
Things to propose:
-​ Rewrite the args code to accept a list of arguments, instead of a single args argument

Steps to properly install cellbox on the cluster:

-​ Create conda with python 3.8: conda create -n “cellbox” python==3.8.0
-​ In this environment, write pip --version to make sure it’s using conda pip
-​ git clone https://github.com/Mustardburger/CellBox.git

<folder_name>
-​ cd /<folder_name>/cellbox
-​ pip install -e .
-​ On the command line, try opening python and import cellbox. When I did this, it threw

module not found ‘packaging’. I then pip install packaging and
everything works now

Problems of replicating training model results:

-​ Loss function in pytorch did not have l1_lambda and l2_lambda (resolved)
-​ Why does the train loss increase during training?? (resolved, have to pass in

model.named_parameters() to the loss function)
-​ In the original code, which loss is the gradient computed with respect to? (resolved, the

total loss)
-​ Add a piece of code in def train_model() in train.py to load the trained model for later

substages (resolved)
-​ The code at line 70 in train_torch.py is currently very cumbersome. Same for other

places where there’s an args.loss_fn.
-​ The code for checking args.pert_form to be either by u or fix x is also cumbersome.
-​ The ODE solver has some locations where the two versions greatly differ.
-​ The softplus function is defined differently in two versions.

How the data is created:

Drug concentration:
​ - In single agent perturbations, each drug is applied at two different concentrations, IC40
and 2 × IC40.
​ - In validation experiments, (+)JQ1 (Cayman Chemicals, Ann Arbor, MI) and the U.S.
Food and Drug Administration (FDA)-approved RAFi PLX4032 (Selleckchem, Houston, TX) are
used.

Proteomic nodes
​ - Use RPPA to create the matrix
​ - Antibody staining intensities are quantified using the MicroVigene automated RPPA
module (VigeneTech, Inc., Carlisle, MA) and the standard RPPA protein concentration
normalization procedure (Neeley et al., 2009) is followed.

https://github.com/Mustardburger/CellBox.git

​ - The proteomic readouts are log normalized with respect to the corresponding untreated
condition readouts. We have eliminated those readouts with intra- or inter-slide coefficient of
variation >0.15 (i.e., low reproducibility) and low degree of staining by antibodies. 100 proteomic
entities are chosen for further analysis.
​ - From these 100 proteomic entities, entities that do not respond to at least a single
perturbation condition from the network models are excluded using signal-to-noise detection.
This ends up with the final 82 proteomic entities.

Phenotypic nodes:
​ - Cell viability and cell cycle progression are measured using the resazurin assay (72 hr
after drug treatment) and flow cytometry analysis (24 hr after drug treatment), respectively. The
percentage of cells in the G1, G2/M, and S phases and sub-G1 fraction are recorded based on
the respective distribution of DNA content in each phase.
​ - The percentage of cells in the G1, G2/M, and S phases and sub-G1 fraction are
recorded.
​ - The final value seems to be log-normalized, which takes on negative values

The sparse data is used for single-cell analysis

Things to add in the issue:

-​ Line 71 and 72 in train.py, whether loss_valid_i and loss_valid_mse_i is evaluated on
only one batch of the validation, or the whole validation dataset

-​ The eval_model function returns different values with different calls. At line 95 it returns
both the total and mse loss for the validation set. At line 102 it returns only the mse loss
for the test set. And at line 222 it returns the predictions (y_hat) for the test set.

-​ The pert_form option at line 89 and 95 in model.py:
-​ If “by u”, then the input to the ODE solver will be a zero-th vector
-​ If “fix x”, then the input to the ODE solver will be a mini-batch of the perturbation

data
-​ The record_eval.csv file generated after training has test_mse column to be None
-​ random_pos.csv is a file to store the index of the perturbation condition. Does it

indicate how the data is split?
-​ y_hat.loss.csv contains the prediction for the perturbation conditions for all nodes

(molecular and phenotypic); but it does not indicate which perturbation condition maps to
the actual condition index

-​

Details about the models:

-​ The PertBio class is just an abstraction over the tensorflow operators. It does not inherit
anything from tensorflow’s objects.

