
 AP Calc BC Unit 9: Parametric Equations, 
Polar Coordinates, & Vector-Valued Functions 
 
In math, there are many different kinds of functions, because not everything in the 
world exists on a plane with two variables. So far, everything we have been doing has 
been on the Cartesian plane: ℝ2. This unit introduces you to different kinds of 
functions that model the world around us.  
 

Parametric Equations, Polar Coordinates, and Vector-Valued Functions 
Parametric Functions 

Derivatives of Parametric Functions 
First Derivative of a Parametric Function 
Second Derivative of a Parametric Function 

Parametrics and Motion 
Parametric Motion Expressed through Vector-Valued Functions 

Position Vector: 
Displacement of Parametric Functions 
Arc Length/Distance of Parametric Functions 

Polar Functions 
Polar Conversions 

Derivatives of Polar Functions 
Slope of Tangent Line for Polar Functions 

Area Under the Curve 
Simple Area Under Polar Curves 

Area Between Two Curves 
If the curves intersect, then you may have to find the area inside the curves by 
splitting the region. 
Polar Arc Length 

Arc Length for Polar Functions 
 
 

 

 

 



9.0 Unit 9 Overview: Parametric Equations, Polar 
Coordinates, and Vector-Valued Functions 

 
In math, there are many different kinds of functions, because not everything in the 
world exists on a plane with two variables. So far, everything we have been doing has 
been on the Cartesian plane: ℝ^2. This unit introduces you to different kinds of 
functions that model the world around us.  

​  

What To Expect 🤓 
Parametric Functions 
●​ Derivatives of Parametric Functions - First Derivative & Second Derivative of a 

Parametric Function 
●​ Parametrics and Motion - Parametric Motion Expressed through 

Vector-Valued Functions 
●​ Position Vector - Displacement of Parametric Functions & Arc 

Length/Distance of Parametric Functions 
Polar Functions 
●​ Polar Conversions 
●​ Derivatives of Polar Functions - Slope of Tangent Line for Polar Functions 
●​ Area Under the Curve - Simple Area Under Polar Curves 
●​ Area Between Two Curves If the curves intersect, then you may have to find 

the area inside the curves by splitting the region. 
●​ Polar Arc Length - Arc Length for Polar Functions 

 



9.1 Defining and Differentiating 
Parametric Equations 

 

What is a Parametric Function? 
Parametric functions are a set of related functions where and are independent 𝑥 𝑦 
from each other, but they are connected using the dummy variable  which 𝑡,
represents time. When we use the cartesian graph, we assume that we are moving 
along the -axis in only one direction at a constant rate. However, parametric 𝑥
equations give us more freedom to manipulate horizontal motion.  
 
A parametric equation would look something like this:  
x(t) = t^2 - 1, y(t) = 3t 
 

In this equation, your -coordinate would be determined by  and your 𝑥 𝑡2 − 1 𝑦
-coordinate would be determined by  So, when  you would plot the point 3𝑡. 𝑡 = 1,

 In a parametric function,  isn’t actually on the graph; we just use  as our (0,  3). 𝑡 𝑡
constant so that our points are independent from one another.  

 



Derivatives of Parametric Functions 
Like we discussed earlier, a parametric function is still graphed in 2D on an xy-plane, 
so if we wanted to find the slope of the tangent line, we would still need to find 
dy/dx 

 
If we divide dx/dt and dy/dt, then dt will cancel out.  

 
(dy/dt)/(dx/dt) = dy/dx 
 

First Derivative of a Parametric Function 
 

Given any parametric function defined by and is valued at  𝑥(𝑡) 𝑦(𝑡),
𝑑𝑦
𝑑𝑥

𝑑𝑦/𝑑𝑡
𝑑𝑥/𝑑𝑡

 

Example: Find the slope of the tangent line of  at 𝑥(𝑡) = 𝑡2 − 2𝑡,  𝑦(𝑡) = 𝑡2 + 1
 𝑡 = 3

 
𝑑𝑥
𝑑𝑡 = 2𝑡 − 2

 
𝑑𝑦
𝑑𝑡 = 2𝑡

 

 𝑑𝑦
𝑑𝑥 =

2𝑡−2
2𝑡 =

𝑡−1
𝑡

 
Plugging in  𝑥 = 3,

 𝑑𝑦
𝑑𝑥 =

2
3

 
The slope of the tangent line is ⅔  

 
 
 

 



9.2 Second Derivatives of Parametric 
Equations 

 
 
