Lab 1: Data Visualization Using Altair

Welcome to the first lab of DSC 106! In this lab, we’ll learn about using the Altair Python library
to create and customize plots.

About Labs in DSC 106

Every lab in DSC 106 will serve as a worked example. Labs will teach you how to implement
visualizations using code by giving you the code to copy into your notebook or code editor.
However, we strongly recommend that you avoid copy-pasting code directly and type the code
yourself to increase the amount that you learn from these labs, since you will need the concepts
from labs for your projects. To get credit for labs, there are no autograder tests. Instead, you'll
show your completed lab to a TA during office hours, who will give you full credit if you've
completed the entire lab. In other words, for the most part you're in charge of your own learning
— welcome to the upper division!

Why Altair?

In DSC 10 and 80, you’ve used plotting tools like matplotlib and plotly to create and
customize plots. These tools support rapid prototyping of data visualizations through single
function calls like p1t.bar (), or px.scatter(). In the first week of DSC 106, we'll learn
about a grammar of graphics that enables us to generate all of these common visualizations as
well as express new, custom-built visualizations.

Vega-Altair, or just Altair for short, is a modern Python library that expresses this grammar of
graphics. It's a bit more verbose than plotly for basic plots, but makes it much easier to
adjust, layer, and customize interactive visualizations.

Getting Started

For this lab, we'll be using DataHub'. Go to https://datahub.ucsd.edu/, then Log In. Start the
server titled: DSC106_WI24_AB0 - Samuel Lau [WI24].

Once your notebook server has started, create a new Python 3 (ipykernel) notebook. (Note that
choosing Python 3 (clean) will not allow you to install packages.)

' We know that we moved away from DataHub in DSC 80. But since we're going to switch to JavaScript
programming next week, we didn’t feel that it was worth it to create an entirely new conda environment
just for this lab.

https://tll.mit.edu/teaching-resources/how-people-learn/worked-examples/
https://datahub.ucsd.edu/

Installing Altair

To get started with Altair we first need to install the library. Copy this code into the first cell of
your notebook.

Ipip install -U altair==5.2.0 vega_datasets==0.9.0

Loading data

Next, copy this code into a new code cell to import the libraries we’ll use. If the import code
errors, restart your kernel and try again.

import pandas as pd
import altair as alt
from vega datasets import data

Run the following code to ensure that altair is the correct version:

Should output '5.2.0°'
alt._version__

The vega_datasets package has a variety of useful datasets preloaded. These datasets can
be loaded directly into pandas dataframes. Copy the code below into your notebook to see an
example.

data.list_datasets()

birdstrikes = data.birdstrikes() # This loads the data as a dataframe

Take a peek at the dataset:

birdstrikes.head()

Altair Fundamentals

Let’s start by creating basic plots. In the process, we’ll learn about fundamental concepts in
altair.

Ouir first plot

The Chart objectin altair takes a dataframe/dataset as an argument and has methods
associated with it to generate plots that we would like to build. Copy over this code into a new
code cell in your notebook to make a simple bar plot. Take note of how the Chart object is
initialized and the subsequent mark_bar and encode calls.

df = pd.DataFrame({"x": ["A", "B", "C", "D", "E"], "y": [5, 3, 6, 7, 2]1})
alt.Chart(df).mark_bar().encode(

X="X",

y=Y,
)

Specifying data types

Notice how in the example above, altair was automatically able to detect that the x-axis
plotted a categorical variable while the y-axis plotted a numeric variable. It did this by using the
data types of the dataframe columns themselves (e.g. using df .dtypes).

But in many cases, we’ll want to specify the data types more precisely by appending a type
qualifier to the field. For example:

e field_name:N indicates a nominal type (unordered, categorical data),

e field_name:0 indicates an ordinal type (rank-ordered data),

e field_name:Q indicates a quantitative type (numerical data with meaningful

magnitudes), and

e field_name:T indicates a temporal type (date/time data)

Encodings and Marks

Now that we have a chart object, let's move on to the next concept - Encodings and marks.

Encodings

The key to creating meaningful visualizations is to map properties of the data to visual
properties in order to effectively communicate information. In Altair, this mapping of visual
properties to data columns is referred to as an encoding, and is most often expressed through

the Chart.encode() method. The encodings method can be used to signify the variable to plot
onto the x-axis, y-axis, size of the points, color of points, etc. You can explore all the options that
can be passed to this method in this link.

Marks

We can also choose how we would like to indicate the graphical mark using the mark_*
methods. You can find the entire list of mark methods here. The mark_* methods determine the
kind of plot you end up with, i.e., bar plot vs pie chart, etc.

