
Things to propose: 
-​ Rewrite the args code to accept a list of arguments, instead of a single args argument 

 
Steps to properly install cellbox on the cluster: 

-​ Create conda with python 3.8: conda create -n “cellbox” python==3.8.0 
-​ In this environment, write pip --version to make sure it’s using conda pip 
-​ git clone https://github.com/Mustardburger/CellBox.git 

<folder_name> 
-​ cd /<folder_name>/cellbox 
-​ pip install -e . 
-​ On the command line, try opening python and import cellbox. When I did this, it threw 

module not found ‘packaging’. I then pip install packaging and 
everything works now 

 
Problems of replicating training model results: 

-​ Loss function in pytorch did not have l1_lambda and l2_lambda (resolved) 
-​ Why does the train loss increase during training?? (resolved, have to pass in 

model.named_parameters() to the loss function) 
-​ In the original code, which loss is the gradient computed with respect to? (resolved, the 

total loss) 
-​ Add a piece of code in def train_model() in train.py to load the trained model for later 

substages (resolved) 
-​ The code at line 70 in train_torch.py is currently very cumbersome. Same for other 

places where there’s an args.loss_fn. 
-​ The code for checking args.pert_form to be either by u or fix x is also cumbersome. 
-​ The ODE solver has some locations where the two versions greatly differ. 
-​ The softplus function is defined differently in two versions. 

 
How the data is created: 
 
Drug concentration: 
​ - In single agent perturbations, each drug is applied at two different concentrations, IC40 
and 2 × IC40. 
​ - In validation experiments, (+)JQ1 (Cayman Chemicals, Ann Arbor, MI) and the U.S. 
Food and Drug Administration (FDA)-approved RAFi PLX4032 (Selleckchem, Houston, TX) are 
used. 
 
Proteomic nodes 
​ - Use RPPA to create the matrix 
​ - Antibody staining intensities are quantified using the MicroVigene automated RPPA 
module (VigeneTech, Inc., Carlisle, MA) and the standard RPPA protein concentration 
normalization procedure (Neeley et al., 2009) is followed. 

https://github.com/Mustardburger/CellBox.git


​ - The proteomic readouts are log normalized with respect to the corresponding untreated 
condition readouts. We have eliminated those readouts with intra- or inter-slide coefficient of 
variation >0.15 (i.e., low reproducibility) and low degree of staining by antibodies. 100 proteomic 
entities are chosen for further analysis. 
​ - From these 100 proteomic entities, entities that do not respond to at least a single 
perturbation condition from the network models are excluded using signal-to-noise detection. 
This ends up with the final 82 proteomic entities. 
 
Phenotypic nodes: 
​ - Cell viability and cell cycle progression are measured using the resazurin assay (72 hr 
after drug treatment) and flow cytometry analysis (24 hr after drug treatment), respectively. The 
percentage of cells in the G1, G2/M, and S phases and sub-G1 fraction are recorded based on 
the respective distribution of DNA content in each phase. 
​ - The percentage of cells in the G1, G2/M, and S phases and sub-G1 fraction are 
recorded. 
​ - The final value seems to be log-normalized, which takes on negative values 
 
The sparse data is used for single-cell analysis 
 
 
Things to add in the issue: 

-​ Line 71 and 72 in train.py, whether loss_valid_i and loss_valid_mse_i is evaluated on 
only one batch of the validation, or the whole validation dataset 

-​ The eval_model function returns different values with different calls. At line 95 it returns 
both the total and mse loss for the validation set. At line 102 it returns only the mse loss 
for the test set. And at line 222 it returns the predictions (y_hat) for the test set.  

-​ The pert_form option at line 89 and 95 in model.py: 
-​ If “by u”, then the input to the ODE solver will be a zero-th vector 
-​ If “fix x”, then the input to the ODE solver will be a mini-batch of the perturbation 

data 
-​ The record_eval.csv file generated after training has test_mse column to be None 
-​ random_pos.csv is a file to store the index of the perturbation condition. Does it 

indicate how the data is split? 
-​ y_hat.loss.csv contains the prediction for the perturbation conditions for all nodes 

(molecular and phenotypic); but it does not indicate which perturbation condition maps to 
the actual condition index 

-​  
 
Details about the models: 

-​ The PertBio class is just an abstraction over the tensorflow operators. It does not inherit 
anything from tensorflow’s objects. 

