
Project 4: Better interfacing of Blender
and MDAnalysis
Project proposal for GSoC 2025

Introduction
Relevant background and experiences
Problem to be solved

Background
Overarching question
Why this is an interesting / difficult problem
Overall goal

Approach
Design considerations

Ease of use / Usability
Consistency
Data
Extensibility
Leveraging Blender

Design choices
Blender properties for data
Universe centric approach
Annotations (Text / Lines / Objects)
Blender Timeline
Camera, Lighting and Background
MDAnalysis selection phrases and AtomGroups
Named entities

APIs
APIs for styling representations
APIs for annotations
APIs for components
APIs for rendering

GUI
Measurable outcomes
Timeline
Conclusion
References

Introduction

This document is a project proposal for “Project 4: Better interfacing of Blender and
MDAnalysis” as part of GSoC 2025. More details about this project can be found on the
MDAnalysis wiki under GSoC 2025 Project Ideas.

Relevant background and experiences

I am Pardhav Maradani, a first year undergraduate student from India (class of ‘28), pursuing
a Bachelors in Computer Science and Engineering from Vellore Institute of Technology and a
parallel BS in Data Science and Applications from IIT Madras.

I have a keen interest in Visualization as my programming journey started with interactive
graphics programming with Python and turtle graphics several years back at the beginning of
my highschool (around 9th grade). All the code and interactive examples from that time can
be found on my blog - Pardhav’s blog. My exposure to Blender started with a 3D-printing
hobby and due to my familiarity with Python at that point, it led to some basic scripting and
simple add-on programming within Blender to address some custom use cases. I have since
used Blender extensively for my various 3D modelling needs.

Though I am new to this space, I have been playing with MDAnalysis and Molecular Nodes
(MN) since early December 2024 when I started exploring some aspects of this project out of
curiosity. This led me to initiating a discussion on Visualization of MDAnalysis results in
Blender, which showcased some very early prototyping and potential possibilities. At that
time I wasn’t sure if there was still interest around this idea because it had been a previous
GSoC project idea and there seemed to be no recent updates. It was Brady who mentioned
that this is being actively explored and pointed to the ggmolvis effort.

I have since taken part in some discussions and contributed to both Molecular Nodes
(Issues / Pull requests) and ggmolvis (Issues / Pull requests) by sharing my experiences and
learnings from exploring and prototyping some aspects of this project over the past few
months whenever I found some time. I have also had a few PRs merged into MN for issues
that I ran into during this exploratory process.

Problem to be solved

This section describes the background of the problem and formulates an overarching
question that needs to be answered as part of this project.

https://summerofcode.withgoogle.com
https://github.com/MDAnalysis/mdanalysis/wiki/GSoC-2025-Project-Ideas#project-4-better-interfacing-of-blender-and-mdanalysis
https://pardhav-m.blogspot.com
https://github.com/MDAnalysis/mdanalysis/discussions/4862
https://github.com/MDAnalysis/mdanalysis/discussions/4862
https://github.com/yuxuanzhuang/ggmolvis
https://github.com/BradyAJohnston/MolecularNodes
https://github.com/BradyAJohnston/MolecularNodes/issues?q=involves%3APardhavMaradani%20
https://github.com/yuxuanzhuang/ggmolvis
https://github.com/yuxuanzhuang/ggmolvis/issues?q=involves%3ApardhavMaradani%20

Background

As outlined in the project description, Blender is an industry-leading 3D modelling and
animation software that is completely open source. Molecular Nodes is a very popular
Blender extension that already supports importing MDAnalysis universes into Blender and
provides a lot of tools through Blender’s Geometry Nodes interface to style, animate and
render very cool visualizations of these universes and trajectories. Blender’s Geometry
Nodes interface, though very powerful, is not necessarily very user friendly for beginners.
Though some aspects of Molecular Nodes can already be scripted, it lacks a formal API for
scripting at the moment and this is currently in the process of being developed. GGMolVis is
a project that started more recently with a goal to provide a high-level interface to Molecular
Nodes that makes visualization tasks specific to MDAnalysis easily programmable from
Jupyter notebooks and other similar environments. The project is in its early stages and only
an initial set of APIs are defined at this point. This project is also being actively developed.
The work done as part of this GSoC 2025 project will help move both the projects forward by
helping define, prototype and implement several APIs and features that provide a powerful
visualization solution for MDAnalysis results.