-​ When model.factory is called, the corresponding model class is instantiated, then
.build() is immediately called on that instance. The way the computational graph is set
up is the following:

-​ .__init__() is called: this creates tf placeholders for dataloaders (self.iter_train
and self.train_x, self_train_y)

-​ .build() is called. Inside .build():
-​ .get_variables() is called to instantiated the params of each model
-​ .forward() is called to do one forward pass of the model
-​ .get_ops() is called to calculate the loss value and to run the optimizer

-​ The computational graph therefore starts with the operation
self.iter_train.get_next() and ends up calculating the loss

-​ The feed_dict argument has key: value of {tf placeholder for pert_in: tf
placeholder for expr_out}. This is for self.iter_train.get_next().

-​ In CellBox, the .forward takes in both y0 and mu, whereas for other models, it
only takes in mu. So mu here is self.train_x

-​ In train.py:
-​ eval_results is the prediction of the model on the test set:

-​ It returns a list equal to the length of the test data loader
-​ Each element in the list is a matrix of shape (batch_size, 99). In the

original code, eval_results either returns the predicted expression values
or the loss using that data loader.

-​ Screenshot object in the end is a dict with the following keys:
-​ “W”: the weight matrix
-​ “b”: the bias vector
-​ “yhat”: a pd.DataFrame with num columns equal to 99, or number of

observed nodes, and num rows I think equal to the num perturbed
conditions in test dataloader

-​ When
-​ In kernel.py:

-​ The original ODE from the paper is as follows:

in which:

-​ phi() is referred to as the envelope in the code (or args.envelope_fn).
There are several implementations of phi, including the tanh, linear,
exponential, …

-​ The multiplication of w times x inside the envelope is referred to as the
weighted sum, defined in def weighted_sum(x)

-​ The whole right hand side of the ODE is defined by setting
args.envelope to either 0, 1, or 2, as it changes slightly the epsilon and
alpha

-​ The ODE solver is defined in def get_ode_solver(args) and args.ode_solver.
There are several types, including Heun (used in the paper), Euler,
Runge-Kutta-4, and midpoint.

-​ Output directory:

-​ /results
-​ /Example_RP_<hash string>: a folder that contains a specific run

-​ /seed_000:
-​ /record_eval: The csv file that contains information about the

model training, such as epoch, iter, train_loss, valid_loss,
train_mse, valid_mse, test_mse, time_elapsed

​ ​ ​ config.json: The config used for this run

Github Actions realizations:

-​ In setup.py, __version__ is not defined
-​ In the master branch of CellBox main repo, the return type for get_ode_solver() in

kernel.py is ill-defined
-​ Why do we need linting test for Github Actions?

Details from paper:

-​ Here, we used a perturbation dataset for the melanoma cell line SK-Mel-133 (Korkut et
al., 2015), which contains molecular and phenotypic response profiles of cells treated
with 12 different drugs and their pairwise combinations (Figures 1A and S1). For each of
the 89 perturbation conditions, levels of 82 selected proteins and phosphoproteins were
measured …

-​ In order to test the prediction performance of this training scheme, we randomly selected
70% of the perturbation data (n = 62 conditions) for training and withheld the rest 30% (n
= 27 conditions) for testing.

-​ In the single-to-combo analysis, all single-drug-treatment conditions were used for
training, and predictions were made on all combinatorial drug conditions.

-​ In leave-one-drug-out cross-validation, all the combination conditions containing the
treatment of a particular drug with or without the corresponding single-drug conditions
were withheld and the rest of the conditions were used for training.

-​ The resulting dataset has 89 perturbation conditions and 99 observed nodes (82
protein and phosphoproteins, 5 phenotypes, and 12 drug activity).

