5 AP Calc BC Unit 9: Parametric Equations,
Polar Coordinates, & Vector-Valued Functions

In math, there are many different kinds of functions, because not everything in the
world exists on a plane with two variables. So far, everything we have been doing has

been on the Cartesian plane: [R This unit introduces you to different kinds of
functions that model the world around us.

Parametric Equations. Polar Coordinates. and Vector-Valued Functions

Parametric Functions
Derivatives of Parametric Functions

First Derivative of a Parametric Function
Second Derivative of a Parametric Function

Parametrics and Motion
Parametric Motion Expressed through Vector-Valued Functions

Position Vector:
Displacement of Parametric Functions
Arc Length/Distance of Parametric Functions

Polar Functions

Polar Conversions

Derivatives of Polar Functions

Slope of Tangent Line for Polar Functions
Area Under the Curve

Simple Area Under Polar Curves

Area Between Two Curves
If the curves intersect, then you may have to find the area inside the curves by
splitting the region.
Polar Arc Length
Arc Length for Polar Functions




9.0 Unit 9 Overview: Parametric Equations, Polar
Coordinates, and Vector-Valued Functions
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In math, there are many different kinds of functions, because not everything in the
world exists on a plane with two variables. So far, everything we have been doing has
been on the Cartesian plane: R*2. This unit introduces you to different kinds of
functions that model the world around us.

What To Expect &

Parametric Functions

e Derivatives of Parametric Functions - First Derivative & Second Derivative of a
Parametric Function

e Parametrics and Motion - Parametric Motion Expressed through
Vector-Valued Functions

e Position Vector - Displacement of Parametric Functions & Arc
Length/Distance of Parametric Functions

Polar Functions

e Polar Conversions

e Derivatives of Polar Functions - Slope of Tangent Line for Polar Functions

e Area Under the Curve - Simple Area Under Polar Curves

e Area Between Two Curves If the curves intersect, then you may have to find
the area inside the curves by splitting the region.

e Polar Arc Length - Arc Length for Polar Functions



9.1 Defining and Differentiating
Parametric Equations
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What is a Parametric Function?

Parametric functions are a set of related functions where x and y are independent

from each other, but they are connected using the dummy variable t, which
represents time. When we use the cartesian graph, we assume that we are moving
along the x-axis in only one direction at a constant rate. However, parametric
equations give us more freedom to manipulate horizontal motion.

A parametric equation would look something like this:
x(t) =t"2 -1, y(t) = 3t

2
In this equation, your x-coordinate would be determined by t — 1 and your y
-coordinate would be determined by 3t. So, when t = 1, you would plot the point

(0, 3). In a parametric function, t isn’t actually on the graph; we just use t as our
constant so that our points are independent from one another.



Derivatives of Parametric Functions

Like we discussed earlier, a parametric function is still graphed in 2D on an xy-plane,
so if we wanted to find the slope of the tangent line, we would still need to find
dy/dx

If we divide dx/dt and dy/dt, then dt will cancel out.

(dy/dt)/(dx/dt) = dy/dx

First Derivative of a Parametric Function

dy dy/dt
Given any parametric function defined by x(t) and y(t),Eis valued atm

2 2
Example: Find the slope of the tangent line of x(t) =t — 2t, y(t) =t + 1at
t=3

@ _ L.,
ar -t
dy

dt—Zt

dy 2t—2 t-1

dx 2t t

Plugging in x = 3,
dy 2

dx 3

The slope of the tangent line is %4



9.2 Second Derivatives of Parametric
Equations
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If we wanted to find the second derivative of a parametric function
d”*2y/dx”2, we would simply use the chain rule:

d ( dﬂdt)
d'y d (dy\ d (dy/dt) d_dt(dy/dt\ _dt\dx/dt)
dr dx \dx )" dx \ dx/dt )~ dt dx \ dx/dt )~ % -
_d (dy
dt \ dx
_dx.
dt

Second Derivative of a Parametric Function




2
d

Given any parametric function defined by x(t) and y(t),_}zlis valued at
dx

Example: Show that the cycloid defined by x(t) =2(¢ — sint) and y(t) = 2(1 — cost) is
concave down on t € (0, 2m)