With this background, the overarching question could be stated as follows:

Overarching question

How do we build a visualization tool for MDAnalysis that is easy to use, intuitive,
programmable and extensible that will allow users to explore, visualize and analyze
MDAnalysis results?

Why this is an interesting / difficult problem

Blender is by far the best open source choice for implementing any new or custom
visualizations of complex stuff like molecular dynamics. It has a very rich programmable
interface via Python that also includes infrastructure to build custom GUI elements that can
be made part of its overall interface. Molecular Nodes already provides a great platform to
visualize MDAnalysis universes. By providing a rich scripting API and an integrated GUI
within Blender that work hand in hand, we could address several visualization use cases
both via a headless mode, where everything can be scripted through the API and a GUI
mode that allows for a lot more interactivity, exploration and analysis. The endless
possibilities of visualization that this opens up is what makes this an interesting and exciting
problem for me. Blender however is a very complex piece of software. There are several
caveats and inner workings that one needs to be familiar with to program and leverage all
the great stuff that Blender has to offer. This is what makes it a difficult problem as well.

https://github.com/MDAnalysis/mdanalysis/wiki/GSoC-2025-Project-Ideas#project-4-better-interfacing-of-blender-and-mdanalysis
https://www.blender.org/
https://bradyajohnston.github.io/MolecularNodes/
https://github.com/yuxuanzhuang/ggmolvis

Overall goal

My overall goal as part of this project is to help define, prototype and build the visualization
API along with the corresponding GUI within Blender that can address current and future
MDAnalysis visualization use cases which can be integrated seamlessly into an existing
project like GGMolVis, Molecular Nodes or a standalone project.

Approach

This section outlines the approach I intend to use to answer the overarching question stated
above and reach the specified goal.

Design considerations

There are several design considerations we have to take into account to achieve our overall
goal. This will ensure that we can address all current and potential future use cases while
keeping everything consistent and leveraging all the features that Blender offers.

Here is a list of such design considerations:

Ease of use / Usability

We should not expect users to be familiar with Blender or Blender’s Python API. All of the
visualization APIs or the GUI provided should be self sufficient for users to accomplish their
MDAnalysis visualization use cases. APIs should be intuitive and follow a consistent theme
of other visualization tools that MDAnalysis users might already be familiar with, wherever
possible. Blender provides a very extensive python API of its own where a lot of what can be
done through its GUI can be scripted as well. We should not attempt to expose all of that API
but instead provide well defined interfaces that will address the most common use cases
with sensible defaults.

Consistency

MDAnalysis users can interface with Blender in one of two possible ways: 1. A pure
headless mode, where there is no Blender GUI involved and 2. A GUI mode where Blender
GUI is available alongside their common programming environments (like Jupyter
Notebooks). These modes are not mutually exclusive. Users could be using one or the other
depending on their constraints and sharing Notebooks with others who could have different
preferences. Whatever we build should be consistent across both these modes from the very
beginning. A GUI mode obviously provides a lot more interactivity and ease of use for most
of the use cases, but similar to Blender (which has a GUI and a background mode as well),

we should have both working in sync. The consistency consideration applies across the
board to a lot of other areas as well.

Data

There should be a single source of truth for all data used by our APIs and GUI. APIs and
GUI should also be completely in sync with each other through this underlying data layer.
Any changes made through API should instantly reflect in the GUI and any interactive
customizations made through the GUI should be exportable back as complete API calls or
available from the APIs directly. This will ensure repeatability and reproducibility. This is
something we should consider right from the very beginning. Without this, these could
deviate significantly very soon and add to additional layers of complexity in the future.
Blender also has certain constraints on how the custom GUI elements are built (because it
gets embedded within Blender’s own interface), which dictates the way underlying data is
stored within Blender. Factoring this in while designing the APIs will keep them in sync.

Extensibility

Similar to MDAnalysis, we want the visualization tool to also be extensible. Though we will
provide some of the most common visualizations, we do want users to be able to extend the
tool for their own custom analysis needs as part of their research. We would still not expect
such users to be familiar with Blender’s Python API and hence provide all the basic building
block APIs that they can build their custom visualization analyses on. Our own MDAnalysis
visualizations will be built on top of these building blocks (for example annotating text /
drawings / objects in 3D space, 2D space, styling different representations, etc) and will
serve as examples for how they can be extended. This requires the API layer to be simple
and user-friendly for both end users and other MDAnalysis developers equally and hence
needs abstracting out Blender internals as much as possible for the sake of extensibility.

