ПРАКТИЧЕСКАЯ РАБОТА № 1

Тема: Определение средней, истинной плотности и пористости строительных материалов.

Цель: Изучить основные свойства строительных материалов : среднюю и истинную плотность, пористость.

Ход работы:

- 1. Изучить методы подсчета объемов образцов материала правильной и неправильной форы, сыпучих материалов и порошков.
- 2. Решить задачи по определению средней и истинной плотности.

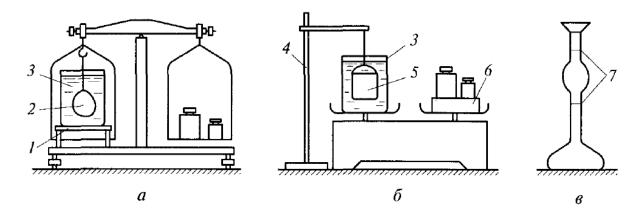


Рис. 2.1. Схемы гидростатического взвешивания (a — образца неправильной формы; δ — сыпучего материала) и колба Ле-Шателье (ϵ): I — подставка; 2 — образец; 3 — сосуд с водой; 4 — штатив; 5 — ведерко; ϵ — уравновешивающий груз; ϵ — риски

Задача № 1

Рассчитать истинную плотность строительного материала, если во время лабораторного определения была взята навеска этого материала m_0 = ______ г. В колбу Ле-Шателье внесена часть этой навески, остаток составил m_1 = _____ г. При этом уровень керосина в колбе повысился от нулевой отметки до ______ см².

Из	Кa	Пис	na Ala	Подпись	Па

образец природного камня, пористость которого отлична от нуля, имеет массу т г. (в сухом состоянии). Поверхность образца покрыли парафином. Масса гирь при взвешивании образца в воде составила то т. Парафина израеходовано то т., плотность парафина р т., плотность парафина р т., плотность парафина р т., г. Определить среднюю плотность камня. Задача № 3 Рассчитать пористость горной породы, если истинная плотность породы р	г. (в сухом состоянии). Поверхность образца покрыли парафином. Масса гир	
Задача № 3 Рассчитать пористость горной породы, если истинная плотность породы рг/см3		
Рассчитать пористость горной породы, если истинная плотность породы рг/см3	плотность парафина р _{пар.=г. Определить среднюю плотность камня.}	
Рассчитать пористость горной породы, если истинная плотность породы рг/см3		
ассчитать пористость горной породы, если истинная плотность породы рг/см3		
ассчитать пористость горной породы, если истинная плотность породы рг/см3		
ассчитать пористость горной породы, если истинная плотность породы рг/см3		
ассчитать пористость горной породы, если истинная плотность породы рг/см3		
ассчитать пористость горной породы, если истинная плотность породы рг/см3		
ассчитать пористость горной породы, если истинная плотность породы рг/см3		
ассчитать пористость горной породы, если истинная плотность породы рг/см3	Залача № 3	
		01.42
		см3

Пиет

Подпись

ИНСТРУКЦИЯ К ВЫПОЛНЕНИЮ ПРАКТИЧЕСКОЙ РАБОТЫ № 1

Тема: Определение средней, истинной плотности и пористости строительных материалов.

Цель: Изучить основные свойства строительных материалов: среднюю и истинную плотность, пористость.

Методическое и материально-техническое обеспечение:

- 1. Принадлежности для черчения;
- 2. Инструкция к практической работе;

Ход работы:

- 1. Входной контроль;
- 2. Получение задания согласно варианту и изучение его содержания;
- 3. Выполнение работы;
- 4. Оформление отчета;
- 5. Сдача отчета преподавателю.

1. Входной контроль

- 1 Поясните, что такое плотность материала.
- 2 Расскажите о различии средней, истинной плотности и пористости строительных материалов.
- 3 Расскажите о методах определения средней, истинной плотности и пористости строительных материалов.

Средней плотностью материала называется масса единицы объема материала в естественном состоянии (с порами и пустотами), $\Gamma/\text{см}^3$ ($\kappa\Gamma/\text{m}^3$):

$$\rho = \frac{\mathbf{m}}{\mathbf{V}}$$

где m — масса материала, Γ (кг); V — объем материала с порами и пустотами, см 3 (м 3).

Пористость характеризуется степенью заполнения объема материала порами.

Пористость определяют по формуле:

$$\Pi_{\diamond} = \left(1 - \frac{\rho}{\rho_{\diamond}}\right) - 100\%$$

Важнейшие свойства материалов – прочность, теплопроводность, водопоглощение, водонепроницаемость и другие зависят от степени и характера их пористости.

Пористость различных природных каменных материалов колеблется от 38% (известняк) до 0,3% (габбро).

Некоторые свойства материалов, например, морозостойкость, зависят не столько от общей величины пористости, сколько от размера и характера пор и степени равномерности их распределения в материале.

Определение средней плотности образца неправильной геометрической формы плотной структуры

Образцы высушивают и взвешивают. Взвешенный образец помещают в сосуд с водой, так, чтобы уровень воды в нем был выше верха образца не менее чем на 2 см, и кипятят в течение двух часов или выдерживают 24 ч без кипячения. Для ускорения процесса водонасыщения рекомендуется поместить образец в эксикатор, создать в нем разряжение 0,09 МПа и залить образец водой. Через 0,5 мин образец вынимают из воды и погружают в объемомер.

Определение средней плотности образца неправильной геометрической формы пористой структуры.

Образец высушивают и взвешивают, обвязывают ниткой и снова взвешивают. На поверхность взвешенного образца наносят тонким слоем парафин и дают ему остыть. При осмотре образца пузырьки и трещины на парафиновой пленке удаляют заглаживанием нагретой металлической проволокой или пластиной. Покрытый парафином образец взвешивают.