Let's now make use of these two core concepts and build a slightly more complicated plot for
this class.

For this plot, we will use the stocks dataset. Copy the following code into your notebook, and
think about how each plot maps data points to marks in the plot.

stocks_df = data.stocks()
stocks df.head() # Take a peek at the dataset

alt.Chart(stocks_df).mark _point().encode(
x="price",
y="symbol",

)

Altair also has an alternate syntax for encoding: alt.X and alt.Y.
This syntax is useful when we need more customization
alt.Chart(stocks_df).mark _point().encode(

alt.X("price"),

alt.y("symbol"),

Be prepared to show your TA the two plots below and explain why the second one is more
informative than the first.

alt.Chart(stocks_df).mark_line().encode(
x="date:T",
y="price",

alt.Chart(stocks_df).mark _line().encode(
x="date:T",
y="price",
color="symbol",

https://altair-viz.github.io/user_guide/encodings/index.html
https://altair-viz.github.io/user_guide/marks/index.html

Data Transformation

Transforming data before plotting can be crucial. Typically, we prefer to perform our
transformations (e.g. subsetting, filtering, grouping, etc.) using pandas before passing in the
transformed data into altair. But sometimes, it's convenient to transform the data while
constructing a plot using altair. This is especially useful for aggregating values, e.g. taking
the mean. Copy over the following two code cells and compare the two plots.

alt.Chart(stocks_df).mark_point().encode(
x=alt.X("price"),
y=alt.Y("symbol"),

alt.Chart(stocks_df).mark_point().encode(
x=alt.X("price").aggregate('mean'),
y=alt.Y("symbol"),

Another use for aggregation is the common histogram, which can be thought of as an
aggregation of 1-dimensional point plots. Copy over the following two code cells and be
prepared to explain how the histogram aggregates points in the point plot together

msft = stocks_df.query('symbol == "MSFT" and date > 2005')

point plot

alt.Chart(msft).mark _point().encode(
alt.X("price"),

)

histogram

alt.Chart(msft).mark _bar().encode(
alt.X("price").bin(),
y="count()",

)

There are a lot more things that we can do with data transformation, some useful links are
provided below. We strongly encourage you to go through some of them as it might come in
handy later on.

e https://altair-viz.qgithub.io/user quide/transform/index.html
e https://uwdata.github.io/visualization-curriculum/altair data transformation.html

https://altair-viz.github.io/user_guide/transform/index.html
https://uwdata.github.io/visualization-curriculum/altair_data_transformation.html

e Mark methods:
https://uwdata.qithub.io/visualization-curriculum/altair marks encoding.html

Customizing Plots

After prototyping a plot, we typically want to customize it to prepare it for publication. For
example, we might want to change the axis titles or axis limits.

Let’s start by changing the axis titles. Copy the following code into your notebook.

alt.Chart(msft).mark_bar().encode(
alt.X("price").title("Price (USD)").bin(),
alt.Y("count()").title("Number of days observed"),

)

Notice the change in axis labels

We can also change the axis limits:

alt.Chart(msft).mark _bar().encode(
(alt.X("price")
.title("Price (USD)")
.bin()
.scale(domain=(10, 40))

)
alt.Y("count()").title("Number of days observed"),

Of course, there are many more types of plot customizations possible. For a full list of all the
capabilities refer the following links:

e Customizing Visualizations — Vega-Altair 5.2.0 documentation
e 4. Scales, Axes, and Legends — Visualization Curriculum

° le an ide R lution — Vega-Altair 5.2. mentation

It's now time for some in-depth tasks to demonstrate the concepts we have learnt so far.

https://uwdata.github.io/visualization-curriculum/altair_marks_encoding.html
https://altair-viz.github.io/user_guide/customization.html
https://uwdata.github.io/visualization-curriculum/altair_scales_axes_legends.html
https://altair-viz.github.io/user_guide/scale_resolve.html

Task 1

For this task we will use the movies dataset.
Things to do:

e Part 1: Point plot of the IMDB rating vs Major Genre:

il am ®ew
Action | e
Advanture - & mE smes
Black Comedy - . e e o
‘Comedy - L1 []
% Concert/Periormance - . e .
0| Documantary —| - @ L] S e e——
§ Drama ¢ som - .
Haorror - .
Musical - L] L1 LT
Romantic Comedy - L W NN W Y 1
Thriller/Suspense - S0 e D01 e ©
Western - Sn me e ame e
T T T T T T T T 1

;
o 1 2 3 4 5 B 7 8 3 10
IMDE_Rating

e Part 2: Bar Plot of Average IMDB Rating

Documentary
Weastemn

Black Comedy
Drama

null

Musical
Thriller/Suspensa

Major_Genre

Adventura
Concert/Performance
Action

Romantic Gomedy
Comedy

Horror

o 1 2 3 4 5 B T
Average of IMDE_Rating

e Part 3: A distribution (bar charts) of ratings (IMDB and Rotten Tomatoes).