: Remember: Concavity is determined by the second derivative

2

d
Finding }2]:
dx
dy _ 2(sin®)) _ sin(t)

dx — 2(1—cos(t))  1—cos(t)
d’y  cos(t)(1—cos(t))—(sin(t))(sin(t))/(1—cos(t))’

dx’ 2(1—cos(t))
cos(t)—cosz(t)—sinz(t) cos(t)—1 -1
2(1—cos(®))’  2(1—cos(®)’  2(1—cos(t))’

2

. Y . . S
Since - is always negative, the cycloid is always concave down

dx
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9.3 Finding Arc Lengths of Curves
Given by Parametric Equations
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Arc Length/Distance of Parametric Functions

Given any parametric function defined by x(t) and y(t),

B
L=[x®) + 0w d




Example: Find the distance traveled for x(t) =cost,y(t) =sint for t € [0, 4]

41 5 > 4mn
D = [ eos’(®) + sin’()dt = [ 1dt = 4
0 0

Note that the unit circle is one of the rare cases in which the arc length does not
equal the distance. Since this equation traces over the same line twice, the arc length
would be 2 while the distance would be 4. However, for the purposes of the AP
Calc exam, you should always use the above formula to calculate arc length and
distance.

9.4 Defining and Differentiating
Vector-Valued Functions
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Parametrics and Motion

Because parametric functions are associated with time, they are also generally used
to calculate motion and velocity, and the College Board usually uses parametrics in
this context.

When we deal with parametrics in the context of motion, we express them as
vector-valued functions. Vector-valued functions aren’t graphed with the points x and
y like we are used to seeing. Instead, each “point” on a vector-valued function is



determined by a position vector (a vector that starts at the origin) that exists in the
direction of the point.

2
For example, if the parametric function x(t) =t — 1, y(t) = 3t was written as a
2
vector-valued function, it would be (¢t — 1, 3t). This means that for any value t on

2
the function, there is a vector that starts at the origin and goes t — 1 units in the

direction of the x-axis and 3t units in the direction of the y-axis. If we connect the
ends of all of those vectors, we will get the same curve as we would get if we

2
graphed the parametric equation x(t) =t — 1, y(t) = 3t.

Just like Cartesian functions, if we take the derivative of the position vector,
we would get the velocity vector, and if we take the derivative of the velocity
vector, we would get the acceleration vector. When we were taking the
derivative of a parametric function to find dy/dx, we were trying to find the
slope of the tangent line that was determined by both the x and y functions of
the curve. However, when we are looking at vector-valued functions, we aren’t
looking at the curve itself; we are looking at how much our particle is moving
in the direction of x and how much it is moving in the direction of y. This
means that when we are taking derivatives of vector-valued functions, we take
the derivative of the components separately.

Parametric Motion Expressed through Vector-Valued Functions

Position Vector: Velocity Vector: Acceleration Vector:

(x(t), y(t)) x'(0), v'(6) x"(t), y"()»




9.5 Integrating Vector-Valued
Functions
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Similarly, we can take integrals of vector-valued functions simply by taking the
integrals of the individual x- and y-components. We use integrals either to backwards
along the position-velocity-acceleration chain or to calculate displacement.

Example problem in 5.6 Solving Motion Problems Using Parametric and Vector-Valued
Functions!

Displacement of Parametric Functions

Given any parametric function defined by x(t) and y(t),
B

Displacement = [ v(t)

04



https://app.fiveable.me/ap-calc/unit-9/solving-motion-problems-using-parametric-vector-valued-functions/study-guide/822WmESOAkewHtJt1Cd1
https://app.fiveable.me/ap-calc/unit-9/solving-motion-problems-using-parametric-vector-valued-functions/study-guide/822WmESOAkewHtJt1Cd1

9.6 Solving Motion Problems Using
Parametric and Vector-Valued
Functions
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2 3
Example: Given that an object in motion has v(t) = (t + 2, t — 1) and the initial

position ( — 1, 3), find the position at t = 2
3 4

[+ 2, £ = 1ydt =(t?+ 2t + C,tT—t + C)

Since the position is { — 1, 3) whent = 0,
3 4

t t
The position vector is <T+ 2t — 1, 54—t t 3)

Substituting t = 2,

(x(2), (2)) = (5~ 5)

Remember from previous units that if we take the integral of the speed (the absolute
value of velocity), we can find the distance traveled (imagine adding up all of the tiny
instantaneous distances to find a total distance).