Leveraging Blender

As mentioned in one of the sections above, Blender is extremely powerful in what it offers -
all of it via a nice programming interface. If we look at it from the perspective of just
generating simple images and videos as outputs, we could be limiting ourselves - even for
our use cases. Blender has a really nice animation subsystem, a compositing subsystem,
constraints and tracking mechanisms for camera and several others that could be leveraged
for our use cases as well to go beyond the ordinary and provide complex visualizations
similar to Molywood, but all within a single unified system, thanks to Blender. This however
requires us to design keeping these in mind so they can be leveraged. For example, only
non ID properties (“bpy.props.*”) can be keyframed and hence used in the animation
subsystem. Blender also provides a way to expose inputs from Geometry Node trees directly
in the GUI (also making them available to the animation system as mentioned before)
without us having to write an intermediary layer in between. Building an API by taking all of
these into account will help us leverage Blender to the fullest and minimize the need for
additional complexity.

https://mmb.irbbarcelona.org/molywood/

Design choices

This section outlines some of the design choices we can make based on the design
considerations from the previous section.

Blender properties for data

By using Blender properties (bpy.props) for data, we address several of the design
considerations above.

Here is an example video that shows the APIs and GUI being in sync with this approach:

(Note that when images are hyperlinked to videos in this document, the same direct link is
also inserted below the image for convenience)

Direct video link:

https://drive.google.com/file/d/1QlU0Hwz2iDSPNIzr9Y7fOddsDPHB93Ro/view

The above is in a GUI mode setup. On the left, we can see the API calls made from within a
Jupyter Notebook and on the right we can see the same reflected in the GUI real time
allowing interactive customizations. The “Copy Python API call” button in the GUI would
generate the API call that matches the customizations made so that they can be pasted back
into the Notebook cells. Reading the corresponding entity from the API will also show the
updated values from the GUI.

https://docs.blender.org/api/current/bpy.props.html
https://drive.google.com/file/d/1QlU0Hwz2iDSPNIzr9Y7fOddsDPHB93Ro/view
https://drive.google.com/file/d/1QlU0Hwz2iDSPNIzr9Y7fOddsDPHB93Ro/view?usp=share_link

Universe centric approach

This document proposes a universe centric approach where one universe corresponds to
one object within Blender. This differs from the approach within ggmolvis as of this writing
and is discussed in issue #5 and issue #11. This has a lot of advantages as outlined in issue
#5 (comment) and issue #11 (comment). This also keeps Blender’s outliner clean, reduces
memory footprint and helps with everything downstream as it organizes the universe around
a single object helping the GUI, the data layer etc. This requires the ability from Molecular
Nodes to allow styling different representations of the same object.

Here is an example video showing how the data organized at an object level helps with the
overall usability in the GUI mode when multiple universes are involved with multiple
representations, annotations and components involved:

Direct video link:

https://drive.google.com/file/d/1VZ4VrCDDWnxPOsj2EdOHYrHY_8JkzlwE/view

The above shows a couple of universes added through the API and customized from the
GUI with various representations and annotations.

Annotations (Text / Lines / Objects)

Annotations are an integral part of visualization. Several MDAnalysis results can be
annotated onto the universe using text, lines and objects providing very useful context for
deeper analysis. Blender provides a few different ways to represent these. The text related
options are described in issue #27 along with their pros and cons. Blender’s blf and gpu
modules provide a common approach that several popular tools (including Blender itself)

https://github.com/yuxuanzhuang/ggmolvis/issues/5
https://github.com/yuxuanzhuang/ggmolvis/issues/11
https://github.com/yuxuanzhuang/ggmolvis/issues/5#issuecomment-2595717338
https://github.com/yuxuanzhuang/ggmolvis/issues/5#issuecomment-2595717338
https://github.com/yuxuanzhuang/ggmolvis/issues/11#issuecomment-2652493716
https://drive.google.com/file/d/1VZ4VrCDDWnxPOsj2EdOHYrHY_8JkzlwE/view
https://drive.google.com/file/d/1VZ4VrCDDWnxPOsj2EdOHYrHY_8JkzlwE/view
https://github.com/yuxuanzhuang/ggmolvis/issues/27
https://docs.blender.org/api/current/blf.html
https://docs.blender.org/api/current/gpu.html

take to achieve overlays in Blender’s 3D viewport. This document proposes using these
mainly along with regular Blender Text and primitive objects as options available for some
specific use cases. There are known issues due to the nature of the ‘blf’ and ‘gpu’ modules
that have to be worked around to get them to show up in renders. A prototype of these
working can be see in issue #27 (comment).

