at the EGS reservoir of Soultz-Sous-Forêts. Seismic response of the GPK4 stimulations, Geothermics, 52, 50-58.

Caloi, P. (1970), How nature reacts on human intervention: Responsibilities of those who cause and who interpret such reactions, Annals of Geophysics, 23, 283-305.

Caloi, P., M. De Panfilis, D. Di Filippo, L. Marcelli, and M. C. Spadea (1956), Terremoti della Val Padana del 15-16 Maggio 1951, Annals of Geophysics, 9, 63-105.

Cao, M., T. Wang, and K. Li (2023), A numerical analysis of coal burst potential after the release of the fault-slip energy, Rock Mechanics and Rock Engineering, 56(5), 3317-3337.

Carder, D. S. (1945), Seismic investigations in the Boulder dam area, 1940-1944, and the influence of reservoir loading on local earthquake activity, Bulletin of the Seismological Society of America, 35, 175-192.

Carpenter, P. J., and I. W. El-Hussain (2015), Reservoir induced seismicity near Heron and El Vado reservoirs, northern New Mexico, and implications for fluid injection within the San Juan Basin, paper presented at AAPG Annual Convention and Exhibition.

Castellanos, F., and M. van der Baan (2015), Dynamic triggering of microseismicity in a mine setting, Geophysical Journal International, 202(2), 728-737.

Castellanos, F., and M. van der Baan (2013), Microseismic event locations using the double-difference algorithm, CSEG Recorder, 38(3), 26-37.

Cavanagh, A., S. Gilfillan, and S. Haszeldine (2019a), Further Potential for Earthquakes from Oil Exploration in the Weald, letter submission to Surrey County Council, 5th February 2019.

Cavanagh, A., S. Gilfillan, and S. Haszeldine (2019b), Earthquakes at Horse Hill, Newdigate/Gatwick – update 21st March 2019, letter submission to All Party Parliamentary Group on impact shale gas, 2nd April 2019.

Cesca, S., F. Grigoli, S. Heimann, Á. González, E. Buforn, S. Maghsoudi, E. Blanch, and T. Dahm (2014), The 2013 September–October seismic sequence offshore Spain: A case of seismicity triggered by gas injection?, Geophysical Journal International, 198, 941-953.

Chadha, R. K. (1995), Role of dykes in induced seismicity at Bhatsa reservoir, Maharashtra, India, in Induced seismicity, pp. 155-165, Springer.

Chang, T., and X. Hu (2018), Research progress on reservoir induced earthquake, Shuili Xuebao, Journal of Hydraulic Engineering, 49, 1109-1122 (in Chinese).

Chang, B., and L. Shen (1997), Discussion on relation between Gonghe Ms (7.0) earthquake and LongYangXia reservoir. South China Journal of Seismology, 01, 82-87 (in Chinese).

Che, I. Y., G. Kim, Y. Kim, and K. Kim (2018), Generation of Infrasound Waves at sites of Underground Mine Collapses, Geophysical Research Letters.

Chelidze, T. L., T. J. Jimsheladze, and G. I. Melikadze (2008), Induced seismicity due to oil production in Tbilisi region, Georgia, Journal of Georgian Geophysical Society, 12A, 7-16.

Chen, R., J. Zhu, S. Li, S. Zhang, X. Chen, Q. Li, P. Wang, J. Zhang, L. Dai, and Y. Jia (2023), Characteristics and mechanisms of human-induced earthquakes in China from the QuakeQuake database. Geological Journal.

Chen, Z., F. Zhao, F. Sun, H. Lü, C. Wang, H. Wu, and X. Zhou (2021), Hydraulic fracturing-induced seismicity at the hot dry rock site of the gonghe basin in China, Acta Geologica Sinica-English Edition, 95(6), 1835-1843.

Chen, B. J., P. Z. Ou, and J. Liu (2014), Study on seismicity characteristics of Guangming reservoir in Beipanjiang River (translation), Science and Technology Innovation Herald, 11, 10-13 (in Chinese).

Chen, D., Y. Wang, and X. Zeng (2008), A study of reservoir-induced earthquake of Three Gorges project, Chinese Journal of Rock Mechanics & Engineering, 27, 1513-1524 (in Chinese).

Chen, L., and P. Talwani (1998), Reservoir-induced seismicity in China, Pure and applied geophysics, 153, 133-149.

Chen, X. (1993), Study on cause of formation of the Shiquan earthquake (Ms4.7), Northwestern Seismological Journal, 2, 76-80 (in Chinese).

Chen, Y. (1985), Zhaling reservoir-induced earthquakes and their focal mechanisms, Earthquake, 4, 35-41 (in Chinese).

Chimpliganond, C., G. S. França, A. E. Bandeira, and L. A. Bevilaqua (2007a), Reservoir-triggered seismicity at the highest Brazillian dam, In 2007 AGU Joint Assembly.

Chimpliganond, C., K. T. Sousa, D. Caixeta, L. V. Barros, and G. S. França (2007b), Spatio-temporal evolution of triggered seismicity at Nova Ponte Reservoir, Brazil, In AGU Spring Meeting Abstracts.

Chouhan, R. K. S. (1986), Induced seismicity of Indian coal mines, Physics of the earth and planetary interiors, 44, 82-86.

Chouhan, R. K. S. (1992), Combating the rockburst problem - a seismological approach, in Induced seismicity, edited by P. Knoll, Balkema, Rotterdam.

Choy, G. L., J. L. Rubinstein, W. L. Yeck, D. E. McNamara, C. S. Mueller, and O. S. Boyd (2016), A rare moderate-sized (Mw 4.9) earthquake in Kansas: Rupture process of the Milan, Kansas, earthquake of 12 November 2014 and its relationship to fluid injection, Seismological Research Letters, 87(6), 1433-1441.

Chung, W. Y., and C. Liu (1992), The reservoir-associated earthquakes of April 1983 in western Thailand: Source modeling and implications for induced seismicity, Pure and Applied Geophysics, 138(1), 17-41.

Číž, R., and B. Růžek (1997), Periodicity of mining and induced seismicity in the Mayrau mine, Czech Republic, Studia Geophysica et Geodaetica, 41, 29-44.

Cladouhos, T. T., S. Petty, Y. Nordin, M. Moore, K. Grasso, M. Uddenberg, M. Swyer, B. Julian, and G. Foulger (2013), Microseismic monitoring of Newberry volcano EGS demonstration, paper presented at Proceedings of the 38th Workshop on Geothermal Reservoir Engineering, Stanford, CA.

Clark, D. (2009), Potential geologic sources of seismic hazard in the Sydney Basin, Proceedings volume of a one day workshop. Geoscience Australia Record 2009/11. 115pp.

Clarke, H., L. Eisner, P. Styles, and P. Turner (2014), Felt seismicity associated with shale gas hydraulic fracturing: The first documented example in Europe, Geophysical Research Letters, 41, 8308-8314.

Correa-Otto, S., S. Nacif, A. Pesce, A. Nacif, G. Gianni, R. Furlani, M. Giménez, and R. Francisco (2018), Intraplate seismicity recorded by a local network in the Neuquén Basin, Argentina, Journal of South American Earth Sciences, 87, 211-220.

Currie, B. S., J. C. Free, M. R. Brudzinski, M. Leveridge, and R. J. Skoumal (2018), Seismicity induced by wastewater injection in Washington County, Ohio: influence of preexisting structure, regional stress regime, and well operations, Journal of Geophysical Research: Solid Earth, 123(5), 4123-4140.

Dahm, T., S. Cesca, S. Hainzl, T. Braun, and F. Krüger (2015), Discrimination between induced, triggered, and natural earthquakes close to hydrocarbon reservoirs: A probabilistic approach based on the modeling of depletion-induced stress changes and seismological source parameters, Journal of Geophysical Research: Solid Earth, 120, 2491-2509.

Dahm, T., F. Krüger, K. Stammler, K. Klinge, R. Kind, K. Wylegalla, and J.-R. Grasso (2007), The 2004 Mw 4.4 Rotenburg, northern Germany, earthquake and its possible relationship with gas recovery, Bulletin of the Seismological Society of America, 97, 691-704.

Dai, H., Y. G. Zhu, and H. Chen (2018), Study on reservoir earthquake activity characteristics of Houziyan hydropower station, Water Power, 44, 84-87 (in Chinese).

Dai, Z. (1997), Forming condition and reasons on the earthquake induced by Huanshi reservoir, Earthquake Research in Sichuan, 4, 58-63 (in Chinese).

Daniels, C., and Z. Peng (2023), A 15-year-Long catalog of seismicity in the Eastern Tennessee Seismic Zone (ETSZ) using matched filter detection, Earthquake Research Advances, 3(1), 100198.

Darisma D., Y. Mukuhira, N. Aoyogi, K. Okamoto, T. Ishibashi, H. Asanuma, and T. Ito (2023), Building the Fracture Network Model for Okuaizu Geothermal Field Based on Microseismic Data Analysis, paper presented at Forty-Eighth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 6-8th.

Darold, A., A. A. Holland, C. Chen, and A. Youngblood (2014), Preliminary analysis of seismicity near Eagleton 1--29, Carter County, July 2014.

Davatzes, N. C., S. T. Ali, R. J. Mellors, W. Foxall, H. F. Wang, K. L. Feigl, P. S. Drakos, and E. Zemach (2013), Contrasts between deformation accommodated by induced seismic and aseismic processes revealed by combined monitoring of seismicity and surface deformations: Brady Geothermal Field, Nevada, USA, paper presented at AGU Fall Meeting Abstracts.

Davies, R., G. Foulger, A. Bindley, and P. Styles (2013), Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons, Marine and Petroleum Geology, 45, 171-185.

Davis, S. D., and C. Frohlich (1993), Did (or will) fluid injection cause earthquakes?-criteria for a rational assessment, Seismological Research Letters, 64, 207-224.

Davis, S. D., P. A. Nyffenegger, and C. Frohlich (1995), The 9 April 1993 earthquake in south-central Texas: Was it induced by fluid withdrawal?, Bulletin of the Seismological Society of America, 85, 1888-1895.

Davis, S. D., and W. D. Pennington (1989), Induced seismic deformation in the Cogdell oil field of west Texas, Bulletin of the Seismological Society of America, 79, 1477-1495.

De Barros, L., Y. Guglielmi, F. Cappa, C. Nussbaum, and J. Birkholzer (2023), Induced microseismicity and tremor signatures illuminate different slip behaviours in a natural shale fault reactivated by a fluid pressure stimulation (Mont Terri), Geophysical Journal International, 235(1), 531-541.

de Pater, C. J., and S. Baisch (2011), Geomechanical study of Bowland Shale seismicity, Synthesis Report, 57.

De Novellis, V., V. Convertito, S. Valkaniotis, F. Casu, R. Lanari, M. F. M. Tobar, and N. A. Pino (2020), Coincident locations of rupture nucleation during the 2019 Le Teil earthquake, France and maximum stress change from local cement quarrying, Communications Earth & Environment, 1(1), 1-10.

Deichmann, N., and J. Ernst (2009), Earthquake focal mechanisms of the induced seismicity in 2006 and 2007 below Basel (Switzerland), Swiss Journal of Geosciences, 102, 457-466.

Denlinger, R. P., and D. R. H. O'Connell (2020), Evolution of faulting induced by deep fluid injection, Paradox Valley, Colorado, Bulletin of the Seismological Society of America, 110(5), 2308-2327.

Diaz, A. R., E. Kaya, and S. J. Zarrouk (2016), Reinjection in geothermal fields—a worldwide review update, Renewable and Sustainable Energy Reviews, 53, 105-162.

Diehl, T., T. Kraft, E. Kissling, and S. Wiemer (2017), The induced earthquake sequence related to the St. Gallen deep geothermal project (Switzerland): Fault reactivation and fluid interactions imaged by microseismicity, Journal of Geophysical Research: Solid Earth, 122(9), 7272-7290.

Dineva, S., and M. Boskovic (2017), Evolution of seismicity at Kiruna Mine, in 8th International Conference on Deep and High Stress Mining, Perth, 28th-30th March 2017, Australian Centre for Geomechanics, 125-140.

Dinh, T.C., T. C. Dinh, T. T. Anh, V. D. Quoc, D. Le Van, H. D. Thanh, B. M. Xuan, H. P. Nam, and T. N. Huu (2021), Overview of the Characteristics of Reservoir-triggered Seismic Activity at Some Hydropower Reservoirs in Vietnam, Journal of the Geological Society of India, 97(12), 1574-1582.

Doblas, M., N. Youbi, J. De Las Doblas, and A. J. Galindo (2014), The 2012/2014 swarmquakes of Jaen, Spain: A working hypothesis involving hydroseismicity associated with the hydrologic cycle and anthropogenic activity, Natural hazards, 74, 1223-1261.

Dodge, D. A. (2018), Searching for induced seismicity at Punggye-ri nuclear test site using subspace detectors, Seismological Research Letters, 89(6), 2094-2112.

Doornenbal, H., and A. Stevenson (2010), Petroleum geological atlas of the southern Permian Basin area, EAGE.

Doser, D. I., M. R. Baker, M. Luo, P. Marroquin, L. Ballesteros, J. Kingwell, H. L. Diaz, and G. Kaip (1992), The not so simple relationship between seismicity and oil production in the Permian Basin, west Texas, Pure and applied geophysics, 139, 481-506.

Dost, B., and J. Spetzler (2015), Probabilistic seismic hazard analysis for induced earthquakes in Groningen; update 2015.

Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, and J. M. Melack (2006), The global abundance and size distribution of lakes, ponds, and impoundments, Limnology and Oceanography, 51, 2388-2397.

Dreger, D. S., S. R. Ford, and W. R. Walter (2008), Source analysis of the Crandall Canyon, Utah, mine collapse, Science, 321, 217-217.

Du, F., J. Wu, G. F. Li, Z. J. Guan, and X. P. Wu (2002), The earthquake of magnitude 5.4 in Yibin, Sichuan on February 28, 1996, Q. F. Chen, D. L. Deng, G. P. Liu, M. Li (editors), A Case of Earthquake in China (1995-1996), Beijing: Seismological Press (in Chinese).

Duan, M., L. Zhou, C. Zhao, and X. Zhang (2024), Fluid-driven seismicity in the Baihetan reservoir area revealed by 3D seismic tomography based on dense seismic arrays, Earth and Space Science, 11(9), e2023EA003397.

Durrheim, R. J. (2010), Mitigating the risk of rockbursts in the deep hard rock mines of South Africa: 100 years of research, in Extracting the science: A century of mining research, Brune, J. (eds), Society for Mining, Metallurgy, and Exploration, Inc, pp. 156-171.

Durrheim, R. J. (2015a), Earthquake Seismology, in: History of Geophysics in Southern Africa, 2015, de Beer, J. H. (ed.), South African Geophysical Association.

Durrheim, R. J. (2015b), Geophysical laboratories in deep gold mines: Earthquakes, neutrinos, extremophiles and the origin of the Earth's magnetic field, in: History of Geophysics in Southern Africa, 2015, de Beer, J. H. (ed.), South African Geophysical Association.

Durrheim, R. J., and K. L. Riemer (2015), The history of mining seismology, in: History of Geophysics in Southern Africa, 2015, de Beer, J. H. (ed.), South African Geophysical Association.

Durrheim, R. J., R. L. Anderson, A. Cichowicz, R. Ebrahim-Trolloped, G. Hubert, A. Kijko, A. McGarr, W. D. Ortlepp, and N. van der Merwe (2006a), Investigation into the risks to miners, mines, and the public associated with large seismic events in gold mining districts, Department of Minerals and Energy.

Durrheim, R. J., R. L. Anderson, A. Cichowicz, R. Ebrahim-Trolloped, G. Hubert, A. Kijko, A. McGarr, W. Ortlepp, and N. van der Merwe (2006b), The risks to miners, mines, and the public posed by large seismic events in the gold mining districts of South Africa, paper presented at Proceedings of the Third International Seminar on Deep and High Stress Mining, 2-4 October 2006, Quebec City, Canada.

Eagar, K. C., G. L. Pavlis, and M. W. Hamburger (2006), Evidence of possible induced seismicity in the Wabash Valley seismic zone from improved microearthquake locations, Bulletin of the Seismological Society of America, 96, 1718-1728.

Eaton, D. W., N. Igonin, A. Poulin, R. Weir, H. Zhang, S. Pellegrino, and G. Rodriguez (2018), Induced Seismicity Characterization during Hydraulic-Fracture Monitoring with a Shallow-Wellbore Geophone Array and Broadband Sensors, Seismological Research Letters, 89(5), 1641-1651.

El-Hussain, I. W., and P. J. Carpenter (1990), Reservoir induced seismicity near Heron and El Vado reservoirs, northern New Mexico, Bulletin of the Association of Engineering Geologists, 27, 51-59.

Ellsworth, W. L. (2013), Injection-induced earthquakes, Science, 341, 1225942.

Emanov, A. F., A. A. Emanov, O. V. Pavlenko, A. V. Fateev, O. V. Kuprish, and V. G. Podkorytova (2020), Kolyvan Earthquake of January 9, 2019, with ML= 4.3 and Induced Seismicity Features of the Gorlovsky Coal Basin, Seismic Instruments, 56, 254-268.

Emanov, A. F., A. A. Emanov, A. V. Fateev, E. V. Leskova, E. V. Shevkunova, and V. G. Podkorytova (2014), Mining-induced seismicity at open pit mines in Kuzbass (Bachatsky earthquake on June 18, 2013), Journal of Mining Science, 50, 224-228.

Engdahl, E. R. (1972), Seismic effects of the Milrow and Cannikin nuclear explosions, Bulletin of the Seismological Society of America, 62, 1411-1423.

Eremenko, V. A., A. A. Eremenko, S. V. Rasheva, and S. B. Turuntaev (2009), Blasting and the man-made seismicity in the Tashtagol mining area, Journal of mining science, 45, 468-474.

Evans, D. M. (1966), The Denver area earthquakes and the Rocky Mountain Arsenal disposal well, The Mountain Geologist, 3, 23-36.