This same concept applies in parametric equations, but since velocity is expressed as
a vector, we need to take the integral of the magnitude of velocity. (In vector-valued



functions, the magnitude is equivalent to the distance formula, which is essentially
taking the absolute value of the vector.)

9.7 Defining Polar Coordinates and
Differentiating in Polar Form
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¥, Watch: AP Calculus BC - Polar Coordinates and Calculus (for teachers)

Polar functions are functions that are graphed around a pole in a circular system
rather than the Cartesian rectangular system. Polar functions are graphed with the

points (7, 8) rather than (x, y).

When we are working with polar graphs, we can’t differentiate them right away. We
have to convert them to Cartesian graphs. Converting polar equations to Cartesian
also helps us visualize them.

Polar Conversions

X rcos y rsm = /x2 n yZ



https://app.fiveable.me/ap-calc/unit-9/polar-coordinates-calculus-for-bc-teachers-/watch/d0OeoGAn0y0UvhRzItdV




Example: Convert r = 4sin0 to a Cartesian function

sin® = y/r
r=4(y/r)
= 4y
x2 + y2 = 4y
2 2
x +(y—2) =4

/6 I/

Example: Find the values of B onr = 2 4+ 3sinB where x = 2

rcos@ = 2
rcos® = cosB(2 + 3sinB) = 2

Plugging this into your calculator,
0 =0, 1.133



Derivatives of Polar Functions

When we take derivatives of polar functions, we can take them as dr/d®@,
which would give us the points that are furthest away from the origin on the
polar coordinate system. We find dr/d8 in the same way we would find any
normal derivative: by taking the derivative of the polar function:

Example: Find the points closest and furthest from the origin for
r =0 + cos26, € [0, }

i— 1 2sin20 = 0
0= 1~ sin20 =
sin20 =7

T 5T
20 =———

6’ 6



) 0,443
r 12 = U.

Checking the endpoints:

r(0) =1

r(m) =m

The point closest to the origin is 0.443, and the point furthest from the origin
is TT.

While dr/d6 can tell us relative maximum and minimum values, it doesn’t tell us the
slope of the tangent line, since we can’t have linear graphs on the polar coordinate

system. In order to find the slope of the tangent line, we need to find the derivative
on the Cartesian system, which requires us to calculate dy/dx.

dy dy/de die(rsine) rcose+j—g(sine)
dx o dX/de - (%(TCOSB) -

. dr
—rsinB+—(cos6)

Slope of Tangent Line for Polar Functions

dy rcoso + %sine

] d
dx —rsm9+cosed—g

Of course, you can memorize this formula, but most students find it much easier to
simply derive it using the chain rule.
Example: Find the equation of the line tangent to the polar curve r = 6 + cos20at

0 =7



d . _
dy dy/de —5 (0sin6 + sinbcos26) -
dx  dx/dd %(9COSG+COSGCOSZG)

sinb6+0cos0+cosBcos20—2sinbsin20
c0s0—0sin0—sinBbcos20+2cosOsin206

T
Substituting 0 =3

sin—+—-—cos—+ coslcosﬂ—ZSinlsinz—1T
33 3 3 3 3 3

= 0.429

cosl—lsinl—sinlcos2—“+ZCoslsin2—1T
3 3 3 3 3 3 3

Finding the x- and y-coordinates of the tangent line:

1 2T 1
X = rcosf = (?+ cos— )(cos 3 ) =.274

) T 21 T
y = sinf = (?+ COST)(SlTl?) =.474

The equation of the tangent line is:
y — 0.474 = 0.429(x — 0.274)



9.8 Find the Area of a Polar Region or
the Area Bounded by a Single Polar
Curve
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When we calculate the area under the curve for Cartesian graphs, we would integrate
with rectangles, since it is a rectangular plane. However, when we find the area under
the curve for polar functions, we need to add up the area of triangles (imagine cutting
a pizza into really really thin slices).

Since the area of a triangle is calculated by (1/2)bh, where h = r and b = rd@ (the base
would be proportional to the radius, multiplied by the tiny value d to obtain an
infinitely tiny base).