Blender Timeline

Blender has a single timeline that is used in a variety of ways to create animations. The
current approach of ggmolvis and MN as of this writing ties the universe trajectory frames to
this timeline. We should not explicitly tie our universe(s) frames to Blender's timeline given
that we can have multiple universes with varying trajectory lengths and requirements to keep
some selections / universes static etc. MN already has a Update with Scene option and
individual nodes for animation. Keeping these decoupled, but with an ability to link / unlink
virtually (by keyframing) will provide the maximum flexibility to render a variety of different
animations. Building the API with this in mind from the beginning will let us achieve this goal.

Here is an example video of a setup of a complex animation from the GUI mode where
various properties are keyframed onto Blender’s timeline:

Direct video link:

https://drive.google.com/file/d/1klHtubVDEo5coqgqg_PcjpQxbpCaYQ_W/view

Here is the output animation video from the above setup:

https://github.com/yuxuanzhuang/ggmolvis/issues/27#issuecomment-2727501104
https://drive.google.com/file/d/1klHtubVDEo5coqgqg_PcjpQxbpCaYQ_W/view
https://drive.google.com/file/d/1klHtubVDEo5coqgqg_PcjpQxbpCaYQ_W/view

Direct video link:

https://drive.google.com/file/d/194cJ8yK1S4wVKrszZ4Ucs-27GqrOpMbb/view

The above is also a great example to show how building APIs and GUI the right way can
directly leverage Blender’s animation system as well for complex use cases. Though the
above requires some Blender knowledge, we could expose simpler and common animation
options as described in later sections.

Here is a video of the trajectory alignment example from the user guide showing static and
dynamic universes on the same timeline:

https://drive.google.com/file/d/194cJ8yK1S4wVKrszZ4Ucs-27GqrOpMbb/view
https://drive.google.com/file/d/194cJ8yK1S4wVKrszZ4Ucs-27GqrOpMbb/view
https://userguide.mdanalysis.org/stable/examples/analysis/alignment_and_rms/aligning_trajectory.html
https://drive.google.com/file/d/1h1TQt-MSj0TCvqi8H-nQ9Q66zhbKU3Yv/view

Direct video link:
https://drive.google.com/file/d/1h1TQt-MSj0TCvqi8H-nQ9Q66zhbKU3Yv/view

Camera, Lighting and Background

This document proposes to keep a few things constant to achieve the consistency goal. We
should not need to change the camera focal length for most of our use cases. Having a fixed
value with the appropriate clipping planes will suffice. Zooming in would be equivalent to
positioning the camera appropriately and not having to change the focal length. The reason
for this requirement is that Blender uses a virtual camera for the 3D viewport (with its own
focal length and clipping planes) and to get what the viewport shows to be consistent with
the render outputs these have to be synchronized with the corresponding actual camera
values and the camera sensor size. We lose no functionality by keeping this constant.

For consistent lighting, a Sun (with a low power of 3-4W - configurable) that is positioned at
the base of the camera pointed straight ahead and parented to the camera achieves the best
results. Because the light is a Sun, it is uniform and doesn’t vary with the distance to the
object and we get consistent results by pointing the camera anywhere in the 3D space
around our universes.

Here are a couple of example videos that show a yaw and pitch around a residue with some
annotations that show the canonical dihedral angles (EEVEE renders):

Yaw video:

Direct video link:

https://drive.google.com/file/d/14ND4-LDEx0D2M3KjPY777XaCG2jlhqfc/view

https://drive.google.com/file/d/1h1TQt-MSj0TCvqi8H-nQ9Q66zhbKU3Yv/view
https://drive.google.com/file/d/14ND4-LDEx0D2M3KjPY777XaCG2jlhqfc/view
https://drive.google.com/file/d/14ND4-LDEx0D2M3KjPY777XaCG2jlhqfc/view

Pitch video:

Direct video link:

https://drive.google.com/file/d/1ORCvxUnyBn4aBBNSg3ir7Ths23gn7Iv9/view

As we can see from the above examples, it is the camera that moves around the region of
interest and the lighting remains consistent as it is parented to the camera. These also show
a couple of simple animations around regions without necessarily requiring trajectory frame
changes.

To achieve consistent and simple background colors that match viewport renders (the really
fast renders) and regular renders (EEVEE, Cycles, etc) we could use a solid background
color for the world settings. Though the 3D viewport background and the world solid
background colors are two different settings, it is easy to keep them in sync. This keeps the
fast viewport renders in sync with the high quality EEVEE or Cycles renders.

MDAnalysis selection phrases and AtomGroups

MDAnalysis has a rich Atom selection language based on selection phrases which are
strings. A lot of MDAnalysis use cases center around AtomGroup where a user-provided
selection phrase might not be available (except for an ‘UpdatingAtomGroup’). Using
selection phrases for the GUI is very natural. For the API we would need to support both.
Given that any AtomGroup could be represented using the ‘index’ and ‘bynum’ keyworks of
the Atom selection language, we could bridge this gap between the API and the GUI and
make this seamless. We will be able to handle updating atom groups and periodic boundary
conditions as well. MN today uses selection phrases for selection attributes in its GUI.

https://drive.google.com/file/d/1ORCvxUnyBn4aBBNSg3ir7Ths23gn7Iv9/view
https://drive.google.com/file/d/1ORCvxUnyBn4aBBNSg3ir7Ths23gn7Iv9/view
https://userguide.mdanalysis.org/stable/selections.html
https://docs.mdanalysis.org/2.8.0/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup

Named entities

Almost everything in Blender has a name. Every Blender property too has an implicit name
attribute. This makes looking up entities from the underlying Blender data structures very
accessible and opens up a lot of use cases. This is something we could carry into our API
design as well. Every entity (style, annotation, component etc) will have a name (implicit, but
can be explicitly set / modified). This will allow them to be easily looked up and referenced.
For example: In a simple use case like - turn off visibility of style1 in universe u1 after 3
seconds, this becomes straightforward in both our internal API specifications and in a higher
level specification like a Molywood script.

APIs

With the design considerations taken into account and the relevant design choices outlined
above, we can specify the requirements for the overall APIs. As designing the actual API is
part of the project (along with prototyping and implementation), this section outlines all the
key requirements that will be considered. These APIs can be broken down into four main
categories:

APIs for styling representations

These APIs are responsible for styling different representations of a universe. They will use
Molecular Nodes internally and support all the style types that are currently possible through
the MN Geometry Nodes interface. These APIs will support the following features:

●​ Add a style for a specific selections of the universe
●​ Undo the most recently added style (pop)
●​ List all the styles added to a universe (showing index, entity name and style details)
●​ Get a style object based on index or entity name
●​ Remove a style entity based on index or entity name
●​ Show / Hide a style entity based on index or entity name

○​ This will internally unmute / mute the “named attribute” selection node in the
corresponding node frame

●​ Configuration of all style related properties using a single dictionary (for exporting a
single complete style API call from the GUI and during initial setup) as well as each
individual style specific property (allowing auto-complete in programming
environments) using a returned style object

○​ This includes nested style configuration elements like material - material
name and all corresponding material properties (Principled BSDF inputs)

●​ Uniform colors and grouping of colors via a color theme to override defaults
●​ Dynamic change of the style type of a style entity (eg: spheres to cartoon)
●​ Dynamic change of the selection phrase of a style entity
●​ Focus (viewport and camera) on a particular style entity

https://mmb.irbbarcelona.org/molywood/
https://mmb.irbbarcelona.org/molywood/docs

○​ This will internally use the bounding box of the selection returned by the
corresponding selection phrase for the style - see the focus APIs in the
rendering section below

●​ Renaming of the style entity name
●​ Clear all styles entities added to a universe
●​ All the style properties will be keyframable (for the animation system) both from the

animation APIs and the GUI
●​ All these APIs will be in sync with the GUI and point to the same data

APIs for annotations

These APIs are responsible for adding and managing annotations to a universe. Annotations
can be in the form of text, drawings (lines, arrows, circles, arcs, etc) and primitive Blender
shapes (spheres, cylinders, curves, text objects, etc). These APIs will internally use
Blender’s “blf” and “gpu” modules to draw on the 3D viewport (for non Blender shapes) and
PIL to draw them onto an image that will be composited for final renders (both images and
video). These APIs will support the following features:

●​ Common annotations like atom info (along with residue and segment details), bond
angles, center of mass, center of geometry, distance between entities, canonical and
regular dihedral angles, universe info (like topology, trajectory and frame details)