Evans, K. F., A. Zappone, T. Kraft, N. Deichmann, and F. Moia (2012), A survey of the induced seismic responses to fluid injection in geothermal and CO2 reservoirs in Europe, Geothermics, 41, 30-54.

Eyre, T. S., M. Zecevic, R. O. Salvage, and D. W. Eaton (2020), A long-lived swarm of hydraulic fracturing-induced seismicity provides evidence for aseismic slip, Bulletin of the Seismological Society of America, 110(5), 2205-2215.

Fabriol, H., and A. Beauce (1997), Temporal and spatial distribution of local seismicity in the Chipilapa-Ahuachapán geothermal area, El Salvador, Geothermics, 26, 681-699.

Fajklewicz, Z., and K. Jakiel (1989), Induced gravity anomalies and seismic energy as a basis for prediction of mining tremors, in Seismicity in mines, pp. 535-552, Springer.

Farahbod, A. M., H. Kao, D. M. Walker, J. F. Cassidy, and A. Calvert (2015), Investigation of regional seismicity before and after hydraulic fracturing in the Horn River Basin, northeast British Columbia, Canadian Journal of Earth Sciences, 52, 112-122.

Feigl K. L., H. Guo, E. Cunningham, J. Hampton, M. Folsom, J. Akerley, M. Cusini, C. Sherman, I. Warren, C. Kreemer, H. Sone, M. A. Cardiff, N. E. Lord, P. E. Sobol, S. A. Batzli, C. H. Thurber, and H. F. Wang, (2023), The 2022 WHOLESCALE deployment at San Emidio, Nevada, U.S., paper presented at Forty-Eighth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 6-8th.

Feng, M. Z. (2002), Mine quake disaster in Taozhuang coal mine and its prevention, Journal of Catastrophology, 4, 61-64 (in Chinese).

Feng, Q., and J. M. Lees (1998), Microseismicity, stress, and fracture in the Coso geothermal field, California, Tectonophysics, 289, 221-238.

Ferguson, G. (2015), Deep injection of waste water in the Western Canada Sedimentary Basin, Groundwater, 53, 187-194.

Ferreira, J. M., G. S. França, C. S. Vilar, A. F. do Nascimento, F. H. R. Bezerra, and M. Assumpção (2008), Induced seismicity in the Castanhão reservoir, ne Brazil—preliminary results, Tectonophysics, 456, 103-110.

Fletcher, J. B., and L. R. Sykes (1977), Earthquakes related to hydraulic mining and natural seismic activity in western New York state, Journal of Geophysical Research, 82, 3767-3780.

Flóvenz, O. G., K. Ágústsson, E. Á. Guðnason, and S. Kristjánsdóttir (2015), Reinjection and induced seismicity in geothermal fields in Iceland, paper presented at Proceedings World Geothermal Congress, Melbourne, Australia.

Folger, P. F., and M. Tiemann (2014), Human-induced earthquakes from deep-well injection: A brief overview, Congressional Research Service.

Ford, S. R., D. S. Dreger, and W. R. Walter (2009), Identifying isotropic events using a regional moment tensor inversion, Journal of Geophysical Research: Solid Earth, 114(B1).

Ford, S. R., D. S. Dreger, and W. R. Walter (2008), Source characterization of the 6 August 2007 Crandall Canyon mine seismic event in central Utah, Seismological Research Letters, 79, 637-644.

Foulger, G. R., M. P. Wilson, J. G. Gluyas, R. J. Davies, and B. R. Julian (2018), Global review of induced and triggered earthquakes, Earth-Science Reviews, 178, 438-514.

Fox M., and P. G. Meredith (2024), Were the Newdigate Earthquakes, Southern England, of 2018–2019 triggered by oil extraction?, Geological Magazine 161(e23), 1–6.

Friberg, P. A., M. Brudzinski, S. Fasola, M. Kozlowska, and R. Skoumal (2018), Hydraulic Fracturing Induced Seismicity in Ohio in 2016: Case study of the Conotton sequence in Harrison County, paper presented at AGU Fall Meeting Abstracts.

Friberg, P. A., G. M. Besana-Ostman, and I. Dricker (2014), Characterization of an earthquake sequence triggered by hydraulic fracturing in Harrison County, Ohio, Seismological Research Letters.

Friðleifsson, G. Ó., W. A. Elders, R. A. Zierenberg, A. P. Fowler, T. B. Weisenberger, K. G. Mesfin, Ó. Sigurðsson, S. Níelsson, G. Einarsson, F. Óskarsson, E. Á. Guðnason, H. Tulinius, K. Hokstad, G. Benoit, F. Nono, D. Loggia, F. Parat, S. B. Cichy, D. Escobedo, and D. Mainprice (2020), The Iceland Deep Drilling Project at Reykjanes: Drilling into the root zone of a black smoker analog, Journal of Volcanology and Geothermal Research, 391, 106435.

Fritschen, R. (2010), Mining-induced seismicity in the Saarland, Germany, Pure and applied geophysics, 167, 77-89.

Frohlich, C. (2012), Two-year survey comparing earthquake activity and injection-well locations in the Barnett Shale, Texas, Proceedings of the National Academy of Sciences, 109, 13934-13938.

Frohlich, C., and M. Brunt (2013), Two-year survey of earthquakes and injection/production wells in the Eagle Ford Shale, Texas, prior to the Mw4.8 20 October 2011 earthquake, Earth and Planetary Science Letters, 379, 56-63.

Frohlich, C., and S. D. Davis (2002), Texas earthquakes, University of Texas Press.

Frohlich, C., H. DeShon, B. Stump, C. Hayward, M. Hornbach, and J. I. Walter (2016), A Historical Review of Induced Earthquakes in Texas, Seismological Research Letters, 87(4), 1022-1038.

Frohlich, C., W. Ellsworth, W. A. Brown, M. Brunt, J. Luetgert, T. MacDonald, and S. Walter (2014), The 17 May 2012 M4.8 earthquake near Timpson, east Texas: An event possibly triggered by fluid injection, Journal of Geophysical Research: Solid Earth, 119, 581-593.

Frohlich, C., J. Glidewell, and M. Brunt (2012), Location and felt reports for the 25 April 2010 mbLg 3.9 earthquake near Alice, Texas: Was it induced by petroleum production?, Bulletin of the Seismological Society of America, 102, 457-466.

Frohlich, C., C. Hayward, B. Stump, and E. Potter (2011), The Dallas–Fort Worth earthquake sequence: October 2008 through May 2009, Bulletin of the Seismological Society of America, 101, 327-340.

Frohlich, C., and E. Potter (2013), What further research could teach us about "close encounters of the third kind": Intraplate earthquakes associated with fluid injection, Memoir 103: Critical Assessment of Shale Resource Plays, 109-119.

Frohlich, C., J. I. Walter, and J. F. W. Gale (2015), Analysis of transportable array (USarray) data shows earthquakes are scarce near injection wells in the Williston Basin, 2008–2011, Seismological Research Letters.

Gahalaut, K., H. Paul, T. C. Sunilkumar, M. R. Kumar, and V. K. Gahalaut (2023), Earthquakes induced by rapid loading of faults during Pulichintala reservoir impoundment in the stable continental region of India, Earth and Space Science, 10(10), e2023EA002902.

Gahalaut, K., S. Gupta, V. K. Gahalaut, and P. Mahesh (2018), Influence of Tehri Reservoir Impoundment on Local Seismicity of Northwest Himalaya, Bulletin of the Seismological Society of America.

Gahalaut, K., V. K. Gahalaut, and M. R. Pandey (2007), A new case of reservoir triggered seismicity: Govind Ballav Pant reservoir (Rihand dam), central India, Tectonophysics, 439, 171-178.

Gaite, B., A. Ugalde, A. Villaseñor, and E. Blanch (2016), Improving the location of induced earthquakes associated with an underground gas storage in the Gulf of Valencia (Spain), Physics of the Earth and Planetary Interiors, 254, 46-59.

Galybin, A. N., S. S. Grigoryan, and S. A. Mukhamediev (1998), Model of induced seismicity caused by water injection, paper presented at SPE/ISRM Rock Mechanics in Petroleum Engineering, Society of Petroleum Engineers.

Gan, W., and C. Frohlich (2013), Gas injection may have triggered earthquakes in the Cogdell oil field, Texas, Proceedings of the National Academy of Sciences, 110, 18786-18791.

Gardonio, B., R. Jolivet, E. Calais, and H. Leclère (2018), The April 2017 Mw6.5 Botswana Earthquake: An Intraplate Event Triggered by Deep Fluids, Geophysical Research Letters, 45 (17), 8886–8896.

Gasparini, P., P. Styles, S. Lasocki, P. Scandone, E. Huenges, F. Terlizzese, and S. Esposito (2015), The ICHESE report on the relationship between hydrocarbon exploration and the May 2012 earthquakes in the Emilia region (Italy) and their consequences.

Gaucher, E., M. Schoenball, O. Heidbach, A. Zang, P. A. Fokker, J.-D. van Wees, and T. Kohl (2015), Induced seismicity in geothermal reservoirs: A review of forecasting approaches, Renewable and Sustainable Energy Reviews, 52, 1473-1490.

Ge, P. F., S. Han, L. Tan, G. U. Peng, D. Ning, and L. I. Yanzhen (2014), Study on regional seismic activity of Pubugou reservoir in Sichuan province, Plateau Earthquake Research, 26, 20-26 (in Chinese).

Ge, S., M. Liu, N. Lu, J. W. Godt, and G. Luo (2009), Did the Zipingpu reservoir trigger the 2008 Wenchuan earthquake?, Geophysical Research Letters, 36.

Gendzwill, D. J., R. B. Horner, and H. S. Hasegawa (1982), Induced earthquakes at a potash mine near Saskatoon, Canada, Canadian Journal of Earth Sciences, 19, 466-475.

Genmo, Z., C. Huaran, M. Shuqin, and Z. Deyuan (1995), Research on earthquakes induced by water injection in China, in Induced seismicity, pp. 59-68, Springer.

Gerardi, G., P. Dublanchet, L. Jeannin, A. Kazantsev, L. Duboeuf, I. Ramadhan, H. Azis, N. Ganefianto, and I. A. Nugroho (2024), Geomechanical modelling of injection-induced seismicity: the case study of the Muara Laboh geothermal plant, Geophysical Journal International, 237(2), 818-837.

German, V. I. (2014), Rock failure prediction in mines by seismic monitoring data, Journal of Mining Science, 50, 288-297.

Gestermann, N., T. Plenefisch, U. Schwaderer, and M. Joswig (2015), Induced seismicity at the natural gas fields in northern Germany, in Schatzalp Induced Seismicity Workshop, 10-13 March 2015, Davos, Switzerland.

Gibowicz, S. J. (1998), Partial stress drop and frictional overshoot mechanism of seismic events induced by mining, in Seismicity caused by mines, fluid injections, reservoirs, and oil extraction, pp. 5-20, Springer.

Gibowicz, S. J., A. Bober, A. Cichowicz, Z. Droste, Z. Dychtowicz, J. Hordejuk, M. Kazimierczyk, and A. Kijko (1979), Source study of the Lubin, Poland, tremor of 24 March 1977, Acta Geophys. Pol, 27, 3-38.

Gibowicz, S. J., Z. Droste, B. Guterch, and J. Hordejuk (1981), The Belchatow, Poland, earthquakes of 1979 and 1980 induced by surface mining, Engineering Geology, 17, 257-271.

Gibowicz, S. J., R. P. Young, S. Talebi, and D. J. Rawlence (1991), Source parameters of seismic events at the Underground Research Laboratory in Manitoba, Canada: Scaling relations for events with moment magnitude smaller than -2, Bulletin of the Seismological Society of America, 81, 1157-1182.

Gibson, G., and M. Sandiford (2013), Seismicity and induced earthquakes, Office of the New South Wales Chief Scientist and Engineer.

Gilyarov, V. L., E. E. Damaskinskaya, A. G. Kadomtsev, and I. Y. Rasskazov (2014), Analysis of statistic parameters of geoacoustic monitoring data for the Antey Uranium Deposit, Journal of Mining Science, 50, 443-447.

Glowacka, E., and F. A. Nava (1996), Major earthquakes in Mexicali valley, Mexico, and fluid extraction at Cerro Prieto geothermal field, Bulletin of the Seismological Society of America, 86, 93-105.

Glubokovskikh, S., C. S. Sherman, J. P. Morris, and D. L. Alumbaugh (2023), Transforming microseismic clouds into near real-time visualization of the growing hydraulic fracture, Geophysical Journal International, ggad248.

Göbel, T. (2015), A comparison of seismicity rates and fluid-injection operations in Oklahoma and California: Implications for crustal stresses, The Leading Edge, 34, 640-648.

Godano, M., E. Gaucher, T. Bardainne, M. Regnier, A. Deschamps, and M. Valette (2010), Assessment of focal mechanisms of microseismic events computed from two three-component receivers: Application to the Arkema-Vauvert field (France), Geophysical prospecting, 58, 775-790.

Goebel, T. H., and M. Shirzaei (2020), More Than 40 yr of Potentially Induced Seismicity Close to the San Andreas Fault in San Ardo, Central California, Seismological Research Letters.

Goebel, T. H. W., S. M. Hosseini, F. Cappa, E. Hauksson, J. P. Ampuero, F. Aminzadeh, and J. B. Saleeby (2016), Wastewater disposal and earthquake swarm activity at the southern end of the Central Valley, California, Geophysical Research Letters, 43(3), 1092-1099.

Goebel, T. H. W., E. Hauksson, F. Aminzadeh, and J., -P. Ampuero (2015), An objective method for the assessment of fluid injection-induced seismicity and application to tectonically active regions in central California, Journal of Geophysical Research: Solid Earth, 120(10), 7013-7032.

Goldbach, O. D. (2009), Flooding-induced seismicity in mines, paper presented at 11th SAGA Biennial Technical Meeting and Exhibition.

Gomberg, J., and L. Wolf (1999), Possible cause for an improbable earthquake: The 1997 Mw 4.9 southern Alabama earthquake and hydrocarbon recovery, Geology, 27, 367-370.

González, Á. (2017), The Spanish national earthquake catalogue: evolution, precision and completeness, Journal of Seismology, 21(3), 435-471.

González, P. J., K. F. Tiampo, M. Palano, F. Cannavó, and J. Fernández (2012), The 2011 Lorca earthquake slip distribution controlled by groundwater crustal unloading, Nature Geoscience, 5, 821-825.

González-Cortina, J. M., J. A. Pulgar, C. López-Fernández, J. Gallart, J. Díaz and M. Ruiz (2008), The February 19th 2001 Earthquake (mb 2.6, IGN): a case of induced seismicity instrumentally registered in a Spanish Coal Mine?, Geo-Temas, 10.

Gonzalez-Huizar, H., and X. Liu (2017), Investigating two Potential Events of Intraplate Induced Earthquakes, paper presented at AGU Fall Meeting Abstracts.

Gough, D. I., and W. I. Gough (1970), Load-induced earthquakes at Lake Kariba—II, Geophysical Journal International, 21, 79-101.

Grasso, J. -R. (1992), Mechanics of seismic instabilities induced by the recovery of hydrocarbons, Pure and applied geophysics, 139, 507-534.

Grasso, J. -R., A. Karimov, D. Amorese, C. Sue, and C. Voisin (2018), Patterns of Reservoir-Triggered Seismicity in a Low-Seismicity Region of France, Bulletin of the Seismological Society of America.

Green, C. A., P. Styles, and B. J. Baptie (2012), Preese Hall shale gas fracturing review & recommendations for induced seismic mitigation: UK department of energy and climate change.

Grigoli, F., S. Cesca, A. P. Rinaldi, A. Manconi, J. A. López-Comino, J. F. Clinton, R. Westaway, C. Cauzzi, T. Dahm, and S. Wiemer. (2018), The November 2017 Mw 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea, Science, eaat2010.

Groos, J., J. Zeiß, M. Grund, and J. Ritter (2013), Microseismicity at two geothermal power plants at Landau and Insheim in the Upper Rhine Graben, Germany, paper presented at EGU General Assembly Conference Abstracts.

Ground Water Research & Education Foundation (GWREF) (2013), White paper II summarizing a special session on induced seismicity.

Grünthal, G. (2014), Induced seismicity related to geothermal projects versus natural tectonic earthquakes and other types of induced seismic events in central Europe, Geothermics, 52, 22-35.

Guang, Y. H. (1996), Seismicity induced by cascade reservoirs In Dahua, Yantan hydroelectric power stations, Journal of Hydroelectric Engineering, 4, 45-53 (in Chinese).

Guglielmi, Y., F. Cappa, J.-P. Avouac, P. Henry, and D. Elsworth (2015), Seismicity triggered by fluid injection—induced aseismic slip, Science, 348, 1224-1226.

Guha, S. K. (2000), Water Reservoir and Deep Well Induced Seismicity, In Induced Earthquakes, Springer Netherlands, 5-76.

Guha, S. K., and D. N. Patil (1990), Large water-reservoir-related induced seismicity, Gerlands Beitr Geophys, 99, 265-288.

Guo, M. (1995), Induced earthquake and monitoring research in Sichuan, Seismological and Geomangnetic Observation and Research, 2, 47-50 (in Chinese).

Guo, M. (1994), Earthquake due to the reservoir for power station at the Tonghezi in Sichuan province, Earthquake Research in Sichuan, 2, 12-23 (in Chinese).

Gupta, I. D. (2018), A New Case of Triggered Seismicity Associated with the Itezhi-Tezhi Reservoir, Zambia, Bulletin of the Seismological Society of America.

Gupta, H. K. (2011), Artificial water reservoir triggered earthquakes, Encyclopedia of Solid Earth Geophysics, 15-24.

Gupta, H. K. (2002), A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India, Earth-Science Reviews, 58, 279-310.

Hamilton, R. M., B. E. Smith, F. G. Fischer, and P. J. Papanek (1972), Earthquakes caused by underground nuclear explosions on Pahute Mesa, Nevada test site, Bulletin of the Seismological Society of America, 62, 1319-1341.