-​ When model.factory is called, the corresponding model class is instantiated, then 
.build() is immediately called on that instance. The way the computational graph is set 
up is the following: 



-​ .__init__() is called: this creates tf placeholders for dataloaders (self.iter_train 
and self.train_x, self_train_y) 

-​ .build() is called. Inside .build(): 
-​ .get_variables() is called to instantiated the params of each model 
-​ .forward() is called to do one forward pass of the model 
-​ .get_ops() is called to calculate the loss value and to run the optimizer 

-​ The computational graph therefore starts with the operation 
self.iter_train.get_next() and ends up calculating the loss 

-​ The feed_dict argument has key: value of {tf placeholder for pert_in: tf 
placeholder for expr_out}. This is for self.iter_train.get_next(). 

-​ In CellBox, the .forward takes in both y0 and mu, whereas for other models, it 
only takes in mu. So mu here is self.train_x 

-​ In train.py: 
-​ eval_results is the prediction of the model on the test set: 

-​ It returns a list equal to the length of the test data loader 
-​ Each element in the list is a matrix of shape (batch_size, 99). In the 

original code, eval_results either returns the predicted expression values 
or the loss using that data loader. 

-​ Screenshot object in the end is a dict with the following keys: 
-​ “W”: the weight matrix 
-​ “b”: the bias vector 
-​ “yhat”: a pd.DataFrame with num columns equal to 99, or number of 

observed nodes, and num rows I think equal to the num perturbed 
conditions in test dataloader 

-​ When 
-​ In kernel.py: 

-​ The original ODE from the paper is as follows: 

 
in which: 

-​ phi() is referred to as the envelope in the code (or args.envelope_fn). 
There are several implementations of phi, including the tanh, linear, 
exponential, … 

-​ The multiplication of w times x inside the envelope is referred to as the 
weighted sum, defined in def weighted_sum(x) 

-​ The whole right hand side of the ODE is defined by setting 
args.envelope to either 0, 1, or 2, as it changes slightly the epsilon and 
alpha 

-​ The ODE solver is defined in def get_ode_solver(args) and args.ode_solver. 
There are several types, including Heun (used in the paper), Euler, 
Runge-Kutta-4, and midpoint. 

-​ Output directory: 



-​ /results 
-​ /Example_RP_<hash string>: a folder that contains a specific run 

-​ /seed_000: 
-​ /record_eval: The csv file that contains information about the 

model training, such as epoch, iter, train_loss, valid_loss, 
train_mse, valid_mse, test_mse, time_elapsed 

​ ​ ​ config.json: The config used for this run 
 
Github Actions realizations: 

-​ In setup.py, __version__ is not defined 
-​ In the master branch of CellBox main repo, the return type for get_ode_solver() in 

kernel.py is ill-defined 
-​ Why do we need linting test for Github Actions? 

 
Details from paper: 

-​ Here, we used a perturbation dataset for the melanoma cell line SK-Mel-133 (Korkut et 
al., 2015), which contains molecular and phenotypic response profiles of cells treated 
with 12 different drugs and their pairwise combinations (Figures 1A and S1). For each of 
the 89 perturbation conditions, levels of 82 selected proteins and phosphoproteins were 
measured … 

-​ In order to test the prediction performance of this training scheme, we randomly selected 
70% of the perturbation data (n = 62 conditions) for training and withheld the rest 30% (n 
= 27 conditions) for testing. 

-​ In the single-to-combo analysis, all single-drug-treatment conditions were used for 
training, and predictions were made on all combinatorial drug conditions. 

-​ In leave-one-drug-out cross-validation, all the combination conditions containing the 
treatment of a particular drug with or without the corresponding single-drug conditions 
were withheld and the rest of the conditions were used for training. 

-​ The resulting dataset has 89 perturbation conditions and 99 observed nodes (82 
protein and phosphoproteins, 5 phenotypes, and 12 drug activity).  

 
 
Key-value things in cfg: 
 
 

Key Value datatype Where? Description 

cfg.dataset dict dataset.py Contains numpy arrays to 
later feed into feed_dicts 

cfg.iter_train tf.compat.v1.data.make
_initializable_iterator() 

dataset.py Like a DataLoader for 
training data 

cfg.iter_monitor tf.compat.v1.data.make
_initializable_iterator() 

dataset.py Like a DataLoader for 
training data 



cfg.pert_in placeholder tf variables 
with size [None, 
cfg.n_x] 

  

cfg.expr_out placeholder tf variables 
with size [None, 
cfg.n_x] 

