
Using OpenPose for Education Research Pose Analyses

Overview of OpenPose

OpenPose is a real-time multi-person system to jointly detect a human body, hand, facial, and
foot keypoints on single images. Videos are a series of single images called frames, so
OpenPose detects individuals’ keypoints in each frame separately. It was developed by the
Perceptual Computing Lab of Carnegie Mellon University, and this tool has widely gained
prominence in research and industry for its accuracy and capability to analyze visual data.
OpenPose works by using a model trained on the COCO dataset to predict body poses, which
can then be processed further for specific applications. In our case, we will be using OpenPose
to process our videos to extract keypoints and save them as an output, then use a Python script
in order to process the output and assign the keypoints to individuals in the video.

Overview of the Tracking Process

We devised a post-processing approach to further extend the usefulness of OpenPose output
data, especially for education research, by tracking the data of the individuals between frames
in order to be able to assign unique IDs to the individuals detected by the software. We were
motivated to explore the effectiveness of OpenPose in analyzing classroom videos. Our
approach calculates the pixel distances between individual’s body keypoint data between
frames in order to assign the data to the individuals across time. However, we noticed some
difficulties with this approach, as the tracking process relies on consistently detected individuals
and keypoint data. The inconsistencies of person detection manifested challenges, which were
primarily caused by low camera angles causing occlusion, difficulty in tracking lower body
movements due to seated students, and close proximities between individuals. For individuals
who were detected, however, our approach was largely accurate and was checked by manual
verification. Further details of the tracking approach was published in a conference paper. The
post-processing scripts can be found on the GitHub page here.

Part I: OpenPose Video Processing

Notes:

●​ It is recommended that you run OpenPose on a Windows computer with a discrete GPU
(e.g., an Nvidia GPU using CUDA), as some of the more detailed pose configuration
options (e.g., 135-keypoint models) can be computationally demanding.

●​ These instructions on this document are a way to help you get started in order to obtain
output in the one manner. More information can be found on the OpenPose Github
repository.

Instructions:

https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab
https://github.com/CMU-Perceptual-Computing-Lab
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fcocodataset.org%2F%23home
https://dl.acm.org/doi/10.1145/3506860.3506888
https://github.com/tca2/videodata-processing

1.​ Downloading and extracting the software
a.​ Visit the release page and download the latest v1.7.0 OpenPose zip file here,

called openpose-1.7.0-binaries-win64-gpu-python3.7-flir-3d_recommended.zip
b.​ Extract the downloaded zip file to a directory where you can easily access it,

such as in a folder in the Documents directory, it should unzip a folder called
“openpose-1.7.0-binaries-win64-gpu-python3.7-flir-3d_recommended”, and
navigate inside the folder to find another folder called “openpose”

2.​ Downloading the models
a.​ Within the “openpose” folder, navigate inside the “models” folder (i.e., the path to

this should be
“openpose-1.7.0-binaries-win64-gpu-python3.7-flir-3d_recommended\openpose\
models”), and double-click on the getBaseModels batch file, which will open a
window which looks like the image below, and wait for it to complete the
downloads.

b.​ Optionally, clicking the getCOCO_and_MPII_optional batch file will download
additional models

3.​ Running OpenPose on a demo video and saving OpenPose output as JSON format
a.​ We will use the command-line interface (e.g., Powershell) to run OpenPose.

OpenPose needs to be run from the folder where it can locate the “models” folder
from Step 2.

b.​ Using Powershell, change the directory location to when it can directly access the
“models” folder. If you are not familiar with using command-line navigation, this
may be a helpful resource. Using “pwd” (i.e., command to display current path)
and “ls” (i.e., command to list all items in the current directory), along with “cd
XYZ” (i.e., command to change directory to XYZ–for example), navigate to the

https://github.com/CMU-Perceptual-Computing-Lab/openpose/releases/tag/v1.7.0
https://tutorials.codebar.io/command-line/introduction/tutorial.html
https://tutorials.codebar.io/command-line/introduction/tutorial.html

location where “ls” displays what is displayed below.

c.​ From this location, we will run the OpenPoseDemo.exe file inside the “bin” folder

to process the video.avi demo file found inside the “examples/media” folder. The
syntax for this in the command looks like this on my machine:

C:\Users\khur4\Documents\openpose-1.7.0-binaries-win64-gpu-flir-3d_recomme
nded\openpose\bin\OpenPoseDemo.exe --video
C:\Users\khur4\Documents\openpose-1.7.0-binaries-win64-gpu-flir-3d_recomme
nded\openpose\examples\media\video.avi --write_json video_output/

d.​ Note that the “--video” part of the command precedes the path to the “video.avi”
file, and that “--write_json” part of the command precedes the path to the
directory to which the JSON files will be saved.

Part II: OpenPose JSON Output Tracking

Notes:

●​ Before starting, either download the ZIP file (as circled below), or clone the repository to
your local machine.

https://github.com/tca2/videodata-processing

Instructions:

1.​ Concatenating OpenPose JSON output
a.​ Once OpenPose has completed processing the video and saved the JSON files,

you may notice that there are thousands of files inside the output folder. This is
because OpenPose saves data from each frame of video in individual files, and
they need to be concatenated (i.e., merged together into one file) before tracking.
From the ZIP file, after extraction, run concat_JSON_files.py file from Powershell
(i.e., “python concat_JSON_files.py”, you may have to locate the extracted files
first via navigating the command-line as we did before). It will ask the user for the
directory which holds JSON output, and then save the concatenated CSV file
(e.g., FILENAME.csv) to the directory above the user-defined directory.

2.​ Tracking the concatenated CSV file
a.​ The allprocesses_command.py tracking script within the extracted ZIP has

several useful arguments for handling the tracking process. It uses Python
argparse as the command-line interface. Note that currently, the "--only_track"
argument must be used, as OpenPose processing code is not yet integrated.

b.​ A sample command to use the allprocesses_command.py tracking script on the
now concatenated video_concat.csv would be:

python allprocesses_command.py –only_track --file video_concat.csv

c.​ Optionally, you can also use the “--region” flag to assign 4 values (X_LEFT
Y_TOP X_RIGHT Y_BOTTOM) of the region that you want to limit the tracking
process. Thus, if you wanted to track the default demo video to a particular
region, you may do something similar to:

python allprocesses_command.py –only_track --file video_concat.csv --region
250 20 300 200

https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html

	Using OpenPose for Education Research Pose Analyses
	Overview of OpenPose
	Overview of the Tracking Process
	Part I: OpenPose Video Processing
	Part II: OpenPose JSON Output Tracking