Haney, F., J. Kummerow, C. Langenbruch, C. Dinske, S. A. Shapiro, and F. Scherbaum (2011), Magnitude estimation for microseismicity induced during the KTB 2004/2005 injection experiment, Geophysics, 76, WC47-WC53.

Hasegawa, H. S., R. J. Wetmiller, and D. J. Gendzwill (1989), Induced seismicity in mines in Canada—an overview, Pure and applied geophysics, 129, 423-453.

Hassanzadeh, M. A., M. Jamalreyhani, S. Arvin, and S. VahidRavesh (2024), The link between gas extraction and shallow seismicity around the Dalan gas field of Zagros Mountains, Iran, Physics of the Earth and Planetary Interiors, 107246.

Haszeldine, S., and A. Cavanagh (2018), Weald Basin 2018 Earthquake Cluster Analysis: Does Horse Hill meet Davis & Frohlich (1993) criteria for induced earthquakes?, presented at OGA Newdigate Seismicity Workshop – 3 October 2018,

https://editor.ogauthority.co.uk/media/5173/10-weald-basin-earthquakes-induced-oga-workshop-haszeldin e-cavanagh-oct-2018-low-res.pdf, last accessed 29th April 2019.

Hauksson, E., T. Göbel, J.-P. Ampuero, and E. Cochran (2015), A century of oil-field operations and earthquakes in the Greater Los Angeles Basin, southern California, The Leading Edge, 34, 650-656.

Healy, J. H., W. W. Rubey, D. T. Griggs, and C. B. Raleigh (1968), The Denver earthquakes, Science, 161(3848), 1301-1310.

Hearn, E. H., C. Koltermann, and J. L. Rubinstein (2018), Numerical models of pore pressure and stress changes along basement faults due to wastewater injection: Applications to the 2014 Milan, Kansas earthquake, Geochemistry, Geophysics, Geosystems, 19(4), 1178-1198.

Heck, N. H., and R. R. Bodle (1931), United States earthquakes 1929, US Coast and Geodetic Survey, Serial.

Hedley, D. G. F., and J. E. Udd (1989), The Canada-Ontario-industry rockburst project, in Seismicity in mines, pp. 661-672, Springer.

Heesakkers, V., S. K. Murphy, G. van Aswegen, R. Domoney, S. Addams, T. Dewers, M. Zechmeister, and Z. Reches (2005), The rupture zone of the M= 2.2 earthquake that reactivated the ancient Pretorius fault in Tautona mine, South Africa, paper presented at AGU Fall Meeting Abstracts.

Heick, C., and D. Flach (1989), Microseismicity in a flooded potash mine, the Hope mine, Federal Republic of Germany, in Seismicity in mines, pp. 475-496, Springer.

Herath, P., J. Attanayake, and K. Gahalaut (2022), A reservoir induced earthquake swarm in the Central Highlands of Sri Lanka, Scientific Reports, 12(1), 18251.

Herrmann, R. B. (1978), A seismological study of two Attica, New York earthquakes, Bulletin of the Seismological Society of America, 68, 641-651.

Hicks, S., J. Verdon, B. Baptie, R. Luckett, Z. Mildon, and T. Gernon (2019), A shallow earthquake swarm close to hydrocarbon activities: discriminating between natural and induced causes for the 2018–19 Surrey, UK earthquake sequence, Seismological Research Letters.

Hill, D. P., P. A. Reasenberg, A. Michael, W. J. Arabaz, G. Beroza, D. Brumbaugh, J. N. Brune, R. Castro, S. Davis, and W. L. Ellsworth (1993), Seismicity remotely triggered by the magnitude 7.3 Landers, California, earthquake, Science, 260, 1617-1623.

Holland, A. A. (2011), Examination of possibly induced seismicity from hydraulic fracturing in the Eola field, Garvin County, Oklahoma.

Holland, A. A. (2013), Earthquakes triggered by hydraulic fracturing in south-central Oklahoma, Bulletin of the Seismological Society of America, 103, 1784-1792.

Holmgren, J. M., and M. J. Werner (2021), Raspberry Shake Instruments Provide Initial Ground-Motion Assessment of the Induced Seismicity at the United Downs Deep Geothermal Power Project in Cornwall, United Kingdom, The Seismic Record, 1(1), 27-34.

Holmgren, J. (2015), Induced seismicity in the Dannemora mine, Sweden, Uppsala Universitet.

Holschneider, M., G. Zöller, and S. Hainzl (2011), Estimation of the maximum possible magnitude in the framework of a doubly truncated Gutenberg–Richter model, Bulletin of the Seismological Society of America, 101, 1649-1659.

Holub, K., J. Holečko, J. Rušajová, and A. Dombkova (2012), Long-term development of seismic monitoring networks in the Ostrava-Karviná coal mine district, Acta Geodynamica et Geomaterialia, 9, 115-132.

Hong, T. K., C. E. Baag, H. Choi, and D. H. Sheen (2008), Regional seismic observations of the 9 October 2006 underground nuclear explosion in North Korea and the influence of crustal structure on regional phases, Journal of Geophysical Research: Solid Earth, 113.

Hornbach, M. J., H. R. DeShon, W. L. Ellsworth, B. W. Stump, C. Hayward, C. Frohlich, H. R. Oldham, J. E. Olson, M. B. Magnani, and C. Brokaw (2015), Causal factors for seismicity near Azle, Texas, Nature communications, 6.

Horner, R. B., J. E. Barclay, and J. M. MacRae (1994), Earthquakes and hydrocarbon production in the Fort St. John area of northeastern British Columbia, Canadian Journal of Exploration Geophysics, 30, 39-50.

Horton, S. (2012), Disposal of hydrofracking waste fluid by injection into subsurface aquifers triggers earthquake swarm in central Arkansas with potential for damaging earthquake, Seismological Research Letters, 83, 250-260.

Hough, S. E., and R. Bilham (2018), Revisiting Earthquakes in the Los Angeles, California, Basin During the Early Instrumental Period: Evidence for an Association with Oil Production, Journal of Geophysical Research: Solid Earth, 123, 10684-10705.

Hough, S. E., and M. Page (2016), Potentially induced earthquakes during the early twentieth century in the Los Angeles basin. Bulletin of the Seismological Society of America, 106(6), 2419-2435.

Hsieh, P. A., and J. D. Bredehoeft (1981), A reservoir analysis of the Denver earthquakes: A case of induced seismicity, Journal of Geophysical Research: Solid Earth, 86, 903-920.

Hsiung, S. M., W. Blake, A. H. Chowdhury, and T. J. Williams (1992), Effects of mining-induced seismic events on a deep underground mine, Pure and applied geophysics, 139, 741-762.

Hu, X. (2004), Study on induced earthquake of mianning Daqiao reservoir, Crustal Deformation and Earthquake, 2, 88-91 (in Chinese).

Hu, P., X. C. Chen, and Y. L. Hu (1997), Induced seismicity in Dongjiang reservoir, Hunan province, Chinese Journal of Geophysics, 1, 66-77 (in Chinese).

Hua, W., Z. Chen, S. Zheng, and C. Yan (2013), Reservoir-induced seismicity in the Longtan reservoir, southwestern China, Journal of seismology, 17, 667-681.

Hua, W., H. Fu, Z. Chen, S. Zheng, and C. Yan (2015), Reservoir-induced seismicity in high seismicity region—a case study of the Xiaowan reservoir in Yunnan province, China, Journal of Seismology, 19, 567-584.

Hua, W., S. Zheng, C. Yan, and Z. Chen (2013), Attenuation, site effects, and source parameters in the Three Gorges reservoir area, China, Bulletin of the Seismological Society of America, 103, 371-382.

Huaman, R. N. E., and T. X. Jun (2014), Energy related CO2 emissions and the progress on CCS projects: A review, Renewable and Sustainable Energy Reviews, 31, 368-385.

Huang, R., L. Zhu, J. Encarnacion, Y. Xu, C. C. Tang, S. Luo, and X. Jiang (2018), Seismic and Geologic Evidence of Water-Induced Earthquakes in the Three Gorges Reservoir Region of China, Geophysical Research Letters, 45(12), 5929-5936.

Huang, S., and P. Guo (2017), Analysis on source parameters of earthquakes in Guizhou Dongqing reservoir, Plateau Earthquake Research, 29, 13-18 (in Chinese).

Husen, S., E. Kissling, and A. von Deschwanden (2012), Induced seismicity during the construction of the Gotthard Base Tunnel, Switzerland: Hypocenter locations and source dimensions, Journal of seismology, 16, 195-213.

lannacchione, A. T., and J. C. Zelanko (1995), Occurrence and remediation of coal mine bumps: A historical review, Paper in Proceedings: Mechanics and Mitigation of Violent Failure in Coal and Hard-Rock Mines. US Bureau of Mines Spec. Publ, 01-95.

Improta, L., S. Bagh, P. De Gori, L. Valoroso, M. Pastori, D. Piccinini, C. Chiarabba, M. Anselmi, and M. Buttinelli (2017), Reservoir Structure and Wastewater-Induced Seismicity at the Val d'Agri Oilfield (Italy) Shown by Three-Dimensional Vp and Vp/Vs Local Earthquake Tomography, Journal of Geophysical Research: Solid Earth, 122(11), 9050-9082.

Improta, L., L. Valoroso, D. Piccinini, C. Chiarabba, and M. Buttinelli (2015), A detailed analysis of initial seismicity induced by wastewater injection in the Val d'Agri oil field (Italy), in Schatzalp Induced Seismicity Workshop, 10-13 March 2015, Davos, Switzerland.

Jaku, E. P., A. Z. Toper, and A. J. Jager (2001), Updating and maintaining the accident database, Safety in Mines Research Advisory Committee.

Jalali, M., V. Gischig, P. Selvadurai, E. Spagnuolo, M.-A. Meier, L. Dal Zilio, M. Rosskopf, A. Obermann, A. P. Rinaldi, N. Gholizadeh Doonechaly, K. Bröker, J. Osten, M. Hertrich, H. Maurer, D. Giardini, S. Wiemer, M.

Cocco, and F. Amann, and the FEAR Team (2025), Hydraulic Stimulations with Hydro-Mechanical Pre-Conditioning at the BedrettoLab, paper presented at EGU General Assembly Conference Abstracts 2025.

Jamalreyhani, M., L. Pousse-Beltran, P. Büyükakpınar, S. Cesca, E. Nissen, A. Ghods, J. Á. López-Comino, M. Rezapour, and M. Najafi (2021), The 2019–2020 Khalili (Iran) earthquake sequence—anthropogenic seismicity in the Zagros Simply Folded Belt?, Journal of Geophysical Research: Solid Earth, e2021JB022797.

Jiang, J. Z., H. Fu, and Q. F. Chen (2016), Characteristics of seismicity of the Xiaowan reservoir in an area of active tectonics from double-difference relocation analysis, Chinese J. Geophys, 059, 2468-2485 (in Chinese).

Jiménez, A., K. F. Tiampo, A. M. Posadas, F. Luzón, and R. Donner (2009), Analysis of complex networks associated to seismic clusters near the Itoiz reservoir dam, The European Physical Journal Special Topics, 174, 181-195.

Jones, T., V. Wesson, K. McCue, G. Gibson, C. Bricker, W. Peck, and A. Pascale (1994). The Ellalong, New South Wales, Earthquake of 6 August 1994.

Jost, M. L., T. Büßelberg, Ö. Jost, and H. P. Harjes (1998), Source parameters of injection-induced microearthquakes at 9 km depth at the KTB deep drilling site, Germany, Bulletin of the Seismological Society of America, 88(3), 815-832.

Juanes, R., B. Jha, B. H. Hager, J. H. Shaw, A. Plesch, L. Astiz, H. Dieterich, and C. Frohlich (2016), Were the May 2012 Emilia-Romagna earthquakes induced? A coupled flow-geomechanics modeling assessment, Geophysical Research Letters, 43(13), 6891-6897.

Julià, J., A. A. Nyblade, R. Durrheim, L. Linzer, R. Gök, P. Dirks, and W. Walter (2009), Source mechanisms of mine-related seismicity, Savuka mine, South Africa, Bulletin of the Seismological Society of America, 99, 2801-2814.

Julian, B. R., G. R. Foulger, and F. C. Monastero (2009), Seismic monitoring of EGS stimulation tests at the Coso geothermal field, California, using microearthquake locations and moment tensors, paper presented at Thirty-Fourth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February.

Julian, B. R., A. Ross, G. R. Foulger, and J. R. Evans (1996), Three-dimensional seismic image of a geothermal reservoir: The Geysers, California, Geophysical Research Letters, 23, 685-688.

Juncu, D., T. Árnadóttir, H. Geirsson, G. Guðmundsson, G. Gunnarsson, A. Hooper, S. Hreinsdóttir, and K. Michalczewska (2017, April), Induced surface deformation and seismicity during 2011-2012 at the Húsmúli reinjection site, Iceland, In EGU General Assembly Conference Abstracts (Vol. 19, p. 16854).

Jupe, A. J., A. S. P. Green, and T. Wallroth (1992), Induced microseismicity and reservoir growth at the Fjällbacka hot dry rocks project, Sweden, International journal of rock mechanics and mining sciences & geomechanics abstracts, 29, 343-354.

Justinic, A. H., B. Stump, C. Hayward, and C. Frohlich (2013), Analysis of the Cleburne, Texas, earthquake sequence from June 2009 to June 2010, Bulletin of the Seismological Society of America, 103, 3083-3093.

Kaieda, H., H. Ito, K. Kiho, K. Suzuki, H. Suenaga, and K. Shin (2005), Review of the Ogachi HDR project in Japan, paper presented at World Geothermal Congress.

Kaieda, H., S. Sasaki, and D. Wyborn (2010), Comparison of characteristics of micro-earthquakes observed during hydraulic stimulation operations in Ogachi, Hijiori and Cooper Basin HDR projects, paper presented at World Geothermal Congress.

Kalkan, E. (2016), An automatic P-phase arrival-time picker, Bulletin of the Seismological Society of America.

Kalkan, E., C. Gurbuz, and E. Zor (2014), The usage of correlation method for micro-earthquake analysis at Salavatli geothermal area, Aydin, Turkey, paper presented at AGU Fall Meeting Abstracts.

Kaneko, K., K. Sugawara, and Y. Obara (1989), Microseismic monitoring for coal burst prediction in the Miike coal mine, Gerlands Beitrage zur Geophysik, 98, 447-460.

Kangi, A., and N. Heidari (2008), Reservoir-induced seismicity in Karun III dam (southwestern Iran), Journal of Seismology, 12, 519-527.

Kao, H., A. M. Farahbod, J. F. Cassidy, M. Lamontagne, D. Snyder, and D. Lavoie (2015), Natural resources Canada's induced seismicity research, in Schatzalp Induced Seismicity Workshop, 10-13 March 2015, Davos, Switzerland.

Kaven, J. O., S. H. Hickman, A. F. McGarr, and W. L. Ellsworth (2015), Surface monitoring of microseismicity at the Decatur, Illinois, CO2 sequestration demonstration site, Seismological Research Letters, 86, 1096-1101.

Keck, R. G., and R. J. Withers (1994), A field demonstration of hydraulic fracturing for solids waste injection with real-time passive seismic monitoring, paper presented at SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers.

Keiding, M., T. Árnadóttir, S. Jonsson, J. Decriem, and A. Hooper (2010), Plate boundary deformation and man-made subsidence around geothermal fields on the Reykjanes Peninsula, Iceland, Journal of Volcanology and Geothermal Research, 194, 139-149.

Keranen, K. M., C. Hogan, H. M. Savage, G. A. Abers, and N. van der Elst (2013a), Variable seismic response to fluid injection in central Oklahoma, paper presented at AGU Fall Meeting Abstracts.

Keranen, K. M., H. M. Savage, G. A. Abers, and E. S. Cochran (2013b), Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 earthquake sequence, Geology, 41, 699-702.

Keranen, K. M., M. Weingarten, G. A. Abers, B. A. Bekins, and S. Ge (2014), Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science, 345, 448-451.

Kerr, R. A. (2009), After the quake, in search of the science--or even a good prediction, Science, 324, 322-322.

Kerr, R. A., and R. Stone (2009), A human trigger for the great quake of Sichuan?, Science, 323, 322-322.

Kertapati, E. K. (1987), Saguling-Cirata water reservoirs along Citarum river west Java, Indonesia as reservoir induced seismicity, YY1-YY9.

Kim, K-H., J-H. Ree, Y. Kim, S. Y. Kang, and W. Seo (2018), Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event, Science, eaat6081.

Kim, W. Y. (2013), Induced seismicity associated with fluid injection into a deep well in Youngstown, Ohio, Journal of Geophysical Research: Solid Earth, 118, 3506-3518.

Kim, W. Y., M. Gold, C. Schamberger, J. Jones, and H. Delano (2009), The 2008-2009 earthquake swarm near Dillsburg, Pennsylvania.

Kim, M., B. Yoon, C. Lee, K. G. Park, W. -S. Yoon, Y. Song, and T. J. Lee (2017), Microseismic monitoring during Hydraulic stimulation in Pohang (Korea) for EGS pilot project, paper presented at AGU Fall Meeting Abstracts.

King, G. C. P., R. S. Stein, and J. Lin (1994), Static stress changes and the triggering of earthquakes, Bulletin of the Seismological Society of America, 84, 935-953.

King, G. E. (2012), Hydraulic fracturing 101: What every representative, environmentalist, regulator, reporter, investor, university researcher, neighbor and engineer should know about estimating frac risk and improving frac performance in unconventional gas and oil wells, paper presented at SPE Hydraulic Fracturing Technology Conference, Society of Petroleum Engineers.

Kinscher, J., P. Bernard, I. Contrucci, A. Mangeney, J. P. Piguet, and P. Bigarre (2015), Location of microseismic swarms induced by salt solution mining, Geophysical Journal International, 200, 337-362.

Király, E., V. Gischig, D. Karvounis, and S. Wiemer (2014), Validating models to forecasting induced seismicity related to deep geothermal energy projects, paper presented at Proceedings, 39th Workshop on Geothermal Reservoir Engineering.