Key-value things in cfg:

Key Value datatype Where? Description

cfg.dataset dict dataset.py Contains numpy arrays to
later feed into feed_dicts

cfg.iter_train tf.compat.v1.data.make
_initializable_iterator()

dataset.py Like a DataLoader for
training data

cfg.iter_monitor tf.compat.v1.data.make
_initializable_iterator()

dataset.py Like a DataLoader for
training data

cfg.pert_in placeholder tf variables
with size [None,
cfg.n_x]

cfg.expr_out placeholder tf variables
with size [None,
cfg.n_x]

cfg.pert_file str config.py Dir to perturbation matrix

cfg.expr_file

cfg.loo pd DataFrame dataset.py ??? (can ask Bo on this)

cfg.drug_index int main.py An index among 99 drugs
to be left out

cfg.l1_lambda float dataset.py

cfg.l2_lambda float dataset.py

cfg.lr float dataset.py Learning rate

cfg.stages list of dictionary main.py Each dict contains another
dict about each substage

cfg.sub_stages list of dictionary main.py Each dict contains lr_val,
l1_lamb and n_iter for
each substage

Code specifics:

-​ tf.sparse.SparseTensor: a class of Tensorflow tensor that includes 3 submatrices:
indices, values, and dense_shape:

-​ indices specifies the coordinate in the sparse tensor with non-zero value
-​ values specifies the value of the sparse tensor at each coordinate in indices
-​ dense_shape specifies the shape of the sparse tensor

-​ test.py:
-​ This file contains the tests for comparing Tensorflow and Pytorch dataloaders. It

uses pytest.

-​ To run it, first pip install pytest if pytest is not in env. Then simply write source
load cellbox-env then python test.py

-​ test.py also utilizes many utils functions in the /test_utils folder
-​ The val dataloader (cfg.iter_monitor) is set to repeat, meaning the data can be fetched

from it indefinitely.

Test cases matrix:

Model Data Partitioning Hyperparams JSON
file

Test properties

LinReg Random Partition configs_dev/Example.rand
om_partition.json

Both code runs

DataLoader:

-​ Run dataloader for random partition, s2c, and loo, and do the same thing for Pytorch, at
different seeds. If the generated random_pos.csv is similar, then the test passes

ODE:
-​ Simulate Tensorflow’s ODE with different envelopes and ODE solver, using the same

param matrices and input. Do the same for Pytorch. Simulate up to 100 time steps only.
If the mean (or median) discrepancy is smaller than a threshold, then the test passes

Model:
-​ Check whether the mask has been applied correctly
-​ Using the same param weights and input, if the Tensorflow and Pytorch output are

similar by a threshold, then the test passes
Miscellaneous

-​ Check if the output folder contains files of the correct structure
-​

Edge cases:

-​ When cfg.sparse_data is set to True

​ - Use weight decay instead of manually changing the learning rate
​ - Dynamic building
​ - Github Actions

More information:

-​ expr_index.txt: information about each perturbation condition. In the first column, the
values on the far left (901, AK, HN, …) separated by “|” are the drugs and there are 12 of
them. The total number of rows in this file is equal to 89. Each drug has its own condition
+ condition in combination of other drugs

-​ loo_label.csv: information about what row in expr.csv and pert.csv corresponds to what
drug combination. For example, row 35 (5,0) means the condition of drug at index 5 only,
whereas row 36 (5,3) means the condition of drug at both index 5 and 3.

Cancer Institute and Library
National Library of Medicine

Cancer patient data, data comes from cell lines tested with drugs, network analysis.
Work with clinicians at the NIH hospital to study rare cancers.

Ongoing challenge to get more data

git fetch origin
git checkout 51-update-cellbox-readme

 - name: Lint with ruff (only Python 3.7+)
 # Run if not on master
 if: github.ref != 'refs/heads/master'
 run: |
 # stop the build if there are Python syntax errors or undefined names
 ruff --format=github --select=E9,F63,F7,F82 --target-version=py37 .
 # default set of ruff rules with GitHub Annotations
 ruff --format=github --target-version=py37 .

Things needed in kernel file args:

​ - n_x
​ - envelope_form (1)
​ - envelope_fn (1)
​ - polynormial_k (1)
​ - ode_degree (2)
​ - envelope (2)
​ - ode_solver (3)
​ - dT
​ - n_T
​ - gradient_zero_from: either None or args.n_activity_nodes (defined in model_torch.py)

Notes, Jul 26, 2023:

-​ The way softplus is done in pytorch is currently unsound

Notes, Aug 17, 2023:
-​ The clean-code branch is ready to be pushed to the main branch eventually

-​ Remove everything related to Tensorflow
-​ Improve readability for train_torch.py
-​ Remove comment sections for some pieces of code
-​ Improve documentation for functions

-​ Another branch to finalize tests:

