
Optimizing class instance member
initializers in V8

Attention - this doc is public and shared with the world!
Contact: Joyee Cheung <joyee@igalia.com>, Caitlin Potter <caitp@igalia.com>
Contributors:
Status: Inception | Draft | Accepted | Done

LGTMs needed
Name Write (not) LGTM in this row

leszeks@chromium.org

verwaest@chromium.org

...

Objective
To improve performance of the class instance member initialization in V8 and promote usage of
these features.

Microbenchmark patch: https://chromium-review.googlesource.com/c/v8/v8/+/2999030

Background
Currently, when a instance member initializer is defined in a class, like this

const a = 1;

class A {

 #a = a;

 #b = this.#a;

 constructor() {

 // does work

 }

}

mailto:joyee@igalia.com
mailto:caitp@igalia.com
https://chromium-review.googlesource.com/c/v8/v8/+/2999030

new A();

V8 generates the bytecode for the initializer as an instance member function:

// Load private name symbol for #a into r1
LdaImmutableCurrentContextSlot [2]

Star r1

// Load a into r2

LdaImmutableContextSlot <context>, [2], [1]

ThrowReferenceErrorIfHole [0]

Star r2

Mov <this>, r0

// Store the value of a with private name symbol #a into the instance

// that is, #a = a;

CallRuntime [AddPrivateField], r0-r2

// Load private name symbol for #b into r1

LdaImmutableCurrentContextSlot [3]

Star r1

// Load private name symbol for #a

LdaImmutableCurrentContextSlot [2]

// Load the value of #a from the instance into r2

LdaKeyedProperty <this>, [0]

Star r2

Mov <this>, r0

// Store the value of #a into #b, that is, #b = this.#a;

CallRuntime [AddPrivateField], r0-r2

LdaUndefined

Return

which is stored into the class as a symbol property at class evaluation time.

...

CallRuntime [DefineClass], r3-r5

Star r3

CreateClosure [5], [1], #0

Star r4

StaNamedProperty r2, [6], [0]

When the constructor of the class is invoked, V8 loads the initializer from the class (the
JSFunction) and invokes it.

// Load the initializer from the constructor
LdaNamedProperty <closure>, [0], [0]

JumpIfUndefined [11]

Star r1

// Invoke the initializer

CallProperty0 r1, <this>, [2]

Mov <this>, r0

LdaUndefined

Return

Design

Inline initializers in the class constructor

See https://bugs.chromium.org/p/v8/issues/detail?id=9888#c6

WIP at https://chromium-review.googlesource.com/c/v8/v8/+/2944249

Note: the WIP improves the performance of class evaluation by about 30-50%, and the
performance of class instantiation by less than 10%, this is probably because:

●​ We are only removing a CreateClosure - StaNamedProperty sequence for class
evaluation and a LdaNamedProperty - CallProperty0 sequence for the instance
constructor

●​ The CallProperty0 would be inlined when it goes to TurboFan

Currently we create a synthetic instance member initializer function when the class is evaluated.
For example with this class:

class A {

 #a = 1;

 constructor() { }

 getA() { return this.#a; }

 #b = 2;

}

At class evaluation time, we generate a function from a InitializeClassMembersStatement
AST node that contains a list of ClassLiteralProperty including the initializers for #a and #b,
and we record its source code as:

 #a = 1;

 constructor() { }

 getA() { return this.#a; }

 #b = 2;

https://bugs.chromium.org/p/v8/issues/detail?id=9888#c6
https://chromium-review.googlesource.com/c/v8/v8/+/2944249

Which is actually invalid (i.e. can’t be reparsed as a function) but it works most of the time, since
we always generate code for the synthetic function when the class is evaluated, at that point
we’ll just use the InitializeClassMembersStatement AST node created when the entire
class is parsed (this is done eagerly, that is, even if the constructor is never invoked). The code
for the initializer function is usually alive as long as the class is alive, so they won’t normally be
lazily parsed. However with FunctionCodeHandling::kClear that is no longer true so the
snapshot support is currently broken.

Currently the initializer function can already be inlined in the constructor by TurboFan. We can
inline the InitializeClassMembersStatement AST node into the constructor
FunctionLiteral’s body so that when generating the bytecode for baseline, we do not have to
load and call a synthetic initializer function. The design doc about public class fields has
described what it takes to implement this..