350+

L=
¢

g

[y
¢

Count of Records
g g 8
Count of Records

¢

1.0 20 3.0 4.0 5.0 6.0 7.0 8.0 9.0 o 10 20 30 40 50 B0 7o a0 a0 100
IMDEB_Rating (binned) Rotten_Tomatoes Rating (binned)

Let’s start by loading the data.

movies df = data.movies()
movies_df.head(2) # take a peek at the data

Part 1: To begin looking at the distribution of IMDB ratings by genre, we might consider a basic
point plot like the following:

alt.Chart(movies_df).mark _point().encode(
alt.X("IMDB_Rating"),
alt.Y("Major_Genre"),

Part 2: Note that this point plot makes it hard to directly compare ratings across genres. We
could make this easier by averaging the ratings within each genre and using a bar plot:

ratings_by genre = (
movies_df
.groupby('Major_Genre")
['IMDB_Rating']
.mean()
.sort_values()
.reset_index()

)

alt.Chart(ratings_by_genre).mark_bar().encode(
alt.X("IMDB_Rating"),

alt.Y("Major_Genre").sort('-x"),

Part 3: To complete this task, we’ll create histograms to show the distributions of IMDB and
Rotten Tomatoes ratings using the following two code cells:

Plot IMDB ratings in increments of 0.5

alt.Chart(movies_df).mark_bar().encode(
alt.X("IMDB Rating").bin(step=0.5),
alt.Y("count()"),

Plot Rotten Tomatoes Rating in increments of 10

alt.Chart(movies_df).mark_bar().encode(
alt.X("Rotten_Tomatoes Rating").bin(step=10),
alt.Y("count()"),

Aside: Compound Charts

Altair allows us to combine information from several charts together. This can be done using the
following operators / methods.

Operation Operator Method
Layering + alt.layer()
Horizontal Concatenation | alt.hconcat()
Vertical Concatenation & alt.vconcat()

Let now see some examples.

Using the cars data:
cars = data.cars()
cars.head()

Plotting average miles per gallon based on year of manufacture
alt.Chart(cars).mark_line().encode(

alt.X("Year"),

alt.y("average(Miles_per_Gallon)"),

Now, let’s layer the individual points on top of the line plot:

line = alt.Chart(cars).mark _line().encode(
alt.X("Year"),
alt.Y("average(Miles_per_Gallon)"),

)

points = alt.Chart(cars).mark_circle().encode(
alt.X("Year"),
alt.Y("average(Miles_per_Gallon)"),

)

line + points

We can also visualize the horsepower as a side-by-side plot:

hp = alt.Chart(cars).mark_line().encode(
alt.X("Year"),
alt.yY("average(Horsepower)"),

)
(
)

(line + points) | (hp + hp.mark_circle())

We’ll use compound charts for Task 2.

Task 2

For this task we will continue using the movies dataset that we used for Task 1. We would like to
do the following:

e See how the movie rating (IMDB) affects the gross collection in the US by plotting the
US_Gross, US_DVD_Sales and Production_Budget with the IMDB_Rating. We would

like to have the IMDB Rating on the X Axis and all the mentioned features on the Y Axis.

Expected Plot:

300,000,000 — US_Gross
Us_DVD_Sales
Production_Budget
250,000,000 -
w
L]
g
14}
§ 200,000,000 -
=
o
= 150,000,000 -
=
e
-
w
]
%5 100,000,000 -|
E
3
=
50,000,000
0

T T T T T T T T 1
1 2 3 4 5 & T B 3 10
IMDB_Rating

e See how the rating distribution is for each Genre in a single plot. We would like to have
IMDB on the X axis and Rotten Tomatoes on the Y Axis and generate a plot with
subplots for each Genre.