Kitano, K., Y. Hori, and H. Kaieda (2000), Outline of the Ogachi HDR project and character of the reservoirs, paper presented at World Geothermal Congress, Kyushu-Tohoku, Japan, May 28-June 10.

Kivi, I. R., A. Boyet, H. Wu, L. Walter, S. Hanson-Hedgecock, F. Parisio, and V. Vilarrasa (2023), Global physics-based database of injection-induced seismicity, Earth System Science Data Discussions, 1-33.

Kivi, I. R., A. Boyet, H. Wu, L. Walter, S. Hanson-Hedgecock, F. Parisio, and V. Vilarrasa (2022), [Dataset] Global physics-based database of injection-induced seismicity.

Klose, C. D. (2007a), Coastal land loss and gain as potential earthquake trigger mechanism in SCRs, paper presented at AGU Fall Meeting Abstracts.

Klose, C. D. (2007b), Geomechanical modeling of the nucleation process of Australia's 1989 M5.6 Newcastle earthquake, Earth and Planetary Science Letters, 256, 547-553.

Klose, C. D. (2007c), Mine water discharge and flooding: A cause of severe earthquakes, Mine Water and the Environment, 26, 172-180.

Klose, C. D. (2010), Human-triggered earthquakes and their impacts on human security, Achieving Environmental Security: Ecosystem Services and Human Welfare, 13-19.

Klose, C. D. (2012), Evidence for anthropogenic surface loading as trigger mechanism of the 2008 Wenchuan earthquake, Environmental Earth Sciences, 66, 1439-1447.

Klose, C. D. (2013), Mechanical and statistical evidence of the causality of human-made mass shifts on the Earth's upper crust and the occurrence of earthquakes, Journal of Seismology, 17, 109-135.

Klose, C. D., and L. Seeber (2007), Shallow seismicity in stable continental regions, Seismological Research Letters, 78, 554-562.

Kneafsey, T., D. Blankenship, J. Burghardt, T. Johnson, P. Dobson, P. C. Schwering, C. Hopp, M. White, J. P. Morris, C. Strickland, V. Vermuel, P. Fu, M. Ingraham, W. Roggenthen, T. Doe, J. B. Ajo-Franklin, L. Huang, V. R. Tribaldos, Y. Guglielmi, H. Knox, P. Cook, F. Soom, C. Ulrich, L. Frash, G. Neupane, T. Pyatina, J. Weers, E. Mattson, M. Robertson, and The EGS Collab Team, (2023), The EGS Collab – Discoveries and Lessons from an Underground Experiment Series, paper presented at Forty-Eighth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 6-8th.

Knoll, P., G. Kowalle, K. Rother, B. Schreiber, and I. Paskaleva (1996), Analysis of microtremors within the Provadia region near a salt leaching mine, in Induced seismic events, pp. 389-407, Springer.

Koirala, R., G. Kwiatek, M. Shirzaei, E. Brodsky, T. Cladouhos, M. Swyer, and T. Goebel (2024), Induced seismicity and surface deformation associated with long-term and abrupt geothermal operations in Blue Mountain, Nevada, Earth and Planetary Science Letters, 643, 118883.

Kolawole, F., E. A. Atekwana, S. Malloy, D. S. Stamps, R. Grandin, M. G. Abdelsalam, K. Leseane, and E. M. Shemang (2017), Aeromagnetic, gravity, and Differential Interferometric Synthetic Aperture Radar analyses reveal the causative fault of the 3 April 2017 Mw6.5 Moiyabana, Botswana, earthquake, Geophysical Research Letters, 44 (17), 8837–8846.

Kouznetsov, O., V. Sidorov, S. Katz, and G. Chilingarian (1994), Interrelationships among seismic and short-term tectonic activity, oil and gas production, and gas migration to the surface, Journal of Petroleum Science and Engineering, 13, 57-63.

Kovach, R. L. (1974), Source mechanisms for Wilmington oil field, California, subsidence earthquakes, Bulletin of the Seismological Society of America, 64, 699-711.

Kozłowska, M., B. Orlecka-Sikora, S. Dineva, Ł. Rudziński, and M. Boskovic (2020), What Governs the Spatial and Temporal Distribution of Aftershocks in Mining-Induced Seismicity: Insight into the Influence of Coseismic Static Stress Changes on Seismicity in Kiruna Mine, Sweden, Bulletin of the Seismological Society of America.

Kraaijpoel, D., D. Nieuwland, B. Wassing, and B. Dost (2012), Induced seismicity at an underground gas storage facility in the Netherlands, paper presented at EGU General Assembly Conference Abstracts.

Kreitler, C. W. (1976), Faulting and land subsidence from ground-water and hydrocarbon production, Houston-Galveston, Texas, paper presented at Proceedings of the Anaheim Symposium.

Kremenetskaya, E. O., and V. M. Trjapitsin (1995), Induced seismicity in the Khibiny Massif (Kola Peninsula), in Induced seismicity, pp. 29-37, Springer.

Kundu, B., N. K. Vissa, and V. K. Gahalaut (2015), Influence of anthropogenic groundwater unloading in Indo-Gangetic Plains on the 25 April 2015 Mw 7.8 Gorkha, Nepal earthquake, Geophysical Research Letters, 42.

Kundu, B., N. K. Vissa, K. Gahalaut, V. K. Gahalaut, D. Panda, and K. Malik (2019), Influence of anthropogenic groundwater pumping on the November 12, 2017 M7. 3 Iran-Iraq border Earthquake, Geophysical Journal International.

Kwee, J. (2012), Micro-seismicity in the Bergermeer gas storage field, University of Utrecht, The Netherlands.

Kwiatek, G., M. Bohnhoff, G. Dresen, A. Schulze, T. Schulte, G. Zimmermann, and E. Huenges (2010), Microseismicity induced during fluid-injection: A case study from the geothermal site at Groß Schönebeck, North German Basin, Acta Geophysica, 58, 995-1020.

Kwiatek, G., T. Saarno, F. Bluemle, T. J. Ader, M. Bohnhoff, M. Chendorain, G. Dresen, P. J. Heikkinen, I. T. Kukkonen, P. Leary, and P. E. Malin (2018), Controlling induced seismicity during hydraulic stimulation of a 6-km deep EGS in Finland, paper presented at AGU Fall Meeting Abstracts.

Lamontagne, M., G. Rogers, J. Cassidy, J. P. Tournier, and M. Lawrence (2018), A Review of Reservoir Monitoring and Reservoir-Triggered Seismicity in Canada, Bulletin of the Seismological Society of America.

Lamontagne, M., Y. Hammamji, and V. Peci (2008), Reservoir-triggered seismicity at the Toulnustouc hydroelectric project, Quebec north shore, Canada, Bulletin of the Seismological Society of America, 98, 2543-2552.

Lamontagne, M., Y. Hammamji, J. P. Tournier, and C. Woodgold (2006), Reservoir-induced earthquakes at Sainte-Marguerite-3, Quebec, Canada, Canadian Journal of Earth Sciences, 43(2), 135-146.

Leblanc, G., and F. Anglin (1978), Induced seismicity at the Manic 3 reservoir, Quebec, Bulletin of the Seismological Society of America, 68, 1469-1485.

Lee, M. F., P. Mikula, and E. Kinnersly (2006), In situ rock stress measurements and stress change monitoring at Mt Charlotte gold mine, western Australia, paper presented at In-Situ Rock Stress: International Symposium on In-Situ Rock Stress, Trondheim, Norway, 19-21 June 2006, CRC Press.

Lengliné, O., J. Schmittbuhl, K. Drif, S. Lambotte, M. Grunberg, J. Kinscher, C. Sira, A. Schlupp, M. Schaming, H. Jund, and F. Masson (2023), The largest induced earthquakes during the GEOVEN deep geothermal project, Strasbourg, 2018–2022: from source parameters to intensity maps, Geophysical Journal International, 234(3), 2446-2458.

Lehner, B., C. R. Liermann, C. Revenga, C. Vörösmarty, B. Fekete, P. Crouzet, P. Döll, M. Endejan, K. Frenken, and J. Magome (2011), High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management, Frontiers in Ecology and the Environment, 9, 494-502.

Lei, X., J. Su, and Z. Wang (2020), Growing seismicity in the Sichuan Basin and its association with industrial activities, Science China Earth Sciences, 63, 1633-1660.

Lei, X., Z. Wang, and J. Su (2019), The December 2018 ML 5.7 and January 2019 ML 5.3 Earthquakes in South Sichuan Basin Induced by Shale Gas Hydraulic Fracturing, Seismological Research Letters.

Lei, X., D. Huang, J. Su, G. Jiang, X. Wang, H. Wang, X. Guo, and H. Fu (2017), Fault reactivation and earthquakes with magnitudes of up to Mw4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China, Scientific reports, 7, 7971.

Lei, X., S. Ma, W. Chen, C. Pang, J. Zeng, and B. Jiang (2013), A detailed view of the injection-induced seismicity in a natural gas reservoir in Zigong, southwestern Sichuan Basin, China, Journal of Geophysical Research: Solid Earth, 118, 4296-4311.

- Lei, X., G. Z. Yu, S. L. Ma, X. Z. Wen, Q. Wang, Y. J. Sun, H. L. Jiang, J. Wang, X. Y. Zhan, and P. Mao (2011), Earthquakes induced by water injection at ~3km depth within the Rongchang gas field, Chongqing, China. Translated World Seismology, (06), 16-29 (in Chinese).
- Lei, X., G. Yu, S. Ma, X. Wen, and Q. Wang (2008), Earthquakes induced by water injection at \sim 3 km depth within the Rongchang gas field, Chongqing, China, Journal of Geophysical Research: Solid Earth, 113.
- Li, Y. (2025), Heterogeneous layer effects on mining-induced dynamic ruptures. Computers & Geosciences, 195, 105776.
- Li, H., X. Chang, X. B. Xie, and Y. Wang (2022), Spatiotemporal variations in seismic attenuation during hydraulic fracturing: A case study in a tight oil reservoir in the Ordos Basin, China, Geophysics, 87(2), B69-B79.
- Li, T., Y. J. Gu, J. Wang, R. Wang, J. Yusifbayov, M. Reyes Canales, and T. Shipman (2021), Recent earthquakes induced by wastewater disposal near Musreau Lake, Alberta, GeoConvention Virtual Event, September 13-15 2021.
- Li, W., S. Ni, C. Zang, and R. Chu (2020), Rupture Directivity of the 2019 M w 5.8 Changning, Sichuan, China, Earthquake and Implication for Induced Seismicity, Bulletin of the Seismological Society of America, 110(5), 2138-2153.
- Li, J. Z. (2014), Trend analysis and prediction of mine earthquakes in east mining area of Pingping coal mine (translation), Modern Mining, 30(04), 88-90, (in Chinese).
- Li, T., M. F. Cai, and M. Cai (2007), A review of mining-induced seismicity in China, International Journal of Rock Mechanics and Mining Sciences, 44, 1149-1171.
- Li, J. R. (1999), Prediction of the earthquake with the reservoir of Tianshengqiao hydroelectric station in Nanpanjiang, Guizhou, Guizhou Geology, 4, 61-69 (in Chinese).
- Lim, H., K. Deng, Y. H. Kim, J. H. Ree, T. R. Song, and K. H. Kim (2020), The 2017 Mw 5.5 Pohang earthquake, South Korea, and poroelastic stress changes associated with fluid injection, Journal of Geophysical Research: Solid Earth, 125(6), e2019JB019134.
- Lin, C. H. (2005), Seismicity increase after the construction of the world's tallest building: An active blind fault beneath the Taipei 101, Geophysical Research Letters, 32.
- Liu, Z., T. Wu, and X. He (2025), Remote dynamic triggering of reservoir-induced seismicity during the initial impoundment of the Baihetan Reservoir, paper presented at EGU General Assembly Conference Abstracts 2025.
- Liu, J., J. B. Gong, X. W. Wu, and Y. S. Liu (2021), Application and practice of the earthquake monitoring system in Shuibuya reservoir area, Hydropower and New Energy, 35, 65-69 (in Chinese).
- Liu, J., L. Li, J. Zahradník, E. Sokos, C. Liu, and X. Tian (2018), North Korea's 2017 Test and its Nontectonic Aftershock, Geophysical Research Letters, 45(7), 3017-3025.
- Liu, S., and D. Cao (1980), Are the seismic activities since 1954 induced by Foziling reservoir? Comment, Seismology & Geology, 2, 70-71 (in Chinese).

Lizurek, G., Ł. Rudziński, and B. Plesiewicz (2015), Mining induced seismic event on an inactive fault, Acta Geophysica, 63, 176-200.

Llenos, A. L., and A. J. Michael (2013), Modeling earthquake rate changes in Oklahoma and Arkansas: Possible signatures of induced seismicity, Bulletin of the Seismological Society of America, 103, 2850-2861.

Lockridge, J. S., M. J. Fouch, and J. R. Arrowsmith (2012), Seismicity within Arizona during the deployment of the Earthscope USarray transportable array, Bulletin of the Seismological Society of America, 102, 1850-1863.

Long, L. T., and C. W. Copeland (1989), The Alabama, USA, seismic event and strata collapse of May 7, 1986, Pure and applied geophysics, 129, 415-421.

López Comino, J. A., Cesca S., Jarosławski, J., Montcoudiol, N., Heimann S., Dahm, T. Lasocki, S., Gunning, A., Capuano, P., and W. L. Ellsworth (2018), Induced seismicity response of hydraulic fracturing: results of a multidisciplinary monitoring at the Wysin site, Poland, paper presented at EGU General Assembly Conference Abstracts 2018.

Lorenz, J. C. (2001), The stimulation of hydrocarbon reservoirs with subsurface nuclear explosions, Oil-Industry History, 2, 56-63.

Lovchikov, A. V. (2013), Review of the strongest rockbursts and mining-induced earthquakes in Russia, Journal of Mining Science, 49, 572-575.

Luo, J. W., Y. Li, and J. Q. Ye (2020), Seismic activity analysis in the Xiluodu reservoir affected area, Journal of Seismological Research, 43, 118-124 (in Chinese).

Luo, Q. X., K. Wang, H. J. Gao, and Z. Y. Zhou (2011), The analysis of reservoir-induced earthquake of the Yunpeng hydropower plant, Yunnan Water Power, 27, 30-34 (in Chinese).

Luo, Y. M. (1996), Preliminary analysis of ML2.5 earthquake in Dongfeng reservoir (translaion), Acta Seismologica Sinica, (03), 52-54 (in Chinese).

Ma, Y., D. W. Eaton, C. Wang, and A. Aklilu (2023), Characterizing hydraulic fracture growth using distributed acoustic sensing-recorded microseismic reflections, Geophysics, 88 (6), WC47–WC57.

Ma, Z. J., Y. Y. Zhong, Y. B. Han, J. Q. Ye, Z. F. Zhang, S. F. Lin, M. L. Xu, and Q. Q. Liu (2016), The tectonic conditions of Shanxi reservoir induced earthquake in Wenzhou, Earth Science, 41, 1413-1423 (in Chinese).

Ma, T. H., C. A. Tang, L. X. Tang, W. D. Zhang, and L. Wang (2015a), Rockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II hydropower station, Tunnelling and Underground Space Technology, 49, 345-368.

Ma, X. M., L. I. Zhen, H. Peng, J. J. Jiang, F. Zhao, C. P. Han, P. X. Yan, S. Z. Lu, and L. G. Peng (2015b), Fluid-injection-induced seismicity experiment of the WFSD-3P borehole, Acta Geologica Sinica, 89, 1057-1058.

Ma, W. (2012), Analysis on the disaster mechanism of rock collapse of M4.4 reservoir-induced earthquake on January 17, 2010, at Dongjing reservoir in Guizhou Province, China, Natural hazards, 62, 141-148.

Maggi, A., J. A. Jackson, D. Mckenzie, and K. Priestley (2000), Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere, Geology, 28, 495-498.

Maghsoudi, S., D. W. Eaton, and J. Davidsen (2016), Nontrivial clustering of microseismicity induced by hydraulic fracturing, Geophysical Research Letters, 43, 10672-10679.

Mahani, A. B., R. Schultz, H. Kao, D. Walker, J. Johnson, and C. Salas (2017), Fluid Injection and Seismic Activity in the Northern Montney Play, British Columbia, Canada, with Special Reference to the 17 August 2015 Mw 4.6 Induced Earthquake, Bulletin of the Seismological Society of America, 107, 542-552.

Mahdi, S. K. (1988), Tarbela reservoir a question of induced seismicity, in International Conference on Case Histories in Geotechnical Engineering.

Maity, D., and J. Ciezobka (2021), Diagnostic assessment of reservoir response to fracturing: a case study from Hydraulic Fracturing Test Site (HFTS) in Midland Basin, Journal of Petroleum Exploration and Production Technology, 11, 3177-3192.

Majer, E. L. (2011), Workshop on induced seismicity due to fluid injection/production from energy-related applications, Lawrence Berkeley National Laboratory.

Majer, E. L., R. Baria, M. Stark, S. Oates, J. Bommer, B. Smith, and H. Asanuma (2007), Induced seismicity associated with enhanced geothermal systems, Geothermics, 36, 185-222.

Majer, E. L., and J. E. Peterson (2008), The impact of injection on seismicity at The Geysers, California geothermal field, International Journal of Rock Mechanics and Mining Sciences, 44, 1079-1090.

Malovichko, D., R. Dyagilev, D. Y. Shulakov, P. Butyrin, and S. V. Glebov (2009), Seismic monitoring of large-scale karst processes in a potash mine, Controlling seismic hazard and sustainable development of deep mines, 2, 989-1002.

Manga, M., C. –Y. Wang, and M. Shirzaei (2016), Increased stream discharge after the 3 September 2016 MW 5.8 Pawnee, Oklahoma earthquake, Geophysical Research Letters, 43, 11588-11594.