If we wanted to find the second derivative of a parametric function 
d^2y/dx^2, we would simply use the chain rule:   
 

 = 
𝑑2𝑦

𝑑𝑥2
𝑑

𝑑𝑥
𝑑𝑦
𝑑𝑥( )=

𝑑
𝑑𝑥

𝑑𝑦/𝑑𝑡
𝑑𝑥/𝑑𝑡( )=

𝑑
𝑑𝑡

𝑑𝑡
𝑑𝑥

𝑑𝑦/𝑑𝑡
𝑑𝑥/𝑑𝑡( )=

𝑑
𝑑𝑡

𝑑𝑦/𝑑𝑡
𝑑𝑥/𝑑𝑡( )
𝑑𝑥
𝑑𝑡

=

 
𝑑
𝑑𝑡

𝑑𝑦
𝑑𝑥( )

𝑑𝑥
𝑑𝑡

 
 

Second Derivative of a Parametric Function 
 

 



Given any parametric function defined by and is valued at  𝑥(𝑡) 𝑦(𝑡),
𝑑2𝑦

𝑑𝑥2

 
𝑑
𝑑𝑡

𝑑𝑦
𝑑𝑥( )

𝑑𝑥
𝑑𝑡

 
 
 
 
 
 
 
Example: Show that the cycloid defined by 2(t − sin ) and  2(1 − cos ) is 𝑥(𝑡) = 𝑡 𝑦(𝑡) = 𝑡
concave down on  𝑡 ∈ (0,  2π)
 
💡 Remember: Concavity is determined by the second derivative  
 
 

Finding :  
𝑑2𝑦

𝑑𝑥2

 
 𝑑𝑦

𝑑𝑥 =
2(𝑠𝑖𝑛(𝑡))

2(1−𝑐𝑜𝑠(𝑡)) =
𝑠𝑖𝑛(𝑡)

1−𝑐𝑜𝑠(𝑡)
𝑑2𝑦

𝑑𝑥2 =
𝑐𝑜𝑠(𝑡)(1−𝑐𝑜𝑠(𝑡))−(𝑠𝑖𝑛(𝑡))(𝑠𝑖𝑛(𝑡))/(1−𝑐𝑜𝑠(𝑡))2

2(1−𝑐𝑜𝑠(𝑡)) =

 𝑐𝑜𝑠(𝑡)−𝑐𝑜𝑠2(𝑡)−𝑠𝑖𝑛2(𝑡)

2(1−𝑐𝑜𝑠(𝑡))3 =
𝑐𝑜𝑠(𝑡)−1

2(1−𝑐𝑜𝑠(𝑡))3 =
−1

2(1−𝑐𝑜𝑠(𝑡))2

 

​ Since is always negative, the cycloid is always concave down  
𝑑2𝑦

𝑑𝑥2

 

 



​  
 

9.3 Finding Arc Lengths of Curves 
Given by Parametric Equations 

 
 

Arc Length/Distance of Parametric Functions 
 
Given any parametric function defined by and  𝑥(𝑡) 𝑦(𝑡),

 𝐿 =
α

β

∫ (𝑥'(𝑡))2 + (𝑦'(𝑡))2 𝑑𝑡

 
 

 

 



Example: Find the distance traveled for cos sin  for  𝑥(𝑡) = 𝑡,𝑦(𝑡) = 𝑡 𝑡 ∈ [0,  4π]
 

 𝐷 =
0

4π

∫ 𝑐𝑜𝑠2(𝑡) +  𝑠𝑖𝑛2(𝑡) 𝑑𝑡 =
0

4π

∫ 1𝑑𝑡 = 4π

 
Note that the unit circle is one of the rare cases in which the arc length does not 
equal the distance. Since this equation traces over the same line twice, the arc length 
would be 2π while the distance would be 4π. However, for the purposes of the AP 
Calc exam, you should always use the above formula to calculate arc length and 
distance. 

9.4 Defining and Differentiating 
Vector-Valued Functions 

 

Parametrics and Motion  
Because parametric functions are associated with time, they are also generally used 
to calculate motion and velocity, and the College Board usually uses parametrics in 
this context.  
 
When we deal with parametrics in the context of motion, we express them as 
vector-valued functions. Vector-valued functions aren’t graphed with the points x and 
y like we are used to seeing. Instead, each “point” on a vector-valued function is 

 



determined by a position vector (a vector that starts at the origin) that exists in the 
direction of the point.  
 