Expected Plot:

Genre wise Rating Distribution
Major_Genre

Adventure Black Gomeny Comedy

2100
K]
&
|
P
H
E 50|
r-l
£
2 o

ConcerPertormance Documentary Musical
gmo S o | od
& 2
§ R .
§ s0- .t
2 .
i Ik

-

g o

Romantic Gomedy Westem
=Emcu- -‘: %-_
1 "_t (%Y
@
8 [% 3o
® 50 &, L
E L
P—I L]

.ok

£ .2 :
Eool o

5 w0 5 w0 5 5 m o 5 0
IMDB_Rating IMDB_Rating IMDB_Rating IMDB_Rating IMDB_Rating

Part 1: We can use the repeat method to quickly layer plots of multiple columns:

alt.Chart(movies_df).mark_line().encode(
alt.X("IMDB_Rating"),
(alt.Y(alt.repeat("layer"))
.aggregate("mean”
.title("Mean of US and Worldwide Gross")
)>
alt.ColorDatum(alt.repeat("layer")),
) .repeat(layer=["US_Gross", "US_DVD_Sales", "Production_Budget"])

Part 2: We can use the facet method to create separate plots for individual values within a

single column.

alt.Chart(movies_df).mark _circle().encode(
x="IMDB_Rating",
y=alt.Y("Rotten_Tomatoes_Rating").axis(format="~s"),
facet=alt.Facet("Major_Genre").columns(5),

).properties(title="Genre wise Rating Distribution"”, width=90, height=120)

What insights can you gather from these two plots?

Aside: Interactivity

It is possible to make the plots interactive by using the interactive method. Lets see how to do
this

(line + points).interactive() | (
hp + hp.mark_circle()
).interactive() # the charts can be zoomed / panned separately.

(
(line + points) | (hp + hp.mark_circle())

).interactive() # the charts can be zoomed / panned simultaneously

Notice how the parenthesis are structured differently

We can also create interactive tooltips:

line = (
alt.Chart(cars)
.mark_line()
.encode(
alt.X("Year"),
alt.y("average(Miles_per_Gallon)"),
tooltip=["Year", "average(Miles_per_Gallon)"],

)
)
point = (
alt.Chart(cars)
.mark_circle()
.encode(
alt.X("Year"),
alt.yY("average(Miles_per_Gallon)"),
tooltip=["Year", "average(Miles_ per_Gallon)"],
)
)
hp = (

alt.Chart(cars)
.mark_line()
.encode(alt.X("Year"),

)

alt.yY("average(Horsepower)"), tooltip=["Year", "average(Horsepower)"])

((line + point) | (hp + hp.mark_circle())).interactive()

You can find a comprehensive documentation of all the interactions that you can create using

Altair here.

https://altair-viz.github.io/user_guide/interactions.html

Task 3

Lets now play around with interactions and Plot Customizations. We’ll recreate the bar plot of
Average IMDB Rating, changing the bar colors to gray, and renaming the axis from
"Major_Genre" to "Genre" and "Average of IMDB_Rating" to "Average IMDB Rating". Then, we’'ll
add tooltips to show the exact average IMDB rating for each bar on hover.

Expected Plot:

Documentary

Westarn

Black Comedy
Drama
Muslcal

E Thrillgr/Suspanse
3 Avanture
ConcervPeriormance
Action

Romantic Comeady
Comeady

Hormar

o 1 2 3 4 L]] T
Average IMDB Rating

Copy this code into your notebook:

alt.Chart(ratings_by genre).mark_bar(color="'gray').encode(
alt.X("IMDB_Rating").title('Average IMDB Rating'),
alt.Y("Major_Genre").sort('-x").title('Genre'),
tooltip=["average(IMDB_Rating)"],

Exporting HTML

It is possible to export the chart as a HTML as well. Once the HTML is generated, take a peek
at it, it might come in handy later in the course.

sample chart = (
alt.Chart(ratings_by genre).mark_bar(color="'gray').encode(
alt.X("IMDB_Rating").title('Average IMDB Rating'),
alt.Y("Major_Genre").sort('-x").title('Genre'),
tooltip=["average(IMDB_Rating)"],

)

sample chart.save("chart.html")

Task 4

This task is an open ended task. You are free to choose any of the datasets that we have
explored in this notebook and come up with an interesting visualization (limit yourself to 1 plot).
Make sure that the visualization has the following characteristics:

e At least one aggregation
e At least one customization

e Keep it simple, but insightful. Write one sentence about why you think the visualization
is interesting.

Checkoff

[J Date - Price Plot Explanation

e TaskT
[J Scatter Plot
[J Distribution Plot
[J Bar Plot

e Task?2
[J Repeat Plot
[J Facet Plot

e Task3
[J Customization
[J Interactivity

e Task4
[J Aggregation
[J Customization
[J Insight

	Lab 1: Data Visualization Using Altair
	About Labs in DSC 106
	Why Altair?
	Getting Started
	
	Installing Altair
	Loading data

	
	Altair Fundamentals
	Our first plot
	Specifying data types

	Encodings and Marks
	Encodings
	Marks

	Data Transformation
	Customizing Plots

	
	
	Task 1
	Aside: Compound Charts
	Task 2
	Aside: Interactivity
	
	Task 3
	
	Exporting HTML
	Task 4

	
	Checkoff