Mao, Y. P., Y. L. Wang, F. U. Hong, L. Mao-Xian, and H. Ke (2008), Reservoir-induced seismicity and geological tectonic environment of Manwan and Dachaoshan reservoirs in the middle reaches of Lancangjiang river of Yunnan, Journal of Seismological Research, 3, 209-214 (in Chinese).

Masouri Daneshvar, M. R., M. Ebrahimi, and H. Nejadsoleymani (2018), Investigation of mining-induced earthquakes in Iran within a time window of 2006–2013, Journal of Seismology, 22(6), 1437-1450.

Marcak, H., and Mutke, G. (2013), Seismic activation of tectonic stresses by mining, Journal of Seismology, 17(4), 1139-1148.

Matcharashvili, T., T. Chelidze, and J. Peinke (2008), Increase of order in seismic processes around large reservoir induced by water level periodic variation, Nonlinear Dynamics, 51(3), 399-407.

Matcharashvili, T., T. Chelidze, N. Zhukova, and Z. Tsveradze (2016), Application of the dynamic data analysis in the real time monitoring of high dam body behaviour, Chaotic Modeling and Simulation (CMSIM), 3, 309-316.

Matos, D. R., M. G. Vol Huelsen, A. A. Braga, C. Chimpliganond, G. S. Franca, L. V. Barros, and J. O. de Araújo (2010), Geophysical integration and triggered seismicity at the Irapé Reservoir, Minas Gerais State, Brazil, In 2010 AGU Joint Assembly.

Matrullo, E., I. Contrucci, P. Dominique, M. Bennani, H. Aochi, J. Kinsher, P. Bernard, and P. Bigarré (2015), Analysis and interpretation of induced micro-seismicity by flooding of the Gardanne Coal Basin (Provence—southern France), paper presented at 77th EAGE Conference and Exhibition-Workshops.

Maurer, V., N. Cuenot, E. Gaucher, M. Grunberg, J. Vergne, H. Wodling, M. Lehujeur, and J. Schmittbuhl (2015), Seismic monitoring of the Rittershoffen EGS project (Alsace, France), paper presented at World Geothermal Congress.

Maxwell, S. C., D. Cho, T. L. Pope, M. Jones, C. L. Cipolla, M. G. Mack, F. Henery, M. Norton, and J. A. Leonard (2011), Enhanced reservoir characterization using hydraulic fracture microseismicity, paper presented at SPE Hydraulic Fracturing Technology Conference, Society of Petroleum Engineers.

Maxwell, S. C., and H. Fabriol (2004), Passive seismic imaging of CO2 sequestration at Weyburn.

Maxwell, S. C., U. Zimmer, R. W. Gusek, and D. J. Quirk (2009), Evidence of a horizontal hydraulic fracture from stress rotations across a thrust fault, SPE Production & Operations, 24, 312-319.

Mazzoldi, A., A. Borgia, M. Ripepe, E. Marchetti, G. Ulivieri, M. della Schiava, and C. Allocca (2015), Faults strengthening and seismicity induced by geothermal exploitation on a spreading volcano, Mt. Amiata, Italia, Journal of Volcanology and Geothermal Research, 301, 159-168.

McClure, M. (2023), Calibration Parameters Required to Match the Utah FORGE 16A(78)-32 Stage 3 stimulation with a Planar Fracturing Model, paper presented at Forty-Eighth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 6-8th.

McClure, M. W., and R. N. Horne (2014), Correlations between formation properties and induced seismicity during high pressure injection into granitic rock, Engineering Geology, 175, 74-80.

McGarr, A. (1991), On a possible connection between three major earthquakes in California and oil production, Bulletin of the Seismological Society of America, 81, 948-970.

McGarr, A. (2014), Maximum magnitude earthquakes induced by fluid injection, Journal of Geophysical Research: Solid Earth, 119, 1008-1019.

McGarr, A., and A. J. Barbour (2017), Wastewater disposal and the earthquake sequences during 2016 near Fairview, Pawnee, and Cushing, Oklahoma, Geophysical Research Letters, 44, 9330-9336.

McGarr, A., B. Bekins, N. Burkardt, J. Dewey, P. Earle, W. Ellsworth, S. Ge, S. Hickman, A. Holland, and E. Majer (2015), Coping with earthquakes induced by fluid injection, Science, 347, 830-831.

McGarr, A., and D. Simpson (1997), A broad look at induced and triggered seismicity, Rockbursts and Seismicity in Mines, 385-396.

McGarr, A., D. Simpson, and L. Seeber (2002), Case histories of induced and triggered seismicity, in International geophysics series, international handbook of earthquake and engineering seismology, pp. 647-664.

McKavanagh, B., B. Boreham, K. McCue, G. Gibson, J. Hafner, and G. Klenowski (1995), The CQU regional seismic network and applications to underground mining in Central Queensland, Australia, Pure and applied geophysics, 145, 39-57.

McKeown, F. A. (1975), Relation of geological structure to seismicity at Pahute Mesa, Nevada test site, Bulletin of the Seismological Society of America, 65, 747-764.

McKeown, F. A., and D. D. Dickey (1969), Fault displacements and motion related to nuclear explosions, Bulletin of the Seismological Society of America, 59, 2253-2269.

McNamara, D. E., H. M. Benz, R. B. Herrmann, E. A. Bergman, P. Earle, A. Holland, R. Baldwin, and A. Gassner (2015a), Earthquake hypocenters and focal mechanisms in central Oklahoma reveal a complex system of reactivated subsurface strike-slip faulting, Geophysical Research Letters, 42, 2742-2749.

McNamara, D. E., G. P. Hayes, H. M. Benz, R. A. Williams, N. D. McMahon, R. C. Aster, A. Holland, T. Sickbert, R. Herrmann, and R. Briggs (2015b), Reactivated faulting near Cushing, Oklahoma: Increased potential for a triggered earthquake in an area of United States strategic infrastructure, Geophysical Research Letters, 42, 8328-8332.

Mehrabifard, A., S. Rogers, C. Byrne, and E. Eberhardt (2025), Induced seismicity in the Kiskatinaw area of Northeastern British Columbia, Canada: Empirical investigation of hydraulic diffusivity and induced seismic response of the fractured reservoir, Geoenergy Science and Engineering, 244, 213458.

Mercerat, E. D., L. Driad-Lebeau, and P. Bernard (2010), Induced seismicity monitoring of an underground salt cavern prone to collapse, Pure and Applied Geophysics, 167, 5-25.

Meng, L., A. McGarr, L. Zhou, and Y. Zang (2019), An Investigation of Seismicity Induced by Hydraulic Fracturing in the Sichuan Basin of China Based on Data from a Temporary Seismic Network, Bulletin of the Seismological Society of America.

Mereu, R. F., J. Brunet, K. Morrissey, B. Price, and A. Yapp (1986), A study of the microearthquakes of the Gobles oil field area of southwestern Ontario, Bulletin of the Seismological Society of America, 76, 1215-1223.

Miao, X. S., H. Sun, and Z. G. Wu (1999), Mechanism analysis of rockburst in soft rock mines in eastern of Xuzhou, Chinese Journal of Rock Mechanics and Engineering, 4, 60-63 (in Chinese).

Michas, G., K. Pavlou, F. Vallianatos, and G. Drakatos (2020), Correlation Between Seismicity and Water Level Fluctuations in the Polyphyto Dam, North Greece, Pure and Applied Geophysics, 1-20.

Mikhailova, N. N., I. N. Sokolova, A. Ye. Velikanov, and N. N. Poleshko (2017), Seismicity of Semipalatinsk Test Site territory by data of Kazakhstan monitoring network, paper presented at CTBT: Science and Technology 2017 conference, Vienna.

Mikhailova, N. N., I. L. Aristova, N. N. Poleshko, and A. S. Mukambayev (2015), Use of IMS stations to provide a new representation of Kazakhstan seismicity, paper presented at CTBTO Preparatory Commission.

Milev, A. M., and S. M. Spottiswoode (2002), Effect of the rock properties on mining-induced seismicity around the Ventersdorp Contact Reef, Witwatersrand Basin, South Africa, in The mechanism of induced seismicity, pp. 165-177, Springer.

Milne, W. G., and M. J. Berry (1976), Induced seismicity in Canada, Engineering Geology, 10, 219-226.

Mirzoev, K. M., A. V. Nikolaev, A. A. Lukk, and S. L. Yunga (2009), Induced seismicity and the possibilities of controlled relaxation of tectonic stresses in the Earth's crust, Izvestiya, Physics of the Solid Earth, 45, 885-904.

Mizugaki, K. (2000), Geologic structure and volcanic history of the Yanaizu-Nishiyama (Okuaizu) geothermal field, Northeast Japan, Geothermics, 29(2), 233-256.

Moeck, I., T. Bloch, R. Graf, S. Heuberger, P. Kuhn, H. Naef, M. Sonderegger, S. Uhlig, and M. Wolfgramm (2015), The St. Gallen project: Development of fault controlled geothermal systems in urban areas, paper presented at World Geothermal Congress.

Mogren, S., and M. Mukhopadhyay (2013), Study of seismogenic crust in the eastern province of Saudi Arabia and its relation to the seismicity of the Ghawar fields, paper presented at AGU Fall Meeting Abstracts.

Molina, I., J. S. Velásquez, J. L. Rubinstein, A. Garcia-Aristizabal, and V. Dionicio (2020), Seismicity induced by massive wastewater injection near Puerto Gaitán, Colombia, Geophysical Journal International, 223(2), 777-791.

Montalvo-Arrieta, J. C., X. Pérez-Campos, L. G. Ramos-Zuñiga, E. G. Paz-Martínez, J. A. Salinas-Jasso, I. Navarro de León, and J. A. Ramírez-Fernández (2018), El Cuchillo Seismic Sequence of October 2013–July 2014 in the Burgos Basin, Northeastern Mexico: Hydraulic Fracturing or Reservoir-Induced Seismicity?, Bulletin of the Seismological Society of America.

Morrison, D. M. (1989), Rockburst research at Falconbridge's Strathcona mine, Sudbury, Canada, Pure and applied geophysics, 129, 619-645.

Mossop, A., and P. Segall (1999), Volume strain within The Geysers geothermal field, Journal of Geophysical Research: Solid Earth, 104, 29113-29131.

Mulargia, F., and A. Bizzarri (2014), Anthropogenic triggering of large earthquakes, Scientific Reports, 4.

Mulyadi (2010), Case study: Hydraulic fracturing experiment in the Wayang Windu geothermal field, paper presented at World Geothermal Congress, Bali, Indonesia, 25-29 April 2010.

Muñoz-Burbano, F., M. Calò, G. Savard, V. Reyes-Orozco, and M. Lupi (2024), Using time-lapse seismic velocity changes to monitor the Domo de San Pedro Geothermal field, Mexico, Geothermics, 120, 103010.

Muntendam-Bos, A. G., G. Hoedeman, K. Polychronopoulou, D. Draganov, C. Weemstra, W. van der Zee, R. R. Bakker, and H. Roest (2022), An overview of induced seismicity in the Netherlands, Netherlands Journal of Geosciences, 101, p.e1.

Murria, J. (1997). Earthquake geotechnical engineering aspects of the protection dikes of the Costa Oriental of Lake Maracaibo, Venezuela, Venezuela Foundation for Seismological Research, Caracas, Venezuela.

National Research Council (NRC) (2013), Induced seismicity potential in energy technologies, National Academies Press, Committee on Induced Seismicity Potential in Energy Technologies.

Nayak, A., and D. S. Dreger (2014), Moment tensor inversion of seismic events associated with the sinkhole at Napoleonville salt dome, Louisiana, Bulletin of the Seismological Society of America, 104(4), 1763-1776.

Neuhaus, C. W., and J. L. Miskimins (2012), Analysis of surface and downhole microseismic monitoring coupled with hydraulic fracture modeling in the Woodford Shale, paper presented at SPE Europec/EAGE Annual Conference, Society of Petroleum Engineers.

Nicholson, C., E. Roeloffs, and R. L. Wesson (1988), The northeastern Ohio earthquake of 31 January 1986: Was it induced?, Bulletin of the Seismological Society of America, 78, 188-217.

Nicholson, C. J. (1992), Earthquakes associated with deep well activities-comments and case histories, paper presented at The 33th US Symposium on Rock Mechanics (USRMS), American Rock Mechanics Association.

Nicholson, C. J., and R. L. Wesson (1992), Triggered earthquakes and deep well activities, Pure and applied geophysics, 139, 561-578.

Nicol, A., R. Carne, M. Gerstenberger, and A. Christophersen (2011), Induced seismicity and its implications for CO2 storage risk, Energy Procedia, 4, 3699-3706.

Nikulin, V., and B. Assinovskaya (2018), Seismicity of the East Baltic region after the Kaliningrad earthquakes on 21 September 2004, Baltica, 31(1).

Nuannin, P., O. Kulhanek, L. Persson, and T. Askemur (2005), Inverse correlation between induced seismicity and b-value, observed in the Zingruvan mine, Sweden, Acta Geodynamica et Geomaterialia, 2, 5.

Ohtake, M. (1974), Seismic activity induced by water injection at Matsushiro, Japan, Journal of Physics of the Earth, 22, 163-176.

Oil and Gas Authority (OGA) (2018), OGA Newdigate Seismicity Workshop – 3 October 2018. https://www.ogauthority.co.uk/media/5174/2018_11_23-newdigate-workshop-summary-finalv3.pdf, last accessed 29th April 2019.

Okamoto, K., L. Yi, H. Asanuma, T. Okabe, Y. Abe, and M. Tsuzuki (2020), Activation and Inactivation of Seismicity: The Terminations of Two Injection Tests in Okuaizu Geothermal Field, Japan, Seismological Society of America, 91(5), 2730-2743.

Okamoto, K., L. Yi, H. Asanuma, T. Okabe, Y. Abe, and M. Tsuzuki (2018), Triggering processes of microseismic events associated with water injection in Okuaizu Geothermal Field, Japan, Earth, Planets and Space, 70(1), 15.

Orlic, B., B. B. T. Wassing, and C. R. Geel (2013), Field scale geomechanical modeling for prediction of fault stability during underground gas storage operations in a depleted gas field in the Netherlands, paper presented at 47th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.

Orzol, J., R. Jung, R. Jatho, T. Tischner, and P. Kehrer (2005), The Genesys-Project: Extraction of geothermal heat from tight sediments, paper presented at World Geothermal Congress.

Ottemöller, L., H. H. Nielsen, K. Atakan, J. Braunmiller, and J. Havskov (2005), The 7 May 2001 induced seismic event in the Ekofisk oil field, North Sea, Journal of Geophysical Research: Solid Earth, 110.

Ouyang, Z., G. Yao, M. Xu, and Q. Zhu (2008), Investigation into mining tremor mechanism in Puqing iron mine, Journal of Wuhan University of Science and Technology, Natural Science Edition, 02, 155-158 (in Chinese).

Oye, V., E. Aker, T. M. Daley, D. Kühn, B. Bohloli, and V. Korneev (2013), Microseismic monitoring and interpretation of injection data from the In Salah CO2 storage site (Krechba), Algeria, Energy Procedia, 37, 4191-4198.

Oye, V., and M. Roth (2005), Source parameters of microearthquakes from the 1.5 km deep Pyhäsalmi ore mine, Finland, paper presented at Proceedings, Thirtieth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January.

Özgür, G. (2020), Induced seismicity at upstream petroleum sector in Turkey, in Proceedings of Turkey IV, Scientific and Tehnical Petroleum Congress, Chamber of Petroleum Engineers, 18-20 November 2020, Turkey.

Pankow, K. L., J. R. Moore, J. M. Hale, K. D. Koper, T. Kubacki, K. M. Whidden, and M. K. McCarter (2014), Massive landslide at Utah copper mine generates wealth of geophysical data, GSA Today, 24(1), 4-9.

Panza, G. F., and J. Bela (2020), NDSHA: A new paradigm for reliable seismic hazard assessment, Engineering Geology, 275, 105403.

Park, S., L. Xie, K. –I. Kim, S. Kwon, K. –B. Min, J. Choi, W. –S. Yoon, and Y. Song (2017), First Hydraulic Stimulation in Fractured Geothermal Reservoir in Pohang PX-2 Well, Procedia Engineering, 191, 829-837.

Paskaleva, I., A. G. Aronov, R. R. Seroglazov, and T. I. Aronova (2006), Characteristic features of induced seismic processes in mining regions exemplified by the potassium salt deposits in Belarus and Bulgaria, Acta Geodaetica et Geophysica Hungarica, 41, 293-303.

Pavlou, K., G. Drakatos, V. Kouskouna, K. Makropoulos, and H. Kranis (2016), Seismicity study in Pournari reservoir area (w. Greece) 1981–2010, Journal of Seismology, 20, 701-710.

Pavlou, K., G. Kaviris, K. Chousianitis, G. Drakatos, V. Kouskouna, and K. Makropoulos (2013), Seismic hazard assessment in Polyphyto dam area (nw Greece) and its relation with the "unexpected" earthquake of 13 May 1995 (Ms= 6.5, nw Greece), Nat. Hazards Earth Sys. Sci, 13, 141-149.

Pavlovski, O. A. (1998), Radiological consequences of nuclear testing for the population of the former USSR (input information, models, dose, and risk estimates), in Atmospheric nuclear tests, pp. 219-260, Springer.

Pechmann, J. C., W. J. Arabasz, K. L. Pankow, R. Burlacu, and M. K. McCarter (2008), Seismological report on the 6 August 2007 Crandall Canyon mine collapse in Utah, Seismological Research Letters, 79, 620-636.

Peinke, J., T. Matcharashvili, T. Chelidze, J. Gogiashvili, A. Nawroth, O. Lursmanashvili, and Z. Javakhishvili (2006), Influence of periodic variations in water level on regional seismic activity around a large reservoir: field data and laboratory model, Physics of the Earth and Planetary Interiors, 156(1), 130-142.