Simple Area Under Polar Curves
B1 ,
A={ T do
08




The tricky part about calculating the area is finding the interval on which you want to
integrate. Sometimes, they will give you the graph of the function, or you will be able

to graph it on your calculator. However, for non-calculator sections, you might have to
figure out the endpoints just with the function.

Here are a few general guidelines you can follow.

e If the equation has a sinB or cos® without any squares or coefficients, then the
interval will always be from 0 to 2T, since it will go around a full circle once
within that interval

e |If the equation has a coefficient inside the trig function (sin46 or cos26, etc),
then it the function likely has multiple petals. You can make a chart in order to
find where the function meets zero, and then just calculate the area of one
petal and multiply it by the number of petals.

e If you can’t figure out the boundaries, you can usually guess that they are 0 to
21t. However, you should only use this as a last resort.

Example: Find the area of the region bounded by r = 2(1 — sin®)

First, we figure out the boundaries of the region:

0 r
0 2
il 0
2
T 2
31 4
2
2T 0

Based on the chart, we can see that the function comes back to the pole once
at % and 2T, which means that it will go around once.
2T 1
. 2
A= —12(1 - sin®)]"d®
0



21
2 [(1 — 2sin® + sin’0)do
0

2m ) 1—co0s298
=2J(1 - 2sin® +———)d®
0
2T
3 ) cos20
= 2{( >~ 2sin0 ——2 )dG

36 sin20
= 2[7+ 2c0s0 — 4 ]

= 2[(3m + 2) — (2)]
= 6T

)

Example: Find the area of the region enclosed by the polar curve r = sin40

First, since there is a coefficient inside of the sine function, we can assume
that there will be petals to the function

We can figure out the length of one petal by making a chart:

0 r 0 r

0 0 5t 1
8

T 1 31 0

8




T 0 71 -1
4 8

3m -1 T 0
8

o |0
2

We can see that this pattern will continue; the graph will come back to the
origin 8 times over [0, 21), so there are 8 petals

/4 5
A=38 f7(5in46) dae
0

/4
= 4 [ (sin40)do
0

1'[/4 1
=4 | — (1 — cos2(46)) do
0

/4
=2 [ (1 — cos80)d8
0

sin86
= 2(6 - 8 )

=2(%—0—0+0)



9.9 Finding the Area of the Region
Bounded by Two Polar Curves
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Once you get the hang of finding the area under one curve, finding the area between
two curves is pretty simple. Remember from previous units that when you find the
area between two curves, you subtract the bottom curve from the top curve. This is
the same in polar functions, but instead of subtracting “top minus bottom,” you’ll
subtract “outer minus inner.”




1
Example: Let R be the region bounded by r = 0 and r 27(9 + m)on O € [0, m.

Find the area of R.
1" .1 2
A= [(6 + m)"~ ©]ae
0
1
=7{ [((®" + 20m +n")— 6°]do
2 o

=, 30 n
=7£(_ 4 T g )de

& A E)D

If the curves intersect, then you may have to find the area inside the curves by
splitting the region.

Example: Let R be the region inside the graph of the polar curve r = 4 and
r =4+ 2sin20 on 0 £ B < m. Find the area of R.



First, we need to find the points of intersection:

4 = 4 + 2sin20
2sin20 = 0
sin20 = 0
20 =0, i, 2™
0=0 -
- ) 2 ) T
Since the graphs intersect at 6 = 2 we can see that when 8 < 1t/2, r = 4 is on top, and
when 6 > 1t/2, r = 4+2sin(20) is on top. Based on this information, we can construct
two integrals:
1'[/2 1
A= f—(4 — 4 — 25in20)°de + f—(4 + 25in20 — 4)°de
/2
1 n/2
= f (4sin’20)d6 +— f (4sin°20)d6
1'[/2
m?2
= f(ZSm 20)do + f(ZSm 20)do
/2
= 18. 7



Polar Arc Length

There is one last thing you need to know about polar functions: arc length. Finding
arc length is pretty straightforward, but you do need to have the formula memorized
for the exam.

Arc Length for Polar Functions

B
L = [\ + (dr/dB)*de

Example: Find the arc length of the polar curve r = 5 + cosBon 0 € [0, 2m].

21
L =[G + cos®) + (— sind)’ do
0

2T > >
= f\/25 4+ 5c0s0 + cos O + sin 6d6
0

2m
= [ /26 + 5cos0 db
0

= 31.731
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