For example, if the parametric function  was written as a 𝑥(𝑡) = 𝑡2 − 1,  𝑦(𝑡) = 3𝑡

vector-valued function, it would be  This means that for any value  on ⟨𝑡2 − 1,  3𝑡⟩. 𝑡

the function, there is a vector that starts at the origin and goes  units in the 𝑡2 − 1
direction of the x-axis and  units in the direction of the y-axis. If we connect the 3𝑡
ends of all of those vectors, we will get the same curve as we would get if we 

graphed the parametric equation .  𝑥(𝑡) = 𝑡2 − 1,  𝑦(𝑡) = 3𝑡
 
Just like Cartesian functions, if we take the derivative of the position vector, 
we would get the velocity vector, and if we take the derivative of the velocity 
vector, we would get the acceleration vector. When we were taking the 
derivative of a parametric function to find dy/dx, we were trying to find the 
slope of the tangent line that was determined by both the x and y functions of 
the curve. However, when we are looking at vector-valued functions, we aren’t 
looking at the curve itself; we are looking at how much our particle is moving 
in the direction of x and how much it is moving in the direction of y. This 
means that when we are taking derivatives of vector-valued functions, we take 
the derivative of the components separately.  
 
 

Parametric Motion Expressed through Vector-Valued Functions 

Position Vector: 
 〈𝑥(𝑡),  𝑦(𝑡)〉

Velocity Vector: 
 〈𝑥'(𝑡),  𝑦'(𝑡)〉

 

Acceleration Vector: 
 〈𝑥"(𝑡),  𝑦"(𝑡)〉

 

 

 



9.5 Integrating Vector-Valued 
Functions 

Similarly, we can take integrals of vector-valued functions simply by taking the 
integrals of the individual x- and y-components. We use integrals either to backwards 
along the position-velocity-acceleration chain or to calculate displacement.  

Example problem in 5.6 Solving Motion Problems Using Parametric and Vector-Valued 
Functions! 
 

Displacement of Parametric Functions 
 
Given any parametric function defined by and  𝑥(𝑡) 𝑦(𝑡),

Displacement =  
α

β

∫ 𝑣(𝑡)

 

https://app.fiveable.me/ap-calc/unit-9/solving-motion-problems-using-parametric-vector-valued-functions/study-guide/822WmESOAkewHtJt1Cd1
https://app.fiveable.me/ap-calc/unit-9/solving-motion-problems-using-parametric-vector-valued-functions/study-guide/822WmESOAkewHtJt1Cd1


9.6 Solving Motion Problems Using 
Parametric and Vector-Valued 
Functions 

 

Example: Given that an object in motion has  and the initial 𝑣(𝑡) = ⟨𝑡2 + 2,  𝑡3 − 1⟩
position  find the position at  ⟨ − 1,  3⟩, 𝑡 = 2

  ∫ ⟨𝑡2 + 2,  𝑡3 − 1⟩𝑑𝑡 = ⟨ 𝑡3

3 + 2𝑡 +  𝐶, 𝑡4

4 − 𝑡 + 𝐶⟩

Since the position is  when  ⟨ − 1,  3⟩ 𝑡 = 0,

The position vector is   ⟨ 𝑡3

3 + 2𝑡 − 1, 𝑡4

4 − 𝑡 + 3⟩

 
Substituting  𝑡 = 2,  

,  ⟨𝑥(2),  𝑦(2)⟩ = ⟨ 17
3 5⟩

 
Remember from previous units that if we take the integral of the speed (the absolute 
value of velocity), we can find the distance traveled (imagine adding up all of the tiny 
instantaneous distances to find a total distance).  
 
This same concept applies in parametric equations, but since velocity is expressed as 
a vector, we need to take the integral of the magnitude of velocity. (In vector-valued 

 



functions, the magnitude is equivalent to the distance formula, which is essentially 
taking the absolute value of the vector.)  

9.7 Defining Polar Coordinates and 
Differentiating in Polar Form 

 
 
 
🎥Watch: AP Calculus BC - Polar Coordinates and Calculus (for teachers) 
 
Polar functions are functions that are graphed around a pole in a circular system 
rather than the Cartesian rectangular system. Polar functions are graphed with the 
points  rather than  (𝑟,  θ) (𝑥,  𝑦).  
 
When we are working with polar graphs, we can’t differentiate them right away. We 
have to convert them to Cartesian graphs. Converting polar equations to Cartesian 
also helps us visualize them.  
 