Peña Castro, A. F., M. P. Roth, A. Verdecchia, J. Onwuemeka, Y. Liu, R. M. Harrington, Y. Zhang, and H. Kao (2020), Stress chatter via fluid flow and fault slip in a hydraulic fracturing-induced earthquake sequence in the Montney Formation, British Columbia, Geophysical Research Letters, 47(14), p.e2020GL087254.

Pennington, W. D., S. D. Davis, S. M. Carlson, J. DuPree, and T. E. Ewing (1986), The evolution of seismic barriers and asperities caused by the depressuring of fault planes in oil and gas fields of south Texas, Bulletin of the Seismological Society of America, 76, 939-948.

Pérez-López, R., and J. L. Giner-Robles (2018), Long-term induced seismicity at Poseidon off-shore gas field, paper presented at IBERFAULT 2018, Alicante, Spain, 11-13 June, 2018.

Petersen, M. D., C. S. Mueller, M. P. Moschetti, S. M. Hoover, A. L. Llenos, W. L. Ellsworth, A. J. Michael, J. L. Rubinstein, A. F. McGarr, and K. S. Rukstales (2016), One-year seismic hazard forecast for the central and eastern United States from induced and natural earthquakes, US Geological Survey.

Petersen, M. D., C. S. Mueller, M. P. Moschetti, S. M. Hoover, J. L. Rubinstein, A. L. Llenos, A. J. Michael, W. L. Ellsworth, A. McGarr, and A. A. Holland (2015), Incorporating induced seismicity in the 2014 United States national seismic hazard model: Results of 2014 workshop and sensitivity studies, US Department of the Interior, US Geological Survey.

Phillips, W. S., T. D. Fairbanks, J. T. Rutledge, and D. W. Anderson (1998), Induced microearthquake patterns and oil-producing fracture systems in the Austin Chalk, Tectonophysics, 289, 153-169.

Phillips, W. S., J. T. Rutledge, L. S. House, and M. C. Fehler (2002), Induced microearthquake patterns in hydrocarbon and geothermal reservoirs: Six case studies, in The mechanism of induced seismicity, pp. 345-369, Springer.

Piccinelli, F. G., M. Mucciarelli, P. Federici, and D. Albarello (1995), The microseismic network of the Ridracoli dam, north Italy: Data and interpretations, Pure and applied geophysics, 145, 97-108.

Plotnikova, L. M., B. S. Nurtaev, J. R. Grasso, L. M. Matasova, and R. Bossu (1996), The character and extent of seismic deformation in the focal zone of Gazli earthquakes of 1976 and 1984, M> 7.0, in Induced seismic events, pp. 377-387, Springer.

Pomeroy, P. W., D. W. Simpson, and M. L. Sbar (1976), Earthquakes triggered by surface quarrying-the Wappingers falls, New York sequence of June, 1974, Bulletin of the Seismological Society of America, 66, 685-700.

Pramono, B., and D. Colombo (2005), Microearthquake characteristics in Darajat geothermal field, Indonesia, paper presented at World Geothermal Congress 2005, Antalya, Turkey, 24–29 April, 2005.

Prioul, R., F. H. Cornet, C. Dorbath, I. Dorbath, M. Ogena, and E. Ramos (2000), An induced seismicity experiment across a creeping segment of the Philippine fault, Journal of geophysical research, 105, 13,595-513,612.

Qian, Y., X. Chen, H. Luo, S. Wei, T. Wang, Z. Zhang, and X. Luo (2019), An extremely shallow Mw4. 1 thrust earthquake in the eastern Sichuan Basin (China) likely triggered by unloading during infrastructure construction, Geophysical Research Letters, 46(23), 13775-13784.

Qin, X. U., and T. U. De (2000), Restudy on the genesis for the 1990 Gonghe MS 7.0 earthquake, Qinghai province, Northwestern Seismological Journal, 03, 72-76 (in Chinese).

Qin, Z., & S. C. Wu (1993), An analysis for the earthquake due to reservoir filling in Wujangdu hydroelectric power station, Guizhou Geology, 4, 335-344 (in Chinese).

Rajendran, K. (1995), Sensitivity of a seismically active reservoir to low-amplitude fluctuations: Observations from Lake Jocassee, South Carolina, Pure and applied geophysics, 145, 87-95.

Raleigh, C. B., J. H. Healy, and J. D. Bredehoeft (1976), An experiment in earthquake control at Rangely, Colorado, Science, 191, 1230-1237.

Rastogi, B. K., C. V. R. K. Rao, R. K. Chadha, and H. K. Gupta (1986), Microearthquakes near Osmansagar reservoir, Hyderabad, India, Physics of the earth and planetary interiors, 44, 134-141.

Raza, H., I. R. Kivi, G. S. França, and V. Vilarrasa (2023), Reservoir impoundment-triggered seismicity in Brazil: the case of M4. 0 Nova Ponte earthquake, Scientific reports, 13(1), 22226.

Redmayne, D. W. (1988), Mining induced seismicity in UK coalfields identified on the BGS national seismograph network, Geological Society, London, Engineering Geology Special Publications, 5, 405-413.

Reyners, M. (1988), Reservoir-induced seismicity at Lake Pukaki, New Zealand, Geophysical Journal International, 93, 127-135.

Ringdal, F., P. D. Marshall, and R. W. Alewine (1992), Seismic yield determination of Soviet underground nuclear explosions at the Shagan River test site, Geophysical Journal International, 109, 65-77.

Rodríguez-Martínez, J. M., E. A. Rossello, A. C. López, L. E. Arriaga-Díaz de León, and J. E. Bermùdez-Cerda (2018), Relationship between Shallow Seismicity and Fluid Exploitation in the Northern Burgos Basin (Nuevo León, México), EPH-International Journal of Science and Engineering, 4(9), 1-25.

Rogers, G. C., R. M. Ellis, and H. S. Hasegawa (1980), The McNaughton Lake earthquake of May 14, 1978, Bulletin of the Seismological Society of America, 70(5), 1771-1786.

Rojas, E., P. Cavieres, R. Dunlop, and S. Gaete (2000), Control of induced seismicity at El Teniente mine Codelco-Chile, Proceeding, Massmin 2000, 777-781.

Ross, A., G. R. Foulger, and B. R. Julian (1999), Source processes of industrially-induced earthquakes at The Geysers geothermal area, California, Geophysics, 64, 1877-1889.

Roth, M. P., A. Verdecchia, R. M. Harrington, and Y. Liu (2020), High-Resolution Imaging of Hydraulic-Fracturing-Induced Earthquake Clusters in the Dawson-Septimus Area, Northeast British Columbia, Canada, Seismological Research Letters, 91(5), 2744-2756.

Rubinstein, J. L., W. L. Ellsworth, and S. L. Dougherty (2018), The 2013–2016 Induced Earthquakes in Harper and Sumner Counties, Southern Kansas, Bulletin of the Seismological Society of America.

Rubinstein, J. L., W. L. Ellsworth, and A. McGarr (2012), The 2001-present triggered seismicity sequence in the Raton Basin of southern Colorado/northern New Mexico, paper presented at AGU Fall Meeting Abstracts.

Rubinstein, J. L., W. L. Ellsworth, A. McGarr, and H. M. Benz (2014), The 2001—present induced earthquake sequence in the Raton Basin of northern New Mexico and southern Colorado, Bulletin of the Seismological Society of America.

Rubinstein, J. L., and A. B. Mahani (2015), Myths and facts on wastewater injection, hydraulic fracturing, enhanced oil recovery, and induced seismicity, Seismological Research Letters, 86, 1060-1067.

Rudziński, Ł., Cesca, S., and Lizurek, G. (2016), Complex rupture process of the 19 March 2013, Rudna Mine (Poland) induced seismic event and collapse in the light of local and regional moment tensor inversion, Seismological Research Letters, 87(2A), 274-284.

Ruiz-Barajas, S., M. A. Santoyo, M. B. Oterino, G. E. Alvarado, and A. Climent (2019), Stress transfer patterns and local seismicity related to reservoir water-level variations. A case study in central Costa Rica, Scientific reports, 9(1), 5600.

Rutledge, J. T., W. S. Phillips, and B. K. Schuessler (1998), Reservoir characterization using oil-production-induced microseismicity, Clinton County, Kentucky, Tectonophysics, 289, 129-152.

Salvage, R.O. D. W. Eaton (2022), The Influence of a Transitional Stress Regime on the Source Characteristics of Induced Seismicity and Fault Activation: Evidence from the 30 November 2018 Fort St. John ML 4.5 Induced Earthquake Sequence, Bulletin of the Seismological Society of America, 112(3), 1336-1355.

Sanford, A. R., T. M. Mayeau, J. W. Schlue, R. C. Aster, and L. H. Jaksha (2006), Earthquake catalogs for New Mexico and bordering areas II: 1999–2004, New Mexico Geology, 28.

Sargsyan, L. S. (2009), Reservoir-triggered seismicity in Armenian large dams, Journal of Seismology and Earthquake Engineering, 11, 153.

Sasaki, S. (1998), Characteristics of microseismic events induced during hydraulic fracturing experiments at the Hijiori hot dry rock geothermal energy site, Yamagata, Japan, Tectonophysics, 289, 171-188.

Sato, K., and Y. Fujii (1988), Induced seismicity associated with longwall coal mining, paper presented at International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Elsevier.

Sato, K., and Y. Fujii (1989), Source mechanism of a large scale gas outburst at Sunagawa coal mine in Japan, Pure and applied geophysics, 129, 325-343.

Sato, K., T. Isobe, N. Mori, and T. Goto (1986), 9. Microseismic activity associated with hydraulic mining, paper presented at International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Elsevier.

Sayão, E., G. S. França, M. Holanda, and A. Gonçalves (2020), Spatial database and website for reservoir-triggered seismicity in Brazil, Natural Hazards and Earth System Sciences, 20(7), 2001-2019.

Scales, M. M., H. R. DeShon, M. B. Magnani, J. I. Walter, L. Quinones, T. L. Pratt, and M. J. Hornbach (2017), A Decade of Induced Slip on the Causative Fault of the 2015 Mw 4.0 Venus Earthquake, Northeast Johnson County, Texas, Journal of Geophysical Research: Solid Earth, 122, 7879-7894.

Schirbel, L., M. Assumpção, F. A. P. Neto, and G. S. França (2024), Induced Seismicity at the Laúca Reservoir, Angola Craton: Focal Mechanisms and Implications for the Stress Field in Western Central Africa, Journal of African Earth Sciences, 105327.

Schmittbuhl, J., O. Lengline, S. Lambotte, M. Grunberg, C. Doubre, J. Vergne, F. Cornet, and F. Masson (2021a), Induced and triggered seismicity from Nov 2019 to Dec 2020 below the city of Strasbourg, France, paper presented at EGU General Assembly Conference Abstracts 2021.

Schmittbuhl, J., S. Lambotte, O. Lengline, M. Grunberg, H. Jund, J. Vergne, F. Cornet, C. Doubre, and F. Masson (2021b), Induced and triggered seismicity below the city of Strasbourg, France from November 2019 to January 2021, Comptes Rendus Géoscience, 353(S1), 561-584.

Schultz, R., J-U. Woo, K. Pepin, W. L. Ellsworth, H. Zebkar, P. Segall, Y. J. Gu, and S. Samsonov (2023), Disposal from in situ bitumen recovery induced the ML 5.6 Peace River earthquake, Geophysical Research Letters, 50(6), e2023GL102940.

Schultz, R., & R. Wang (2020), Newly emerging cases of hydraulic fracturing induced seismicity in the Duvernay East Shale Basin, Tectonophysics, 779, 228393.

Schultz, R., R. Wang, Y. J. Gu, K. Haug, & G. Atkinson (2017), A seismological overview of the induced earthquakes in the Duvernay play near Fox Creek, Alberta, Journal of Geophysical Research: Solid Earth, 122(1), 492-505.

Schultz, R., S. Mei, D. Pană, V. Stern, Y. J. Gu, A. Kim, and D. Eaton (2015a), The Cardston earthquake swarm and hydraulic fracturing of the Exshaw Formation (Alberta Bakken Play), Bulletin of the Seismological Society of America.

Schultz, R., V. Stern, M. Novakovic, G. Atkinson, and Y. J. Gu (2015b), Hydraulic fracturing and the Crooked Lake sequences: Insights gleaned from regional seismic networks, Geophysical Research Letters, 42, 2750-2758.

Schultz, R., V. Stern, and Y. J. Gu (2014), An investigation of seismicity clustered near the Cordel field, west central Alberta, and its relation to a nearby disposal well, Journal of Geophysical Research: Solid Earth, 119, 3410-3423, doi:10.1002/2013JB010836.

Shurbet, D. H. (1969), Increased seismicity in Texas, Texas Journal of Science, 21(1), 37.

Sebaï, A., R. Kherchouche, and Y. Rouchiche (2025), Potential evidence of induced seismicity in north-western Algeria (late nineteenth–early twentieth century) from historical journalistic sources, Acta Geophysica, 1-21.

Seeber, L., J. G. Armbruster, and W.-Y. Kim (2004), A fluid-injection-triggered earthquake sequence in Ashtabula, Ohio: Implications for seismogenesis in stable continental regions, Bulletin of the Seismological Society of America, 94, 76-87.

Seeber, L., J. G. Armbruster, W. Y. Kim, N. Barstow, and C. Scharnberger (1998), The 1994 Cacoosing Valley earthquakes near Reading, Pennsylvania: A shallow rupture triggered by quarry unloading, Journal of Geophysical Research: Solid Earth, 103, 24505-24521.

Segall, P. (1985), Stress and subsidence resulting from subsurface fluid withdrawal in the epicentral region of the 1983 Coalinga earthquake, Journal of Geophysical Research: Solid Earth, 90, 6801-6816.

Segall, P. (1989), Earthquakes triggered by fluid extraction, Geology, 17, 942-946.

Segall, P., J. R. Grasso, and A. Mossop (1994), Poroelastic stressing and induced seismicity near the Lacq gas field, southwestern France, Journal of Geophysical Research: Solid Earth, 99(B8), 15423-15438.

Semmane, F., I. Abacha, A. K. Yelles-Chaouche, A. Haned, H. Beldjoudi, and A. Amrani (2012), The earthquake swarm of December 2007 in the Mila region of northeastern Algeria, Natural hazards, 64, 1855-1871.

Shapiro, S. A., C. Dinske, C. Langenbruch, and F. Wenzel (2010), Seismogenic index and magnitude probability of earthquakes induced during reservoir fluid stimulations, The Leading Edge, 29, 304-309.

Shapiro, S. A., J. Kummerow, C. Dinske, G. Asch, E. Rothert, J. Erzinger, H. J. Kümpel, and R. Kind (2006), Fluid induced seismicity guided by a continental fault: Injection experiment of 2004/2005 at the German deep drilling site (KTB), Geophysical Research Letters, 33.

Shen, L. Y., and B. Q. Chang (1995), Application of stress-pore pressure coupling theory for porous media to the Xinfengjiang reservoir earthquakes, Pure and Applied Geophysics, 145(1), 123-137.

Sherburn, S., S. Bourguignon, S. Bannister, S. Sewell, B. Cumming, C. Bardsley, J. Quinao, and I. Wallis (2013), Microseismicity at Rotokawa geothermal field, 2008 to 2012, paper presented at Proceedings of the 35th New Zealand geothermal workshop. Rotorua, New Zealand.

Sherburn, S., C. Bromley, S. Bannister, S. Sewell, and S. Bourguignon (2015), New Zealand geothermal induced seismicity: An overview.

Šílený, J., E. C. Lötter, and G. Capes (2013), Mining induced seismicity: Moment tensor vs. shear-tensile/implosion model. Case study of Ridgeway, E. Australia Gold Mine.

Shirley, J. E. (1980), Tasmanian seismicity—natural and reservoir-induced, Bulletin of the Seismological Society of America, 70, 2203-2220.

Shivakumar, K., M. V. M. S. Rao, C. Srinivasan, and K. Kusunose (1996), Multifractal analysis of the spatial distribution of area rockbursts at Kolar gold mines, paper presented at International journal of rock mechanics and mining sciences & geomechanics abstracts, Elsevier.

Silitonga, T. H., E. E. Siahaan, and Suroso (2005), A Poisson's ratio distribution from Wadati diagram as indicator of fracturing of Lahendong geothermal field, north Sulawesi, Indonesia, paper presented at World Geothermal Congress 2005, Antalya, Turkey, 24–29 April, 2005.

Simiyu, S. M., and G. R. Keller (2000), Seismic monitoring of the Olkaria geothermal area, Kenya Rift Valley, Journal of volcanology and geothermal research, 95, 197-208.

Simpson, D. W., and W. Leith (1985), The 1976 and 1984 Gazli, USSR, earthquakes—were they induced?, Bulletin of the Seismological Society of America, 75, 1465-1468.

Simpson, D. W., and S. K. Negmatullaev (1981), Induced seismicity at Nurek reservoir, Tadjikistan, USSR, Bulletin of the Seismological Society of America, 71, 1561-1586.

Skoumal, R. J., P. B. Dawson, S. H. Hickman, and J. O. Kaven (2019), Microseismic events associated with the Oroville Dam Spillway, Bulletin of the Seismological Society of America, 109(1), 387-394.

Skoumal, R. J., M. R. Brudzinski, and B. S. Currie (2018a), Proximity of Precambrian basement affects the likelihood of induced seismicity in the Appalachian, Illinois, and Williston Basins, central and eastern United States, Geosphere, 14(3), 1365-1379.

Skoumal, R. J., R. Ries, M. R. Brudzinski, A. J. Barbour, and B. S. Currie (2018b), Earthquakes induced by hydraulic fracturing are pervasive in Oklahoma, Journal of Geophysical Research: Solid Earth, 123(12), 10-918.

Skoumal, R. J., M. R. Brudzinski, and B. S. Currie (2015a), Earthquakes induced by hydraulic fracturing in Poland Township, Ohio, Bulletin of the Seismological Society of America, 105, 189-197.

Skoumal, R. J., M. R. Brudzinski, and B. S. Currie (2015b), Distinguishing induced seismicity from natural seismicity in Ohio: Demonstrating the utility of waveform template matching, Journal of Geophysical Research: Solid Earth, 120(9), 6284-6296.