Объем парафина, затраченного на покрытие образца, определяют по формуле:

$$V_n = \frac{m_2 - m_1}{\rho_2}$$

где p_{\parallel} -- плотность парафина, p_{\parallel} =0,86 г/см³.

Для определения объема образца V_1 , покрытого парафином, его погружают в объемомер.

Объем образца без парафина, cm^3 : $V=V_1-V_n$

Определение средней плотности образцов неправильной геометрической формы методом гидростатического взвешивания.

Высушенный и взвешенный образец помещают в эксикатор, создают разряжение не менее 0,09 МПа и заливают водой. Насыщенный образец взвешивают на воздухе и в воде (рис. 1).

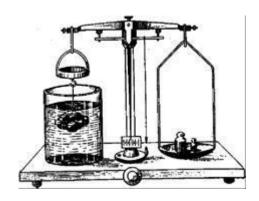


Рис. 2. Взвешивание образца на гидростатических весах

Масса образца в воде m_2 меньше массы образца на воздухе m_1 на значение выталкивающей силы, которая по закону Архимеда равна массе вытесненной жидкости. Учитывая, что плотность воды ρ_R =1 г/см³, масса вытесненной воды равна объему образца:

$$V = \frac{m_1 - m_2}{\rho_{\varepsilon}}$$

средняя плотность:

$$\rho_0 = \frac{m \cdot \rho_{\epsilon}}{m_1 - m_2}$$

где т – масса сухого образца,

4.Оформление отчета

Отчет должен содержать:

- -тему работы;
- -цель работы;
- -задание с исходными данными;
- -расчеты, схемы, объяснения и выводы в соответствии с разделом 3.

5. Сдача отчета преподавателю:

Защита работы проводится индивидуально. При этом принимается во внимание правильность выбора справочных данных и расчетов, полнота объяснений и обоснованность выводов к ним, аккуратность составления схем, правильность оформления отчета и оценивается с учетом ответов на вопросы выходного контроля.

Вопросы выходного контроля:

- 1. Укажите необходимость определения пористости строительного материала.
- 2. Расскажите, как можно определить среднюю плотность камня неправильной формы.
- 3. Назовите строительные материалы с высокой и низкой плотностью.

Таблица №1 Варианты заданий для выполнения практической работы №1

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Задача № 1																
m _o	86	85	85	85	85	87	85	85	89	85	85	86	85	85	90	85
m ₁	16,5	16,5	15,5	15,5	15,5	17,5	15,5	15,5	19,5	15,5	15,5	16,5	15,5	15,5	15,5	15,5
Уровень керосина	25	25	22	25	25	27	25	25	29	25	25	26	25	25	25	25
Задача № 2																
m ₁	39	39	39	39	39	41	39	39	43	39	39	38	39	39	45	39
m ₂	19,9	19,7	20,7	19,7	19,7	21,7	19,7	19,7	23,7	19,7	19,7	18,7	19,7	19,7	19,7	19,7
m _{nap}	0,8	0,7	0,7	0,9	0,7	0,9	0,7	0,7	1,1	0,7	0,7	0,8	0,7	0,7	0,7	0,7
P nap	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9
Задача № 3																
р	3,4	3,1	3,5	3,6	3,7	3,3	3,8	3,9	3,5	3,1	3,1	3,4	3,1	3,1	3,8	3,1
p _m	2,68	2,68	2,68	2,68	2,68	2,88	2,68	2,68	2,98	2,54	2,64	2,62	2,60	2,58	2,98	2,88
											·					, and the second

Образцы выполнения практических работ

Задача №1

Задача № 1. Рассчитать истинную плотность строительного гипса, если во время лабораторного определения была взята навеска гипса $m_0 = 85$ г. В колбу Ле-Шателье внесена часть этой навески, остаток составил $m_1 = 15,5$ г. При этом уровень керосина в колбе повысился от нулевой отметки до 25 см³.

Решение. Масса гипса, помещенная в колбу Ле-Шатье, равна

$$m_{\Gamma} = m_0 - m_1 = 85 - 15, 5 = 69, 5 \ \Gamma.$$

Объем гипса в абсолютно плотном состоянии равен объему вытесненного керосина, т.е. $V_r = 25 \text{ cm}^3$.

Таким образом, истинная плотность гипса

$$\rho = m_r/V_r = 69.5:25 = 2.7 \text{ r/cm}^3$$
.

Задача № 2. Образец природного камня, пористость которого отлична от нуля, имеет массу 39 г (в сухом состоянии). Поверхность образца покрыли парафином. Масса гирь при взвешивании образца в воде составила 19,7 г. Парафина израсходовано 0,7 г, плотность парафина 0,9 г/см³. Определить среднюю плотность камня.

Решение. Объем парафина на покрытие камня $V_{\rm n} = \frac{0.7}{0.9} = 0.78\,{
m cm}^3$.

Объем образца
$$V_e = \frac{m - m_l}{\rho_B} - V_{rt} = \frac{39 - 19,7}{1} - 0,78 = 18,52$$
 см³.

10

Средняя плотность камня
$$\rho_m = \frac{m}{V_e} = \frac{39}{18,52} = 2,1 \text{ г/см}^3$$
.

Задача № 3

Задача № 3. Рассчитать пористость горной породы, если истинная плотность породы 3,1 г/см³, а средняя — 2,68 г/см³.

Решение. Пористость горной породы

$$\Pi = (1 - \rho_0 / \rho) \cdot 100 = \left(1 - \frac{2,68}{3,1}\right) 100 = 12 \%.$$