 

Polar Conversions 

cos   𝑥 = 𝑟 θ sin  𝑦 = 𝑟 θ
 𝑟 = 𝑥2 + 𝑦2

 

 

https://app.fiveable.me/ap-calc/unit-9/polar-coordinates-calculus-for-bc-teachers-/watch/d0OeoGAn0y0UvhRzItdV


 
 

 



Example: Convert  to a Cartesian function  𝑟 = 4𝑠𝑖𝑛θ
 

 𝑠𝑖𝑛θ = 𝑦/𝑟
 𝑟 = 4(𝑦/𝑟)

 𝑟2 = 4𝑦

 𝑥2 + 𝑦2 = 4𝑦

 𝑥2 + (𝑦 − 2)2 = 4
 

 
 
 
Example: Find the values of  on  where  θ 𝑟 = 2 + 3𝑠𝑖𝑛θ 𝑥 = 2
 

 𝑟𝑐𝑜𝑠θ = 2
 𝑟𝑐𝑜𝑠θ = 𝑐𝑜𝑠θ(2 + 3𝑠𝑖𝑛θ) = 2

 
Plugging this into your calculator,  

 θ = 0,  1. 133 

 



 

Derivatives of Polar Functions  
When we take derivatives of polar functions, we can take them as dr/dθ, 
which would give us the points that are furthest away from the origin on the 
polar coordinate system. We find dr/dθ in the same way we would find any 
normal derivative: by taking the derivative of the polar function:  
 
 
Example: Find the points closest and furthest from the origin for 

 𝑟 = θ + 𝑐𝑜𝑠2θ,  ∈ [0,  π}
 

 
 

𝑑𝑟
𝑑θ = 1 − 2𝑠𝑖𝑛2θ = 0

 𝑠𝑖𝑛2θ =
1
2

,  2θ =
π
6

5π
6

 



,  θ =
π

12
5π
12

 𝑟
π

12( )= 1. 128

 𝑟
5π
12( )= 0. 443

 
Checking the endpoints:  

 𝑟(0) = 1
 𝑟(π) = π

The point closest to the origin is 0.443, and the point furthest from the origin 
is π.  

While dr/dθ can tell us relative maximum and minimum values, it doesn’t tell us the 
slope of the tangent line, since we can’t have linear graphs on the polar coordinate 
system. In order to find the slope of the tangent line, we need to find the derivative 
on the Cartesian system, which requires us to calculate dy/dx. 
 

 𝑑𝑦
𝑑𝑥 =

𝑑𝑦/𝑑θ
𝑑𝑥/𝑑θ =

𝑑
𝑑θ 𝑟𝑠𝑖𝑛θ( )
𝑑

𝑑θ (𝑟𝑐𝑜𝑠θ)
=

𝑟𝑐𝑜𝑠θ+ 𝑑𝑟
𝑑θ (𝑠𝑖𝑛θ)

−𝑟𝑠𝑖𝑛θ+ 𝑑𝑟
𝑑θ (𝑐𝑜𝑠θ)

 
 

Slope of Tangent Line for Polar Functions 

=  
𝑑𝑦
𝑑𝑥

𝑟𝑐𝑜𝑠θ + 𝑑𝑟
𝑑θ 𝑠𝑖𝑛θ

−𝑟𝑠𝑖𝑛θ+𝑐𝑜𝑠θ 𝑑𝑟
𝑑θ

 
Of course, you can memorize this formula, but most students find it much easier to 
simply derive it using the chain rule.  
Example: Find the equation of the line tangent to the polar curve at 𝑟 = θ +  𝑐𝑜𝑠2θ

 θ =
π
3

 

 



𝑑𝑦
𝑑𝑥 =

𝑑𝑦/𝑑θ
𝑑𝑥/𝑑θ =

𝑑
𝑑θ θ𝑠𝑖𝑛θ + 𝑠𝑖𝑛θ𝑐𝑜𝑠2θ( )

𝑑
𝑑θ (θ𝑐𝑜𝑠θ+𝑐𝑜𝑠θ𝑐𝑜𝑠2θ)

=

 
𝑠𝑖𝑛θ+θ𝑐𝑜𝑠θ+𝑐𝑜𝑠θ𝑐𝑜𝑠2θ−2𝑠𝑖𝑛θ𝑠𝑖𝑛2θ
𝑐𝑜𝑠θ−θ𝑠𝑖𝑛θ−𝑠𝑖𝑛θ𝑐𝑜𝑠2θ+2𝑐𝑜𝑠θ𝑠𝑖𝑛2θ

 