Slob, S., C. Sigaran-Loria, E. Weijermans, and S. Carelsen (2016), Na-ijlende gevolgen steenkolenwinning Zuid-Limburg, final report on the results of the working group 5.2.7 – small earthquakes, on behalf of Ministerie van Economische Zaken – The Netherlands.

Sokolova, I. N., N. N. Mikhailova, A. Ye. Velikanov, and N. N. Poleshko (2017), Induced seismicity on the territory of Kazakhstan, paper presented at CTBT: Science and Technology 2017 conference, Vienna.

Son, M. (2015), Microevent detection based on waveform cross-correlation in the Dogye mining area, Korea, paper presented at 2015 AGU Fall Meeting.

Stein, S., M. Liu, T. Camelbeeck, M. Merino, A. Landgraf, E. Hintersberger, and S. Kuebler (2015), Challenges in assessing seismic hazard in intraplate Europe, Geological Society, London, Special Publications, 432, SP432. 437.

Stiros, S. C., and S. Pytharouli (2018), Interpretations of Reservoir-Induced Seismicity May Not Always Be Valid: The Case of Seismicity during the Impoundment of the Kremasta Dam (Greece, 1965–1966), Bulletin of the Seismological Society of America.

Stork, A. L., J. P. Verdon, and J.-M. Kendall (2015), The microseismic response at the In Salah carbon capture and storage (CCS) site, International Journal of Greenhouse Gas Control, 32, 159-171.

Styles, P., P. Gasparini, E. Huenges, P. Scandone, S. Lasocki, and F. Terlizzese (2014), Report on the hydrocarbon exploration and seismicity in Emilia region, 1-213.

Suckale, J. (2009), Induced seismicity in hydrocarbon fields, Advances in geophysics, 51, 55-106.

Sumy, D. F., E. S. Cochran, K. M. Keranen, M. Wei, and G. A. Abers (2014), Observations of static coulomb stress triggering of the November 2011 M5.7 Oklahoma earthquake sequence, Journal of Geophysical Research: Solid Earth, 119, 1904-1923.

Sun, X., X. Xia, and Y. Li (2018), Characteristics of the seismic activity associated with fluid injection in Pucheng oilfield, Progress in Geophysics, 33, 104-111 (in Chinese).

Sun, X., P. Yang, and Z. Zhang (2017), A study of earthquakes induced by water injection in the Changning salt mine area, SW China, Journal of Asian Earth Sciences, 136, 102-109.

Sun, X., and S. Hartzell (2014), Finite-fault slip model of the 2011 Mw 5.6 Prague, Oklahoma earthquake from regional waveforms, Geophysical Research Letters, 41, 4207-4213.

Swanson, P. L. (1992), Mining-induced seismicity in faulted geologic structures: An analysis of seismicity-induced slip potential, Pure and applied geophysics, 139, 657-676.

Sylvester, A. G., and J. Heinemann (1996), Preseismic tilt and triggered reverse faulting due to unloading in a diatomite quarry near Lompoc, California, Seismological Research Letters, 67, 11-18.

Sze, E. K.-M. (2005), Induced seismicity analysis for reservoir characterization at a petroleum field in Oman, Massachusetts Institute of Technology.

Tadokoro, K., M. Ando, and K. y. Nishigami (2000), Induced earthquakes accompanying the water injection experiment at the Nojima fault zone, Japan: Seismicity and its migration, Journal of Geophysical Research: Solid Earth, 105, 6089-6104.

Talwani, P. (1995), Speculation on the causes of continuing seismicity near Koyna reservoir, India, Pure and applied geophysics, 145, 167-174.

Tamburini-Beliveau, G., J. A. Grosso-Heredia, M. Béjar-Pizarro, R. Pérez-López, J. Portela, M. Cismondi-Duarte, and O. Monserrat (2022), Assessment of ground deformation and seismicity in two areas of intense hydrocarbon production in the Argentinian Patagonia, Scientific Reports, 12(1), 1-14.

Tang, C., T. Ma, and X. Ding (2009), On stress-forecasting strategy of earthquakes from stress buildup, stress shadow and stress transfer (SSS) based on numerical approach, Earthquake Science, 22, 53-62.

Tang, C. A., J. Wang, and J. Zhang (2010), Preliminary engineering application of microseismic monitoring technique to rockburst prediction in tunneling of Jinping II project, Journal of Rock Mechanics and Geotechnical Engineering, 2, 193-208.

Tang, L., and L. Meng (2015), Injection-induced Seismicity in a Natural Gas Reservoir in HutubiSouthern Junggar Basin, Northwest China, In 2015 AGU Fall Meeting.

Taylor, O.-D. S., T. A. Lee III, and A. P. Lester (2015), Hazard and risk potential of unconventional hydrocarbon development-induced seismicity within the central United States, Natural Hazards Review, 16, 04015008.

Taylor, O.-D. S., A. P. Lester, and T. A. Lee III (2015), Unconventional hydrocarbon development hazards within the central United States. Report 1: Overview and potential risk to infrastructure, DTIC Document.

Telesca, L., T. Matcharasvili, T. Chelidze, and N. Zhukova (2012), Relationship between seismicity and water level in the Enguri high dam area (Georgia) using the singular spectrum analysis, Natural Hazards and Earth System Science, 12, 2479-2485.

Terakawa, T., S. A. Miller, and N. Deichmann (2012), High fluid pressure and triggered earthquakes in the enhanced geothermal system in Basel, Switzerland, Journal of Geophysical Research: Solid Earth, 117.

Terashima, T. (1988), Induced seismicity and dam reservoirs: The case of main dam in Japan, Proceedings of Ninth World Conference on Earthquake Engineering, 2-9 August, Tokyo-Kyoto, Japan (Vol II).

Terashima, T. (1981), Survey on induced seismicity at Mishraq area in Iraq, Journal of Physics of the Earth, 29, 371-375.

Teyssoneyre, V., B. Feignier, J. Šilény, and O. Coutant (2002), Moment tensor inversion of regional phases: Application to a mine collapse, in The mechanism of induced seismicity, pp. 111-130, Springer.

Tian, D., J. Yao, and L. Wen (2018), Collapse and Earthquake Swarm after North Korea's 3 September 2017 Nuclear Test, Geophysical Research Letters, 45(9), 3976-3983.

Tiira, T. (1996), Discrimination of nuclear explosions and earthquakes from teleseismic distances with a local network of short period seismic stations using artificial neural networks, Physics of the Earth and Planetary Interiors, 97, 247-268.

Tiwari, D. K., B. Jha, B. Kundu, V. K. Gahalaut, and N. K. Vissa (2021). Groundwater extraction-induced seismicity around Delhi region, India. Scientific Reports, 11(1), 1-14.

TNO (2014), Literature review on injection-related induced seismicity and its relevance to nitrogen injection.

Tong, Y., and T. Min (2010), On the seismic origin of coal mines ML 3.1 earthquake in Meitanba, Journal of Institute of Disaster-Prevention Science and Technology, 12, 69-72 (in Chinese).

Tong, Y., C. P. Li, and M. Tong (2009), Analysis and study on typical ore earthquake cases in Hunan, South China Journal of Seismology, 3, 56-63 (in Chinese).

Tong, Y., M. Tong, and X. Hong (2003), The mine earthquake types in Hunan and the characteristic analysis, South China Journal of Seismology, 3, 49-56 (in Chinese).

Torcal, F., I. Serrano, J. Havskov, J. L. Utrillas, and J. Valero (2005), Induced seismicity around the Tous New dam (Spain), Geophysical Journal International, 160, 144-160.

Townend, J., and M. D. Zoback (2000), How faulting keeps the crust strong, Geology, 28, 399-402.

Tretyak, K., I. Brusak, and R. Pronyshyn (2024), Reservoir-triggered seismicity: case study of the Dnister Hydro Power Complex (Ukraine), Geofizicheskiy Zhurnal, 46(1).

Trifu, C.-I., T. I. Urbancic, and R. P. Young (1995), Source parameters of mining-induced seismic events: An evaluation of homogeneous and inhomogeneous faulting models for assessing damage potential, Pure and applied geophysics, 145, 3-27.

Trifu, C. I., and V. Shumila (2010). Microseismic monitoring of a controlled collapse in Field II at Ocnele Mari, Romania, Pure and Applied Geophysics, 167(1-2), 27-42.

Trippi, M. H., H. E. Belkin, S. Dai, S. J. Tewalt, and C.-J. Chou (2014), USGS compilation of geographic information system (GIS) data representing coal mines and coal-bearing areas in China, US Geological Survey.

Tung, S., G. Zhai, and M. Shirzaei (2020), Potential link between 2020 Mentone, West Texas M5 earthquake and nearby wastewater injection: implications for aquifer mechanical properties, Geophysical Research Letters, 2020GL090551.

Turbitt, T. (1988), Bulletin of British earthquakes. British Geological Survey technical report wl/88/11.

Turuntaev, S. B. (1994), Temporal and spatial structures of triggered seismicity in Romashkinskoye oil-field, paper presented at Rock Mechanics in Petroleum Engineering, Society of Petroleum Engineers.

Urban, E., and J. F. Lermo (2012), Relationship of local seismic activity, injection wells and active faults in the geothermal fields of Mexico, paper presented at Proceedings of Thirty-Seventh Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, SGP-TR-194.

Urban, E., and J. F. Lermo (2013), Local seismicity in the exploitation of Los Humeros geothermal field, Mexico, paper presented at Proceedings of the Thirty-Eighth Workshop on Geothermal Reservoir Engineering.

Urbancic, T. I. J., V. J. Shumila, J. T. J. Rutledge, and R. J. J. Zinno (1999), Determining hydraulic fracture behavior using microseismicity, paper presented at Vail Rocks 1999, The 37th US Symposium on Rock Mechanics (USRMS), American Rock Mechanics Association.

Uta, P., Brandes, C., Gestermann, N., Plenefisch, T., Kaiser, D., Bönnemann, C., and J. Winsemann (2018), The Re-evaluation of the 2004 Rotenburg MW 4.4 Earthquake, paper presented at EGU General Assembly Conference Abstracts 2018.

Uytun, H., H. Sözbilir, A. Baba, K. Yıldızdağ, and M. Karaş (2020), Relation between Induced Seismicity and Geothermal Systems: A Case Study from The Gediz Graben, Western Anatolia, Turkey, paper presented at Proceedings World Geothermal Congress, Reykjavik, Iceland, 26th April – 2nd May 2020.

Vallejos, J. A., and S. D. McKinnon (2011), Correlations between mining and seismicity for re-entry protocol development, International Journal of Rock Mechanics and Mining Sciences, 48, 616-625.

Valoroso, L., L. Improta, L. Chiaraluce, R. Di Stefano, L. Ferranti, A. Govoni, and C. Chiarabba (2009), Active faults and induced seismicity in the Val d'Agri area (southern Apennines, Italy), Geophysical Journal International, 178, 488-502.

Van Den Eeckhaut, M., J. Poesen, M. Dusar, V. Martens, and P. Duchateau (2007), Sinkhole formation above underground limestone quarries: A case study in South Limburg (Belgium), Geomorphology, 91(1-2), 19-37.

van der Elst, N. J., H. M. Savage, K. M. Keranen, and G. A. Abers (2013), Enhanced remote earthquake triggering at fluid-injection sites in the midwestern United States, Science, 341, 164-167.

van der Voort, N., and F. Vanclay (2015), Social impacts of earthquakes caused by gas extraction in the province of Groningen, the Netherlands, Environmental Impact Assessment Review, 50, 1-15.

van Eck, T., F. Goutbeek, H. Haak, and B. Dost (2006), Seismic hazard due to small-magnitude, shallow-source, induced earthquakes in the Netherlands, Engineering Geology, 87, 105-121.

Van Eijs, R. M. H. E., F. M. M. Mulders, M. Nepveu, C. J. Kenter, and B. C. Scheffers (2006), Correlation between hydrocarbon reservoir properties and induced seismicity in the Netherlands, Engineering Geology, 84, 99-111.

Van Wees, J. D., L. Buijze, K. Van Thienen-Visser, M. Nepveu, B. B. T. Wassing, B. Orlic, and P. A. Fokker (2014), Geomechanics response and induced seismicity during gas field depletion in the Netherlands, Geothermics, 52, 206-219.

Verdon, J. P., and A. D. Harris (2025), Investigation of hydraulic fracturing-induced seismicity in the Haynesville Shale, Journal of Seismology, 1-17.

Verdon, J. P., J. –M. Kendall, A. C. Horleston, and A. L. Stork (2016), Subsurface fluid injection and induced seismicity in southeast Saskatchewan, International Journal of Greenhouse Gas Control, 54, 429-440.

Verdon, J. P. (2014), Significance for secure CO2 storage of earthquakes induced by fluid injection, Environmental Research Letters, 9, 064022.

Verdon, J. P., J. –M. Kendall, A. L. Stork, R. A. Chadwick, D. J. White, and R. C. Bissell (2013), Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and In Salah, Proceedings of the National Academy of Sciences, 110, E2762-E2771.

Vogler, D., R. Settgast, V. Gischig, M. Jalali, J. Doetsch, B. Valley, K. F. Evans, C. Sherman, M. O. Saar, and F. Amann (2017), Modeling the hydraulic fracture stimulation performed for reservoir permeability

enhancement at the Grimsel Test Site, Switzerland, In Proceedings of the 42nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 13-15.

Voosen, P. (2017), Deep in a mine, earthquake gold awaits, Science, 356(6341), 891-892.

Vörös, R., and S. Baisch (2022), Induced seismicity and seismic risk management—a showcase from the Californië geothermal field (the Netherlands), Netherlands Journal of Geosciences, 101, e15.

Walsh, F. R., and M. D. Zoback (2015), Oklahoma's recent earthquakes and saltwater disposal, Science advances, 1, e1500195.

Walter, J. I., P. J. Dotray, C. Frohlich, and J. F. W. Gale (2016), Earthquakes in northwest Louisiana and the Texas—Louisiana border possibly induced by energy resource activities within the Haynesville Shale Play, Seismological Research Letters, 87, 285-294.

Walter, J. I., C. Frohlich, and T. Borgfeldt (2018), Natural and Induced Seismicity in the Texas and Oklahoma Panhandles, Seismological Research Letters, 89(6), 2437-2446.

Wang, Z. B., R. F. Liu, T. T. Wang, Y. X. Zhang, and X. Ren (2025), Energy Release Efficiency and Mechanisms of Mining-Induced High-Energy Earthquakes in China, Rock Mechanics and Rock Engineering, 1-15.

Wang, H., T. Chen, and G. Xu (2024), Characteristics of Micro-Seismic Events Induced by Ground Collapse—A Case Study in the Rongxing Gypsum Mine in Hubei Province, China, Sensors, 24(4), 1309.

Wang, B., A. Verdecchia, H. Kao, R. M. Harrington, Y. Liu, and H. Yu (2021), A Study on the Largest Hydraulic Fracturing Induced Earthquake in Canada: Numerical Modeling and Triggering Mechanism, Bulletin of the Seismological Society of America.

Wang, B., R. M. Harrington, Y. Liu, H. Kao, and H. Yu (2020a), A study on the largest hydraulic-fracturing-induced earthquake in Canada: Observations and static stress-drop estimation, Bulletin of the Seismological Society of America, 110(5), 2283-2294.

Wang, H., R. Shi, D. Deng, Y. Jiang, G. Wang, and W. Gong (2020b), Characteristic of stress evolution on fault surface and coal bursts mechanism during the extraction of longwall face in Yima mining area, China, Journal of Structural Geology, 136, 104071.

Wang, S., G. Jiang, M. Weingarten, and Y. Niu (2020c), InSAR evidence indicates a link between fluid injection for salt mining and the 2019 Changning (China) earthquake sequence, Geophysical Research Letters, 47(16), p.e2020GL087603.

Wang, X., S. Wang, Z. Li, Y. Dong, and D. A. Yuen (2018), Source Characterization of Some Collapse Earthquakes due to Mining Activities in Shandong and Beijing, North China, Seismological Research Letters.

Wang, R., Y. J. Gu, R. Schultz, A. Kim, and G. Atkinson (2016), Source analysis of a potential hydraulic fracturing induced earthquake near Fox Creek, Alberta, Geophysical Research Letters.

Wang, W., X. Meng, Z. Peng, Q. F. Chen, and N. Liu (2015), Increasing background seismicity and dynamic triggering behaviors with nearby mining activities around Fangshan pluton in Beijing, china, Journal of Geophysical Research: Solid Earth, 120, 5624-5638.

Wang, L., H. Y. Xin, and J. Zhu (2014), Analysis and prediction of Danjiangkou reservoir induced earthquake, Water Resources Development and Management, 34, 59-62 (in Chinese).

Wang, Z., C. N. Tang, T. H. Ma, L. C. Li, and Y. F. Yang (2012), Research on the surrounding rock damage of deep hard rock tunnels caused by bottom excavation, paper presented at Applied Mechanics and Materials, Trans Tech Publ.

Wang, S. C., Y. W. Liu, and P. H. Zhang (2006), The dangerous analyze of induced earthquake of Xiaolangdi reservoir, Seismological and Geomagnetic Observation and Research, 2, 9-15 (in Chinese).

Wang, S. J., J. Z. Qin, and X. F. Long (2005), Analysis of seismicity and tectonic stress field at the Manwan reservoir area before and after the water storage in the reservoir, Journal of Seismological Research, 1, 53-57 (in Chinese).

Wang, Z. G., K. Qian, and H. J. Yang (2001), Analysis of environmental engineering geological problems of reservoir in Tianshengqiao first cascade hydropower station (translation), Yunnan Water Power, 2, 37-41 (in Chinese).

Wang, Q., and S. Gao (1998), Environmental conditions of induced earthquake in Geheyan reservoir, Crustal Deformation & Earthquake, 3, 75-81 (in Chinese).

Wei, H. (1987), Research on seismic activity characteristics of the induced earthquakes in Qinghai Shengjiaxia region, Northwestern Seismological Journal, 1, 115-116 (in Chinese).