●​ Arbitrary text and drawings anywhere in the 3D space with respect to the universe
geometry (both direct and computed coordinates)

○​ They will be automatically projected onto the 2D space depending on the
viewport / camera position and always face the user and retain their specified
size at all times

○​ Some of these APIs will require a normal vector to determine the 3D plane for
the drawings

●​ Arbitrary text and drawings in the 2D space with respect to the viewport and camera
views. These are with respect to the final 2D renders and hence retain their position
independent of any camera position or movements

●​ Configuration of font, font size, font color, text alignment, text rotations and text
positioning offsets (along the final 2D +X, -X, +Y, -Y)

●​ Configuration of line color, line width, arrow sizes / location, pointer lengths for all line
based drawings (lines, circles, arcs, etc)

●​ Add a built-in or custom annotation to a universe
●​ Undo the most recently added annotation (pop)
●​ List all the annotations added to a universe (showing index, entity name and

annotation details)
●​ Get a annotation object based on index or entity name
●​ Remove a annotation entity based on index or entity name
●​ Show / Hide an annotation entity based on index or entity name
●​ Show / Hide all annotations of a universe
●​ Dynamic change of the selection phrases used in an annotation entity
●​ Focus (viewport and camera) on a particular annotation entity

○​ This will internally use the bounding box of the selection returned by the
corresponding selection phrases for the annotation

●​ Renaming of the annotation entity name
●​ Clear all annotations entities added to a universe
●​ All the annotation properties will be keyframable (for the animation system) both from

the animation APIs and the GUI
●​ All these APIs will be in sync with the GUI and point to the same data

APIs for components

These APIs are responsible for adding and managing different components to a universe. A
built-in density analysis component will be provided by default. A framework to manage the
lifecycle of these components will be provided through these API. This will allow other
advanced analysis components added by MDAnalysis or other users to be plugged in and
managed the same way. These APIs will support the following features:

●​ A built-in density component that supports both “.dx” and “.vdb” formats
○​ Configurable options will include iso value, colors for positive and negative iso

values, option to show contours of the volume, slicing along +X, -X, +Y, -Y, +Z
and -Z axes

●​ Add a component to a universe
●​ List all the components added to a universe (showing index, entity name and

component details)
●​ Get a component object based on index or entity name
●​ Remove a component entity based on index or entity name
●​ Show / Hide a component entity based on index or entity name
●​ Focus (viewport and camera) on a particular component
●​ Renaming of the component entity name
●​ Clear all component entities added to a universe
●​ Customizable defaults and ranges for component property parameters

Here is a couple of examples that show two different use cases that use the same density
component, but are set up with different defaults and ranges for the configurable values:

In the first example, the “isovalue” is an integer with a default value of 1 and a range from 1
to 100. The volume in this case is also from a “.vdb” file. The second example is from
Calculating the solvent density around a protein in the MDAnalysis user guide. In this case,
the “isovalue” is a float with a default value of 0.5 and a range from -1.5 to 1.5 and the same
“water.dx” output file generated by MDAnalysis is used around the transformed universe.

https://userguide.mdanalysis.org/stable/examples/analysis/volumetric/density_analysis.html

Direct video link:

https://drive.google.com/file/d/1Tqm1iqHLMtBpw6Syszc5mN9KQLa9sTLM/view

Direct video link:

https://drive.google.com/file/d/1eDZ9nPdmpbgxb3_U4MssMrujqseccjTK/view

●​ All the component specific properties will be keyframable (for the animation system)
both from the animation APIs and the GUI

●​ All these APIs will be in sync with the GUI and point to the same data

https://drive.google.com/file/d/1Tqm1iqHLMtBpw6Syszc5mN9KQLa9sTLM/view
https://drive.google.com/file/d/1Tqm1iqHLMtBpw6Syszc5mN9KQLa9sTLM/view
https://drive.google.com/file/d/1eDZ9nPdmpbgxb3_U4MssMrujqseccjTK/view
https://drive.google.com/file/d/1eDZ9nPdmpbgxb3_U4MssMrujqseccjTK/view

APIs for rendering

These APIs are responsible for configuring the camera, lighting, background, animation and
various render related settings that will eventually generate images and movies as outputs
from Blender. All these APIs will work in exactly the same way in both the headless mode
and GUI modes. These API will support the following features:

●​ Ability to specify and focus on any region of interest across the 3D space (this
updates the 3D viewport and the camera to match the viewport)

○​ Focus from different standard viewpoints (front, back, top, bottom, left, right)
○​ Focus on individual universes, selections within universes, selections across

different universes - all based on MDAnalysis selection phrases
○​ Focus on individual styles, annotations, components (of specific universes)
○​ Dynamic focus based on updates owing to trajectory frame changes
○​ A generic “lookAt” function that allows a standard way to specify arbitrary

positioning of the camera
●​ Simple camera movements around focus areas - like yaw, pitch with customizable

angles and durations when plugging into the animation system

The videos in the Camera, Lighting and Background section already show examples of how
this will look like. Here is another example of a simple camera yaw around a density
component:

Direct video link:

https://drive.google.com/file/d/1wiCqK89RkJRuRV74Yn0z1WXcJqMIsGIA/view

●​ Configuration of the lighting intensity (a simple Sun with low power as outlined in the
Camera, Lighting and Background section)

https://drive.google.com/file/d/1wiCqK89RkJRuRV74Yn0z1WXcJqMIsGIA/view
https://drive.google.com/file/d/1wiCqK89RkJRuRV74Yn0z1WXcJqMIsGIA/view

●​ Configuration of a solid background color that is consistent across 3D viewport and
viewport renders and regular renders

●​ A simple animation framework that allows keyframing all our properties on a
customizable timeline using entity names and property attributes, while being
extensible for complex use cases in the future

Here is an example of a customizable timeline and how rendering animations could look like:

Direct video link:

https://drive.google.com/file/d/1uWCPM4TauPMD6M5aTnyWTQ9-ZGJK0kCE/view

●​ Configuration of several render related settings
○​ Rendering engine, number of samples
○​ Output image / video resolution and resolution scale
○​ Common output image / video settings and filenames

●​ Viewport renders and full renders (including scaled renders using the resolution scale
for faster evaluation) - both images and video

GUI

All the GUI for MDAnalysis will be in one single place - as a tab named “MDAnalysis” in the
sidebar (n-panel), which is directly accessible from the 3D viewport. All the various sections
like universes, trajectory details, styles, annotations, components, etc will be separate
panels. The GUI will be built to be in sync with the API as described and illustrated in the
Blender properties for data section before. The GUI will support the following features, all of
which will be possible through the API as well:

https://drive.google.com/file/d/1uWCPM4TauPMD6M5aTnyWTQ9-ZGJK0kCE/view
https://drive.google.com/file/d/1uWCPM4TauPMD6M5aTnyWTQ9-ZGJK0kCE/view

●​ Support for multiple universes and selection / focusing on individual universes
●​ Ability to frame (focus) all universes
●​ Trajectory details and dynamic trajectory frame changes of a universe
●​ Addition / deletion of styles along with complete customization of styles (including

nested configurations like material properties) in real time
●​ Dynamic change of style types and selection phrases for different representations
●​ Control the visibility and focus of individual style entities
●​ Addition / deletion of annotations - both built-in and custom annotations along with

complete customization of each annotation
●​ Control the visibility and focus of individual annotation entities
●​ Control the visibility and focus of individual component entities
●​ Customization of component specific properties
●​ Ability to generate the Python API code based on the current set of customizations

for each of the different entities (styles, annotations, components, etc)
●​ Error handling that shows details and resolution options
●​ Keyframability of all the properties for use in the animation system

Measurable outcomes

This section outlines some non-trivial outcomes that have to be achieved to reach the overall
goal of this project.

1.​ Help design, prototype and implement the style APIs
2.​ Help design, prototype and implement the annotation APIs
3.​ Help design, prototype and implement the component APIs
4.​ Help design, prototype and implement the rendering APIs
5.​ Build a GUI within Blender that is in sync with all the APIs above

All the implementations above will include a clear documentation of the APIs, tests and
example notebooks that illustrate all available features.

Timeline

This is a project that can be categorized as “Large” as per the GSoC requirements. I intend
to complete this work as part of the standard 12 week coding period (June 2 - September 1).
Most of this period (2 months of it) coincides with the summer break in my University and I
will be able to commit full time on this project. My 3rd semester starts at the beginning of
August, but given that it is early into the semester, I will still be able to commit the majority of
my time to complete this project. I will also have some time after the end of my current
semester before the official coding period starts to get an early start and ramp up.