Substituting  θ =
π
3

 
𝑠𝑖𝑛 π

3 + π
3 𝑐𝑜𝑠 π

3 +𝑐𝑜𝑠 π
3 𝑐𝑜𝑠 2π

3 −2𝑠𝑖𝑛 π
3 𝑠𝑖𝑛 2π

3

𝑐𝑜𝑠 π
3 − π

3 𝑠𝑖𝑛 π
3 −𝑠𝑖𝑛 π

3 𝑐𝑜𝑠 2π
3 +2𝑐𝑜𝑠 π

3 𝑠𝑖𝑛 2π
3

= 0. 429

 
Finding the x- and y-coordinates of the tangent line:  

 𝑥 = 𝑟𝑐𝑜𝑠θ = (
π
3 + 𝑐𝑜𝑠

2π
3 )(𝑐𝑜𝑠

π
3 ) =. 274

 𝑦 = 𝑠𝑖𝑛θ = (
π
3 + 𝑐𝑜𝑠

2π
3 )(𝑠𝑖𝑛

π
3 ) =. 474

 
The equation of the tangent line is:  

 𝑦 − 0. 474 = 0. 429(𝑥 − 0. 274)
 

 



9.8 Find the Area of a Polar Region or 
the Area Bounded by a Single Polar 
Curve 

 
 
 
When we calculate the area under the curve for Cartesian graphs, we would integrate 
with rectangles, since it is a rectangular plane. However, when we find the area under 
the curve for polar functions, we need to add up the area of triangles (imagine cutting 
a pizza into really really thin slices).  
 
Since the area of a triangle is calculated by (1/2)bh, where h = r and b = rdθ (the base 
would be proportional to the radius, multiplied by the tiny value d to obtain an 
infinitely tiny base). 
 
 

Simple Area Under Polar Curves  

 𝐴 =
α

β

∫
1
2 𝑟2 𝑑θ

 

 



 
The tricky part about calculating the area is finding the interval on which you want to 
integrate. Sometimes, they will give you the graph of the function, or you will be able 
to graph it on your calculator. However, for non-calculator sections, you might have to 
figure out the endpoints just with the function.  
 
Here are a few general guidelines you can follow.  

●​ If the equation has a sinθ or cosθ without any squares or coefficients, then the 
interval will always be from 0 to 2π, since it will go around a full circle once 
within that interval  

●​ If the equation has a coefficient inside the trig function (sin4θ or cos2θ, etc), 
then it the function likely has multiple petals. You can make a chart in order to 
find where the function meets zero, and then just calculate the area of one 
petal and multiply it by the number of petals.  

●​ If you can’t figure out the boundaries, you can usually guess that they are 0 to 
2π. However, you should only use this as a last resort.  

 
Example: Find the area of the region bounded by  𝑟 = 2(1 − 𝑠𝑖𝑛θ)
 

First, we figure out the boundaries of the region:  
 

 θ  𝑟

0 2 

 π
2

0 

 π 2 

 3π
2

4 

 2π 0 

​  
Based on the chart, we can see that the function comes back to the pole once 

at  and 2π, which means that it will go around once.  
π
2

 𝐴 =
0

2π

∫
1
2 [2(1 − 𝑠𝑖𝑛θ)]2𝑑θ

 



 =  2
0

2π

∫ (1 − 2𝑠𝑖𝑛θ + 𝑠𝑖𝑛2θ)𝑑θ

 = 2
0

2π

∫ (1 − 2𝑠𝑖𝑛θ +
1−𝑐𝑜𝑠2θ

2 )𝑑θ

 = 2
0

2π

∫( 3
2 − 2𝑠𝑖𝑛θ −

𝑐𝑜𝑠2θ
2 )𝑑θ

 = 2[ 3θ
2 + 2𝑐𝑜𝑠θ −

𝑠𝑖𝑛2θ
4 ]

 = 2[(3π + 2) − (2)]
 = 6π

​  

​  
 
Example: Find the area of the region enclosed by the polar curve  𝑟 = 𝑠𝑖𝑛4θ
 

First, since there is a coefficient inside of the sine function, we can assume 
that there will be petals to the function  
 
We can figure out the length of one petal by making a chart:  

 
 

 θ  𝑟  θ  𝑟

0 0  5π
8

1 

 π
8

1 
 

3π
4

0 

 