Reparsing the class body from constructor

As explained above, the code we currently record for initialization is invalid and can’t be
reparsed. Inlining the initializers into the constructor means they may be lazily parsed along with
the constructor, so we will reparse the entire class body when the constructor is invoked to
collect the initializers. When the initialization is done in the derived constructor, we will take the
initialization statements out from the constructor and visit them right after super() is invoked so
the fields are initialized in time.

Note that even if we reparse the class body, we can skip the non-field members (like getA()
above) so the additional overhead should be limited. We also get to fix the snapshot support
bug if lazy parsing of the initializers is made possible.

Disabling new.target in the initializers

Within the initializers, new.target is supposed to be undefined. We can implement this by
temporarily assigning undefined to the new.target variable before the initialization statements
are visited, and restoring it back later in the bytecode generator. We may even optimize further
and skip this dance if new.target is never used in the initializers (either directly or through things
like eval).

Making it work with the step-debugger

To make sure that step-debugging continues to work, given a source position that’s somewhere
in the initializer, we need to be able to tell that it is associated with the constructor SFI.

https://bugs.chromium.org/p/v8/issues/detail?id=10704
https://bugs.chromium.org/p/v8/issues/detail?id=10704
https://docs.google.com/document/d/1DZjNEuFlF7Y0t9thwMX74EeM_dduIBJliLjXPiQoTQY/edit#heading=h.rpsschafu6vf
https://bugs.chromium.org/p/v8/issues/detail?id=10704
https://bugs.chromium.org/p/v8/issues/detail?id=10704

The current plan is to always store the class body positions into the ScopeInfo of the class
scope if it needs member initialization. When looking for candidate SFIs for a position within the
initializers, if we can tell that a SFI is a constructor with member initializers (available in the
flags), we look into the ScopeInfo of its outer class scope, and include the SFI if the current
position falls into the class body. Then when choosing the closest SFI we patch the calculation
and make sure that the constructor SFI is chosen when necessary.

Reduce the cost of runtime calls (e.g. AddPrivateField)
See https://bugs.chromium.org/p/v8/issues/detail?id=10793

Currently we invoke CreateDataProperty, AddPrivateField and AddPrivateBrand as
runtime calls in the constructor when they are just a property existence check and a keyed
property load, and this incurs performance overhead.

We could implement this without using a runtime call. Some options include:

1. Use existing bytecodes to implement the runtime calls

Add two new bytecodes that allow loading/storing owned keyed properties while bypassing the
interceptors and traps. Then we can replace AddPrivateField etc. with bytecodes generated
using these new operations. Instead of

CallRuntime [AddPrivateField], r0-r2

We may perform something like

// Load the private name symbol into r1

LdaImmutableCurrentContextSlot [2]

Star r1

// Load the hole into r2

LdaTheHole

Star r2

// Check that the private field isn’t already defined

Ldar r1

Mov <this>, r0

LdaKeyedProperty r0

TestReferenceEqual r2

JumpIfFalse

LdaSmi

Star

CallRuntime [NewTypeError]

https://bugs.chromium.org/p/v8/issues/detail?id=10793

// ...do whatever that saves the private field value into the accumulator...

// Store the value into the instance using the private name symbol

Ldar r1

Mov <this>, r0

StaKeyedProperty r0, r1

However, we can only implement the private field operations with this approach. We can’t just
use LdaNamedProperty/StaNamedProperty for public fields because that would result in [[Set]]
semantics instead of [[Define]] semantics. This also complicates LdaKeyedProperty a bit since
right now it simply throws on missing private symbol properties but to reuse it for initialization
some special paths need to be added so that it returns a hole or undefined for initialization.

2. Add new bytecodes or change existing bytecodes for defining owned
public properties

To make [[Define]] semantics work for public fields, we could add two new bytecodes, or change
existing StaNamedProperty so that they take arguments to ignore interceptors/traps when
storing properties.