Here is a detailed breakup of this timeline:

Before May 8: (Before contributor announcement)

●​ Continue exploration and prototyping to eliminate any unknowns
●​ Continue to take part in discussions

May 8 - June 1: (Before the official coding time)

●​ Discuss and finalize the design choices and API specifications with the mentors
●​ Document the above
●​ Setup the environment and overall project structure

June 2 - June 15: (Official coding period starts)

●​ Build the universe level abstraction and common utilities across all APIs and GUI
●​ Build the common data framework between APIs and GUI
●​ Have a working framework on which the rest of the APIs and GUI can be built

June 16 - June 29:

●​ Build the style APIs and corresponding GUI - code, document, test
●​ Start building the basic rendering APIs to see some early outputs

June 30 - July 13:

●​ Build the annotation APIs and corresponding GUI - code, document, test
●​ Continue work on the rendering APIs

JULY 18th: MID TERM EVALUATION

July 14 - July 27:

●​ Build the component APIs and corresponding GUI - code, document, test
●​ Continue work on the rendering APIs

July 28 - August 10:

●​ Complete the rendering APIs - code, document, test

August 11 - August 24:

●​ Complete coding any remaining pieces
●​ Complete any missing documentation and tests
●​ Create end to end example notebooks that illustrate all the various features

August 25 - September 1: (Final week)

●​ Tie up any loose ends
●​ Prepare for the final submission

SEPTEMBER 1st: SUBMIT FINAL WORK

Conclusion

This document proposed details about how “Project 4: Better interfacing of Blender and
MDAnalysis” can be implemented as part of GSoC 2025. A detailed description of the
problem, the approach to solve it based on early prototyping and explorations along with
measurable outcomes as part of the GSoC 2025 timeline are provided.

References

1.​ [MDAnalysis GSoC 2025 Project Idea] Project 4: Better interfacing of Blender and
MDAnalysis

2.​ [MDAnalysis Discussion] Visualization of MDAnalysis results in Blender
3.​ Learnings from explorations and prototyping
4.​ [ggmolvis] How we handle rendering
5.​ [ggmolvis] Selections / Representations of the same data
6.​ [ggmolvis] A discussion on on overall structure
7.​ [ggmolvis] Design choices for Text Annotations
8.​ MolecularNodes involvement
9.​ ggmolvis involvement

https://github.com/MDAnalysis/mdanalysis/wiki/GSoC-2025-Project-Ideas#project-4-better-interfacing-of-blender-and-mdanalysis
https://github.com/MDAnalysis/mdanalysis/wiki/GSoC-2025-Project-Ideas#project-4-better-interfacing-of-blender-and-mdanalysis
https://github.com/MDAnalysis/mdanalysis/wiki/GSoC-2025-Project-Ideas#project-4-better-interfacing-of-blender-and-mdanalysis
https://github.com/MDAnalysis/mdanalysis/wiki/GSoC-2025-Project-Ideas#project-4-better-interfacing-of-blender-and-mdanalysis
https://github.com/MDAnalysis/mdanalysis/discussions/4862
https://gist.github.com/PardhavMaradani/9c1c6ed229f83db7c3fc5ebf9abb3e8e
https://github.com/yuxuanzhuang/ggmolvis/issues/5
https://github.com/yuxuanzhuang/ggmolvis/issues/11
https://github.com/yuxuanzhuang/ggmolvis/issues/24
https://github.com/yuxuanzhuang/ggmolvis/issues/27
https://github.com/BradyAJohnston/MolecularNodes/issues?q=involves%3APardhavMaradani%20
https://github.com/yuxuanzhuang/ggmolvis/issues?q=involves%3ApardhavMaradani%20

	Project 4: Better interfacing of Blender and MDAnalysis
	
	Introduction
	Relevant background and experiences
	Problem to be solved
	Background
	Overarching question
	Why this is an interesting / difficult problem
	Overall goal

	Approach
	Design considerations
	Ease of use / Usability
	Consistency
	Data
	Extensibility
	Leveraging Blender

	Design choices
	Blender properties for data
	Universe centric approach
	Annotations (Text / Lines / Objects)
	Blender Timeline
	Camera, Lighting and Background
	MDAnalysis selection phrases and AtomGroups
	Named entities

	APIs
	APIs for styling representations
	APIs for annotations
	APIs for components
	APIs for rendering

	GUI

	Measurable outcomes
	Timeline
	Conclusion
	References