Weingarten, M., S. Ge, J. W. Godt, B. A. Bekins, and J. L. Rubinstein (2015), High-rate injection is associated with the increase in US mid-continent seismicity, Science, 348, 1336-1340.

Weiser, D. A. (2016), Maximum magnitude and probabilities of induced earthquakes in California geothermal fields: Applications for a science-based decision framework, University of California.

Westbrook, G. K., N. J. Kusznir, C. W. A. Browitt, and B. K. Holdsworth (1980), Seismicity induced by coal mining in Stoke-on-Trent (UK), Engineering Geology, 16, 225-241.

Wettainen, T., and J. Martinsson (2014), Estimation of future ground vibration levels in Malmberget town due to mining-induced seismic activity, Journal of the Southern African Institute of Mining and Metallurgy, 114, 835-843.

Wetzler, N., E. Shalev, T. Göbel, F. Amelung, I. Kurzon, V. Lyakhovsky, and E. E. Brodsky (2019), Earthquake swarms triggered by groundwater extraction near the Dead Sea Fault, Geophysical Research Letters, 46(14), 8056-8063.

Wheeler, R. L. (2009), Sizes of the largest possible earthquakes in the central and eastern United States-summary of a workshop, September 8-9, 2008, Golden, Colorado, US Geological Survey.

Whidden, K. M., G. Petersen, and K. L. Pankow (2023), Seismic Monitoring of the 2022 Utah FORGE Stimulation: The View from the Surface, , paper presented at Forty-Eighth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 6-8th.

Wiejacz, P., and Rudziński, Ł. (2010), Seismic event of January 22, 2010 near Bełchatów, Poland, Acta Geophysica, 58(6), 988-994.

Wilkinson, M., N. Mhana, M. P. Wilson, G. R. Foulger, T. Tezel, and J. G. Gluyas (2024), The plausibility of claimed induced seismicity, Scientific Reports, 14(1), 30846.

Williams-Stroud, S., R. Bauer, H. Leetaru, V. Oye, F. Stanek, S. Greenberg, and N. Langet (2020), Analysis of Microseismicity and Reactivated Fault Size to Assess the Potential for Felt Events by CO2 Injection in the Illinois Basin, Bulletin of the Seismological Society of America, 110(5), 2188-2204.

Wilson, M. P., G. R. Foulger, J. G. Gluyas, R. J. Davies, and B. R. Julian (2017), HiQuake: The human-induced earthquake database, Seismological Research Letters, 88(6), 1560-1565.

Wilson, M. P., R. J. Davies, G. R. Foulger, B. R. Julian, P. Styles, J. G. Gluyas, and S. Almond (2015), Anthropogenic earthquakes in the UK: A national baseline prior to shale exploitation, Marine and Petroleum Geology, 30, e17.

Windsor, C. R., P. Caviares, E. Villaescusa, and J. Pereira (2006), Reconciliation of strain, structure and stress in the El Teniente mine region, Chile, paper presented at Proceedings of International Symposium on In Situ Rock Stress, Trondheim, Norway.

Wiprut, D., and M. D. Zoback (2000). Fault reactivation and fluid flow along a previously dormant normal fault in the northern North Sea, Geology, 28(7), 595-598.

Wiszniowski, J., N. Van Giang, B. Plesiewicz, G. Lizurek, D. Q. Van, L. Q. Khoi, and S. Lasocki (2015), Preliminary results of anthropogenic seismicity monitoring in the region of Song Tranh 2 reservoir, central Vietnam, Acta Geophysica, 63, 843-862.

Wolfgramm, M., T. Bloch, J. Bartels, S. Heuberger, P. Kuhn, H. Naef, H. Voigt, P. Seibt, M. Sonderegger, T. Steiger, and S. Uhlig (2015), Reservoir-geological characterization of a fractured limestone: Results obtained from the geothermal well St. Gallen GT-1 (Switzerland), In Proceedings of the World Geothermal Congress.

Wolhart, S. L., T. A. Harting, J. E. Dahlem, T. Young, M. J. Mayerhofer, and E. P. Lolon (2006), Hydraulic fracture diagnostics used to optimize development in the Jonah field, paper presented at SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers.

Wong, I. G., and J. R. Humphrey (1989), Contemporary seismicity, faulting, and the state of stress in the Colorado Plateau, Geological Society of America Bulletin, 101(9), 1127-1146.

Wong, I. G., S. S. Olig, and J. D. Bott (1996), Earthquake potential and seismic hazards in the Paradox Basin, southeastern Utah, Geology and Resources of the Paradox Basin, Utah Geological Association, 241-250.

Woo, J. U., and W. L. Ellsworth (2023), Reactivation of Precambrian Faults by Deep Wastewater Injection in Midland Basin, Texas, and Performance Evaluation of Seismic Response Areas, Bulletin of the Seismological Society of America, 113(6), 2543-2556.

Wu, T., Z. Liu, and S. Yan (2024), Detection and Monitoring of Mining-Induced Seismicity Based on Machine Learning and Template Matching: A Case Study from Dongchuan Copper Mine, China, Sensors, 24(22), 7312.

Wu, F. C., L. S. Song, X. G. Zhu, F. Wang, B. K. Jing, X. H. Dong, W. Fang, and Y. Q. Zuo (2001), Study on the relationship between geothermal exploitation and seismic activity in Xi'an region, Acta Seismologica Sinica, 14, 434-439.

Wu, S. A., and Q. Zijian (1996), A preliminary analysis of mine earthquake activities in Guizhou, Guizhou Geology, 3, 287-294 (in Chinese).

Xia, Q., Y. Wang, L. Min, R. Xu, G. Shen, and Y. Chen (1986), The seismogeological background of the Wuxijiang reservoir-induced seismicity, Seismology and Geology, 3, 33-43 (in Chinese).

Xiao, A. (1990), The reservoir earthquake in Nanshui and its developing tendency, South China Journal of Seismology, 2, 68-77 (in Chinese).

Xie, L., W. Xu, X. Liu, and X. Ding (2021), Surge of Mangla reservoir loading promoted failure on active Décollement of western Himalayas, International Journal of Applied Earth Observation and Geoinformation, 102, 102401.

Xie, L., K.-B. Min, and Y. Song (2015), Observations of hydraulic stimulations in seven enhanced geothermal system projects, Renewable Energy, 79, 56-65.

Xie, R., X. Yang, and Y. Du (2012), Reservoir earthquakes in Sichuan. South China Journal of Seismology, 32, 80-87 (in Chinese).

Xie, R. H., N. Chen, and X. M. Hu (2004), Study on earthquake induced by Daqiao reservoir (translation), Design of Hydroelectirc Power Station, 4, 61-65+72 (in Chinese).

Xiumin, M. A., L. I. Zhen, P. E. N. G. Hua, J. I. A. N. G. Jingjie, Z. H. A. O. Fang, H. A. N. Chaopu, Y. U. A. N. Pengxiang, L. U. Shengzhou, and P. E. N. G. Liguo (2015), Fluid-injection-induced seismicity experiment of the WFSD-3P borehole, Acta Geologica Sinica (English Edition), 89, 1057-1058.

Xu, Z. D., G. Yang, J. J. Shen, and X. H. Cai (2019), The prediction of the earthquake maximum magnitude induced by Jinzhong reservoir in Fujian province, Plateau Earthquake Research, 31, 15-19 (in Chinese).

Xu, N.-w., C.-a. Tang, H. Li, F. Dai, K. Ma, J.-d. Shao, and J.-c. Wu (2012), Excavation-induced microseismicity: Microseismic monitoring and numerical simulation, Journal of Zhejiang University SCIENCE A, 13, 445-460.

Xu, Y., and B. Wang (2006), Reservoir induced earthquake and banks' stability monitoring at Yinzidu hydropower station, Dam & Safety, 5, 37-40 (in Chinese).

Xu, Z., and C. Chen (2004), Study of induced earthquake in Shuikou reservoir of Fujian province, Crustal Deformation and Earthquake, 2, 58-63 (in Chinese).

Yamabe, T. H., and V. M. Hamza (1996), Geothermal investigations in an area of induced seismic activity, northern Sao Paulo State, Brazil, Tectonophysics, 253(3-4), 209-225.

Yamabe, T. H., and J. A. B. Gómez (1991), A origem da atividade sísmica de Presidente Prudente (SP): induzida ou natural?, in 2nd International Congress of the Brazilian Geophysical Society (pp. cp-316). European Association of Geoscientists & Engineers.

Yang, H., P. Zhou, N. Fang, G. Zhu, W. Xu, J. Su, F. Meng, and R. Chu (2020), A Shallow Shock: The 25 February 2019 ML 4.9 Earthquake in the Weiyuan Shale Gas Field in Sichuan, China, Seismological Research Letters.

Yang, F., G. Yu, L. Hou, and X. Zhou (2019a), The application of magnetotelluric sounding (MT) to research of reservoir-induced earthquake in Shanxi region, Chinese Journal of Engineering Geophysics, 16, 203-210 (in Chinese).

Yang, L., B. H. Li, and T. Chang (2019b), Seismicity characteristics of Xiangjiaba reservoir region before and after the Impoundment, Journal of Geodesy and Geodynamics, 39, 919-923 (in Chinese).

Yang, C. J., and G. L. Wang (2018), Seismic hazard analysis of reservoir induced by Liyuan hydropower station (translation), Yunnan Water Power, 34, 28-30.43 (in Chinese).

Yang, S. X., and J. J. Wang (2002), Study of the mining-induced earthquakes by numerical simulation at Baodian coal mine, Shandong province, Essays on Crustal Tectonics and Crustal Stress, 0, 73-79 (in Chinese).

Yang, X. Y. (2000), Summary of reservoir-induced earthquakes and reservoir earthquake monitoring in China in recent years (translation), Sichuan Water Power, (02), 82-85+94 (in Chinese).

Yang, T. (1990), A preliminary discussion on earthquake mechanism in the reservoir of Dengjiaqiao, Yidou county, Hubei province, South China Journal of Seismology, 1, 79-83 (in Chinese).

Yao, D., Y. Wang, R. Xiang, Y. Zhao, T. Wu, and Z. M. Gesang (2019), Preliminary analysis of Quxue hydropower station flow seismic monitoring network construction and early period impounding seismic activity. South China Journal of Seismology, 39, 11-16 (in Chinese).

Yao, J., D. Tian, Z. Lu, L. Sun, and L. Wen (2018), Triggered seismicity after North Korea's 3 September 2017 nuclear test, Seismological Research Letters, 89(6), 2085-2093.

Yeck, W. L., G. P. Hayes, D. E. McNamara, J. L. Rubinstein, W. D. Barnhart, P. S Earle, and H. M. Benz (2017), Oklahoma experiences largest earthquake during ongoing regional wastewater injection hazard mitigation efforts, Geophysical Research Letters, 44, 711-717.

Yeck, W. L., A. F. Sheehan, M. Weingarten, J. Nakai, and S. Ge (2014), The 2014 Greeley, Colorado earthquakes: Science, industry, regulation, and media, paper presented at AGU Fall Meeting Abstracts.

Yi, X. F., J. L. Jiang, Z. W. Wang, and G. H. Chen (1989), Activity of small earthquake swarms caused by Fengcun reservoir (translation), Hydrogeology & Engineering Geology, 3, 26-28 (in Chinese).

Yin, X., C. Jiang, F. Yin, H. Zhai, Y. Zheng, H. Wu, X. Niu, Y. Zhang, C. Jiang, and J. Li (2024), Assessment and optimization of maximum magnitude forecasting models for induced seismicity in enhanced geothermal systems: The Gonghe EGS project in Qinghai, China, Tectonophysics, 886, 230438.

Younger, P. L., J. G. Gluyas, and W. E. Stephens (2012), Development of deep geothermal energy resources in the UK, Proceedings of the Institution of Civil Engineers-Energy, 165, 19-32.

Yu, H., R. M. Harrington, Y. Liu, and B. Wang (2019), Induced seismicity driven by fluid diffusion revealed by a near-field hydraulic stimulation monitoring array in the Montney Basin, British Columbia, Journal of Geophysical Research: Solid Earth, 124(5), 4694-4709.

Yu, Q., C.-A. Tang, L. Li, G. Cheng, and L.-X. Tang (2015), Study on rockburst nucleation process of deep-buried tunnels based on microseismic monitoring, Shock and Vibration, 501, 685437.

Yu, G., and X. Wu (1996), Determination of the reservoir induced earthquake and evaluation of possible maximum magnitude induced in Tongjiezi hydroelectric station, Earthquake Research in Sichuan, 03, 48-56 (in Chinese).

Yuan, H., J. P. Liu, and Z. X. Jiang (2021), Analysis and identification method of 4D seismic characteristics in gob areas of coal mine: A case study from the Zhangji coal mine in Huainan coalfield, Geoscience, 35, 1018-1023 (in Chinese).

Zaliapin, I., and Y. Ben-Zion (2016), Discriminating characteristics of tectonic and human-induced seismicity, Bulletin of the Seismological Society of America.

Zang, A., V. Oye, P. Jousset, N. Deichmann, R. Gritto, A. McGarr, E. Majer, and D. Bruhn (2014), Analysis of induced seismicity in geothermal reservoirs—an overview, Geothermics, 52, 6-21.

Zarifi, Z., F. Hansteen, and F. Schopper (2021), Seismic Moment Tensor Inversion of an Induced Microseismic Event, Offshore Norway: An Insight into the Possible Cause of Wellbore Liner Failure during a Drilling Operation, Seismological Research Letters, 92(6), 3460–3470.

Zbinden, D., A. P. Rinaldi, T. Diehl, and S. Wiemer (2018), Hydro-mechanical modeling of the induced seismicity during the deep geothermal project in St. Gallen, Switzerland, paper presented at EGU General Assembly Conference Abstracts 2018.

Zedník, J., and J. Pazdírková (2014), Seismic activity in the Czech Republic in 2012, Studia Geophysica et Geodaetica, 58, 342.

Zedník, J., J. Pospíšil, B. Růžek, J. Horálek, A. Boušková, P. Jedlička, Z. Skácelová, V. Nehybka, K. Holub, and J. Rušajová (2001), Earthquakes in the Czech Republic and surrounding regions in 1995–1999, Studia Geophysica et Geodaetica, 45, 267-282.

Zhang, M., S. Ge, Q. Yang, and X. Ma (2021), Impoundment-associated hydro-mechanical changes and regional seismicity near the Xiluodu Reservoir, Southwestern China, Journal of Geophysical Research: Solid Earth, 126(9), e2020JB021590.

Zhang, H., H. Cheng, Y. Pang, Y. Shi, and D. A. Yuen (2016a), Influence of the impoundment of the Three Gorges Reservoir on the micro-seismicity and the 2013 M5. 1 Badong earthquake (Yangtze, China), Physics of the Earth and Planetary Interiors, 261, 98-106.

Zhang, H., D. W. Eaton, G. Li, Y. Liu, and R. M. Harrington (2016b), Discriminating induced seismicity from natural earthquakes using moment tensors and source spectra, Journal of Geophysical Research: Solid Earth, 121(2), 972-993.

Zhang, W.-d., and T.-h. Ma (2013), Research on characteristic of rockburst and rules of microseismic monitoring at headrace tunnels in Jinping II hydropower station, paper presented at Digital Manufacturing and Automation (ICDMA), 2013 Fourth International Conference on, IEEE.

Zhang, Y., W. Feng, L. Xu, C. Zhou, and Y. Chen (2009), Spatio-temporal rupture process of the 2008 great Wenchuan earthquake, Science in China Series D: Earth Sciences, 52, 145-154.

Zhang, Y., M. Person, J. Rupp, K. Ellett, M. A. Celia, C. W. Gable, B. Bowen, J. Evans, K. Bandilla, and P. Mozley (2013), Hydrogeologic controls on induced seismicity in crystalline basement rocks due to fluid injection into basal reservoirs, Groundwater, 51, 525-538.

Zhang, W., C. Nong, and X. Hu (1996), Risk analysis of induced reservoir earthquake at Wawushan Hydroelectric Station, Seismological and Geomagnetic Observation and Research, 2, 35-43 (in Chinese).

Zhang, B. C., R. Chen, H. Li, Y. N. Qi, J. Z. Mao, P. Liu, and F. Q. Li (1993), Study on the relationship between the seismicity of Ariliujing anticline and water injection (translation), Acta Seismologica Sinica, 2, 253-256 (in Chinese).

Zhao, Y., G. Jiang, X. Lei, C. Xu, B. Zhao, and X. Qiao (2023), The 2021 Ms 6.0 Luxian (China) Earthquake: Blind Reverse-Fault Rupture in Deep Sedimentary Formations Likely Induced by Pressure Perturbation From Hydraulic Fracturing, Geophysical Research Letters, 50(7), e2023GL103209.

Zhao, Y., L. B. Zhong, S. Y. He, and H. J. Liu (2019), Construction of earthquake monitoring system of Dagangshan reservoir and seismic activity analysis in reservoir area, Earthquake Research in Sichuan, 2, 6-9 (in Chinese).

Zhou, P., H. Yang, N. Fang, W. Xu, J. Su, F. Meng, and R. Chu (2019, December), Source parameters of the deadly February 2019 Rongxian-Weiyuan earthquakes rattling the shale gas field in Sichuan, China, in AGU Fall Meeting 2019.

Zhu, Q. (1992), Accident analysis and prevention of 7.10 rock burst in Quantai coal mine (translation), Xu Coal Science and Technology, 2, 36-38. (in Chinese).

Zoback, M. D., and S. M. Gorelick (2012), Earthquake triggering and large-scale geologic storage of carbon dioxide, Proceedings of the National Academy of Sciences, 109, 10164-10168.

Zoback, M. D., and H. P. Harjes (1997), Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany, Journal of Geophysical Research: Solid Earth, 102, 18477-18491.

Zoback, M. D., and J. C. Zinke (2002), Production-induced normal faulting in the Valhall and Ekofisk oil fields, in The mechanism of induced seismicity, pp. 403-420, Springer.