  

cfg.pert_file str config.py Dir to perturbation matrix 

cfg.expr_file    

cfg.loo pd DataFrame dataset.py ??? (can ask Bo on this) 

cfg.drug_index int main.py An index among 99 drugs 
to be left out 

cfg.l1_lambda float dataset.py  

cfg.l2_lambda float dataset.py  

cfg.lr float dataset.py Learning rate 

cfg.stages list of dictionary main.py Each dict contains another 
dict about each substage 

cfg.sub_stages list of dictionary main.py Each dict contains lr_val, 
l1_lamb and n_iter for 
each substage 

    

    

    

    

    

 
Code specifics: 

-​ tf.sparse.SparseTensor: a class of Tensorflow tensor that includes 3 submatrices: 
indices, values, and dense_shape: 

-​ indices specifies the coordinate in the sparse tensor with non-zero value 
-​ values specifies the value of the sparse tensor at each coordinate in indices 
-​ dense_shape specifies the shape of the sparse tensor 

-​ test.py: 
-​ This file contains the tests for comparing Tensorflow and Pytorch dataloaders. It 

uses pytest. 



-​ To run it, first pip install pytest if pytest is not in env. Then simply write source 
load cellbox-env then python test.py 

-​ test.py also utilizes many utils functions in the /test_utils folder 
-​ The val dataloader (cfg.iter_monitor) is set to repeat, meaning the data can be fetched 

from it indefinitely. 
 
Test cases matrix: 
 

Model Data Partitioning Hyperparams JSON 
file 

Test properties 

LinReg Random Partition configs_dev/Example.rand
om_partition.json 

Both code runs 

 
DataLoader: 

-​ Run dataloader for random partition, s2c, and loo, and do the same thing for Pytorch, at 
different seeds. If the generated random_pos.csv is similar, then the test passes 

ODE: 
-​ Simulate Tensorflow’s ODE with different envelopes and ODE solver, using the same 

param matrices and input. Do the same for Pytorch. Simulate up to 100 time steps only. 
If the mean (or median) discrepancy is smaller than a threshold, then the test passes 

Model: 
-​ Check whether the mask has been applied correctly 
-​ Using the same param weights and input, if the Tensorflow and Pytorch output are 

similar by a threshold, then the test passes 
Miscellaneous 

-​ Check if the output folder contains files of the correct structure 
-​  

 
 
Edge cases: 

-​ When cfg.sparse_data is set to True 
 
​ - Use weight decay instead of manually changing the learning rate 
​ - Dynamic building 
​ - Github Actions 
 
 
More information: 

-​ expr_index.txt: information about each perturbation condition. In the first column, the 
values on the far left (901, AK, HN, …) separated by “|” are the drugs and there are 12 of 
them. The total number of rows in this file is equal to 89. Each drug has its own condition 
+ condition in combination of other drugs 



-​ loo_label.csv: information about what row in expr.csv and pert.csv corresponds to what 
drug combination. For example, row 35 (5,0) means the condition of drug at index 5 only, 
whereas row 36 (5,3) means the condition of drug at both index 5 and 3. 

 
 
Cancer Institute and Library 
National Library of Medicine 
 
Cancer patient data, data comes from cell lines tested with drugs, network analysis. 
Work with clinicians at the NIH hospital to study rare cancers. 
 
Ongoing challenge to get more data 
 
git fetch origin 
git checkout 51-update-cellbox-readme 
 
      - name: Lint with ruff (only Python 3.7+) 
        # Run if not on master 
        if: github.ref != 'refs/heads/master' 
        run: | 
          # stop the build if there are Python syntax errors or undefined names 
          ruff --format=github --select=E9,F63,F7,F82 --target-version=py37 . 
          # default set of ruff rules with GitHub Annotations 
          ruff --format=github --target-version=py37 . 
 
 
Things needed in kernel file args: 
 
​ - n_x 
​ - envelope_form (1) 
​ - envelope_fn (1) 
​ - polynormial_k (1) 
​ - ode_degree (2) 
​ - envelope (2) 
​ - ode_solver (3) 
​ - dT 
​ - n_T 
​ - gradient_zero_from: either None or args.n_activity_nodes (defined in model_torch.py) 
 
 
Notes, Jul 26, 2023: 

-​ The way softplus is done in pytorch is currently unsound 
 
 



Notes, Aug 17, 2023: 
-​ The clean-code branch is ready to be pushed to the main branch eventually 

-​ Remove everything related to Tensorflow 
-​ Improve readability for train_torch.py 
-​ Remove comment sections for some pieces of code 
-​ Improve documentation for functions 

-​ Another branch to finalize tests: 