Patch adding a new bytecode and ICs for the define operation:
https://chromium-review.googlesource.com/c/v8/v8/+/2795831/ (landed)

The preferred approach is to add new bytecode StaKeyedPropertyAsDefine, which skips
prototype lookups and traps when adding the property:

LdaImmutableCurrentContextSlot [2]

Star0

LdaImmutableContextSlot <context>, [2], [1]

ThrowReferenceErrorIfHole [0]

StaKeyedPropertyAsDefine <this>, r0, [0]

LdaImmutableCurrentContextSlot [3]

Star0

LdaImmutableCurrentContextSlot [2]

LdaKeyedProperty <this>, [2]

StaKeyedPropertyAsDefine <this>, r0, [4]

LdaUndefined

Return

This would call into a new IC, with a slot in the feedback per field denoting that [[Define]]
semantics is intended.

https://github.com/tc39/proposal-class-fields#public-fields-created-with-objectdefineproperty
https://chromium-review.googlesource.com/c/v8/v8/+/2795831/

3. Implement inlined intrinsics

We can implement inlined intrinsics for AddPrivateField etc. This way we don’t have to add or
change the bytecodes.

4. New ICs

We can add ICs for AddPrivateField and friends, this may be done together with option 3 or
2.

This has been done in https://chromium-review.googlesource.com/c/v8/v8/+/2795831/

The new IC can share most of its code with KeyedStoreIC. We differentiate the semantics of the
operation via a feedback slot indicating that [[Define]] semantics is intended.

To perform existence checks for private names, checks need to be in place in:

-​ KeyedStoreIC::Store (to handle IC misses or in case the map is deprecated)
-​ StoreIC::Store (reused by KeyedStoreIC)

For the KeyedStoreIC::Store case, we can add a new runtime function
Runtime::DefineClassField similar to the existing Runtime::SetObjectProperty to perform the
checks we need.

The new IC do need a different slow stub and different transition handling to avoid being leaked
into StoreIC's megamorphic stub cache. We also need to skip generating the prototype handlers
in the AccessorAssembler, and go to the slow stub when the private property being defined
already exists (CL).

Elide the brand and private field existence checks for base
classes
Take this class for example:

const a = 1;

class A {

 #a = a;

 #b = this.#a;

 #c() {}

 constructor() {

 // does work

https://chromium-review.googlesource.com/c/v8/v8/+/2795831/
https://chromium-review.googlesource.com/c/v8/v8/+/3250641

 }

}

new A();

We currently perform 3 existence checks in the constructor: 1 for the private brand (since there’s
a private method #c), and 2 for the private fields #a and #b. Theoretically, if the class is a base
class, the checks can be merged into one (if the class extends from other classes, this may not
be true when the initializer throws and we are left with a partially initialized object).

One possible solution is to always declare and check a brand on the instance (we only do this
once even if there are multiple private methods present), and remove the existence checks in
the private field definitions. This means for classes with only private fields but no private
methods, there would be the additional overhead of storing a brand property in the instances, in
return the initialization would be faster (and the more private fields there are, the worthier this
is).

Adjusting the initial map based on class field initializers
When people initialize the fields, the static information available in the initializers tend to be
useful to determine how the initial map should look like for the class. This is particularly true for
private fields since users have to declare them in advance.

Things that could be adjusted using the information we know from the field initializers:

●​ initial in-object property size
●​ initial property count
●​ …(more to think about)

Take this class from Node.js core for example:

class Event {
 #type = undefined;
 #defaultPrevented = false;
 #cancelable = false;
 #timestamp = lazyNow();

 #bubbles = false;
 #composed = false;
 #propagationStopped = false;
}

https://github.com/nodejs/node/blob/08f051fc9206a998631ca0fa6ee3ab1a1bf8e7de/lib/internal/child_process.js#L527-L529

We know at least that there would be 7 private fields and we know that 5 of them are booleans.
The #type field is intended to be a string, and #timestamp is something returned from a function.
We could increase the initial in-object property size and property count accordingly if we are
certain the initial slack isn’t enough.

Other ideas...

	Optimizing class instance member initializers in V8
	LGTMs needed
	Objective
	Background
	Design
	Inline initializers in the class constructor
	Reparsing the class body from constructor
	Disabling new.target in the initializers
	Making it work with the step-debugger

	Reduce the cost of runtime calls (e.g. AddPrivateField)
	1. Use existing bytecodes to implement the runtime calls
	2. Add new bytecodes or change existing bytecodes for defining owned public properties
	3. Implement inlined intrinsics
	4. New ICs

	Elide the brand and private field existence checks for base classes
	Adjusting the initial map based on class field initializers
	Other ideas...