 π
4

0  7π
8

-1 

 3π
8

-1  π 0 

 
π
2

0   

 
We can see that this pattern will continue; the graph will come back to the 
origin 8 times over  so there are 8 petals  [0,  2π),
 

 𝐴 = 8
0

π/4

∫
1
2 (𝑠𝑖𝑛4θ)2𝑑θ

 = 4
0

π/4

∫ (𝑠𝑖𝑛4θ)𝑑θ

 = 4
0

π/4

∫
1
2 (1 − 𝑐𝑜𝑠2(4θ)) 𝑑θ

 = 2
0

π/4

∫ (1 − 𝑐𝑜𝑠8θ)𝑑θ

 = 2(θ −
𝑠𝑖𝑛8θ

8 )

 = 2( π
4 − 0 − 0 + 0)

 =
π
2

 

 



 
 

9.9 Finding the Area of the Region 
Bounded by Two Polar Curves 

 

Once you get the hang of finding the area under one curve, finding the area between 
two curves is pretty simple. Remember from previous units that when you find the 
area between two curves, you subtract the bottom curve from the top curve. This is 
the same in polar functions, but instead of subtracting “top minus bottom,” you’ll 
subtract “outer minus inner.”  

 



Example: Let  be the region bounded by  and  on  𝑅 𝑟 = θ 𝑟 =
1
2 (θ + π) θ ∈ [0,  π].

Find the area of  𝑅.
 

 𝐴 =
1
2 0

π

∫[( 1
2 (θ + π))2

− (θ)2]𝑑θ

 =
1
2 0

π

∫[( 1
4 (θ2 + 2θπ + π2)− θ2]𝑑θ

 =
1
2 0

π

∫(−
3θ2

4 +
πθ
2 +

π2

4 )𝑑θ

 =
1
2 (−

3
4

θ3

3( )+
π
2

θ2

2( )+
π2θ

4 )

 =
π3

8

 

 
If the curves intersect, then you may have to find the area inside the curves by 
splitting the region.  
 
Example: Let  be the region inside the graph of the polar curve  and 𝑅 𝑟 = 4

 on  Find the area of  𝑟 = 4 + 2𝑠𝑖𝑛2θ 0 ≤ θ ≤ π. 𝑅.
 

 



 
 
First, we need to find the points of intersection:  
 

 4 = 4 + 2𝑠𝑖𝑛2θ
 2𝑠𝑖𝑛2θ = 0

 𝑠𝑖𝑛2θ = 0
 2θ = 0,  π,  2π

 θ = 0,  
π
2 ,  π

 
Since the graphs intersect at θ = 2 we can see that when θ < π/2, r = 4 is on top, and 
when θ > π/2, r = 4+2sin(2θ) is on top. Based on this information, we can construct 
two integrals: 

 𝐴 =
0

π/2

∫
1
2 (4 − 4 − 2𝑠𝑖𝑛2θ)2𝑑θ +

π/2

π

∫
1
2 (4 + 2𝑠𝑖𝑛2θ − 4)2𝑑θ

 =
1
2 0

π/2

∫ (4𝑠𝑖𝑛22θ)𝑑θ +
1
2 π/2

π

∫ (4𝑠𝑖𝑛22θ)𝑑θ

 =
0

π?2

∫ (2𝑠𝑖𝑛22θ)𝑑θ +
π/2

π

∫ (2𝑠𝑖𝑛22θ)𝑑θ

 = 18. 7

 



Polar Arc Length  

There is one last thing you need to know about polar functions: arc length. Finding 
arc length is pretty straightforward, but you do need to have the formula memorized 
for the exam.  

Arc Length for Polar Functions 

 𝐿 =
α

β

∫ 𝑟2 + (𝑑𝑟/𝑑θ)2𝑑θ

 

Example: Find the arc length of the polar curve on  𝑟 = 5 + 𝑐𝑜𝑠θ θ ∈ [0,  2π].

 𝐿 =
0

2π

∫ (5 + 𝑐𝑜𝑠θ)2 + (− 𝑠𝑖𝑛θ)2 𝑑θ

 =
0

2π

∫ 25 + 5𝑐𝑜𝑠θ + 𝑐𝑜𝑠2θ + 𝑠𝑖𝑛2θ 𝑑θ

 =
0

2π

∫ 26 + 5𝑐𝑜𝑠θ 𝑑θ

 = 31. 731
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