
 
   

 

A New Frontier in Fighting Brain Cancer: Cutting Edge 
Magnetic Resonance Imaging Techniques 
 
ABSTRACT 
 
Of the currently available brain imaging techniques for diagnosing tumors, diffusion-weighted MRI and perfusion 
MRI are cutting-edge techniques and may provide improved diagnostic capacity compared to traditional techniques 
such as positron emission tomography. Moreover, they are fully non-invasive and avoid the exposure to radiation. 
While MRI in general has been used in research and medicine for decades, the more recent development of 
multi-modal and multiparametric imaging in neuro oncology holds much promise for the enhancement of diagnosis, 
prognosis, and patient-tailored treatments in this field. This review will evaluate how these various imaging 
techniques provide clinical value above and beyond previous techniques.  
 
Introduction 
 
Neuro-oncologists are increasingly using diffusion-weighted imaging (DWI) and perfusion MRI to not only 
diagnose brain tumors, but also guide surgical procedures and monitor the tumor treatment response. DWI allows for 
the detection of water diffusion. Water diffusion is inversely related to tumor cellularity- meaning the increase of one 
causes the decrease of the other; in other words, as cellularity decreases due to damage or altered structure, the free 
diffusion of water in a tissue increases, allowing for the noninvasive detection of tumor cellularity Perfusion MRI 
techniques also help oncologists evaluate tumor structure by analyzing tumor vascularity in the context of 
neoangiogenesis, a process where new blood vessels grow to support the invasion of tumor cells. These advanced 
techniques are becoming the standard of use for the detection, characterization, and staging of viable tumor lesions. 
Additionally, these tools become especially useful in malignant tumors such as glioblastomas, metastatic tumors, 
and lymphomas.  
 
Within DWI and perfusion MRI, different novel MRI analytic techniques further provide unique benefits to 
oncologists. For example, intravoxel incoherent motion (IVIM), found in DWI, is utilized, with the absence of 
contrast agents, for the evaluation of tissue perfusion and separation of microcirculation from true water molecular 
diffusion.1 Diffusion kurtosis imaging (DKI) can serve a multitude of tasks.2 DKI locates non-Gaussian diffusion, 
which may help describe the brain regions' structural components.2 Perfusion MRI comprises three main methods 
that are all primarily used to evaluate malignant brain tumors.3 The three primary perfusion MRI techniques used in 
neuro oncology—dynamic susceptibility contrast (DSC) perfusion MRI, dynamic contrast-enhanced (DCE) 
perfusion MRI, and arterial spin labeling (ASL)—gift unique characterizations of the pathophysiology of a patient’s 
pre- and post-treatment brain tumors.4  
​
As a biomarker of the glioma outcome, the tumor microvessel area (MVA) could be accurately derived from the 
relative cerebral blood volume (rCBV) calculated from the DSC perfusion MRI.5 DCE perfusion MRI differentiates 
mature from immature tumor vessels.6 ASL can be used to obtain cerebral blood flow (CBF), which is extremely 
useful for oncologists because CBF may predict tumor vascular normalization, a therapeutic strategy aimed towards 
preventing angiogenesis.7 Cerebral blood flow (CBF) is the rate at which the arterial blood is transported into the 
brain’s capillary bed. Contrast-enhanced susceptibility-weighted imaging (CE-SWI) may further evaluate the 
cellular and vascular consistency of tumors above and beyond the ability of techniques without contrast agents.8  

This review will discuss each advanced MR imaging techniques separately—diving deep into the clinical usefulness 
as well as limitations of each method. 
 
Discussion 
 
Apparent Diffusion Coefficient Characterizes Many Tumor Aspects and Tracks Antiangiogenic 
Drugs Response  
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Diffusion-weighted MRI is able to detect the magnitude of this microscopic, subvoxel water motion and this is used 
to derive several metrics, including the apparent diffusion coefficient (ADC), a measure of the degree of water 
diffusion within a voxel.9 Water molecules found in extracellular, intracellular, and intravascular regions are 
restricted in their movement differently, producing differential ADC signals and allowing for tissue-type 
segmentation10 Specifically, each space is characterized by different microscopic anatomical barriers, which leads to 
differential perfusion of water, both in terms of the directionality and extent of diffusion.10 Generally, ADC gives 
oncologists a fair approximation of the water diffusion within the extracellular and extravascular space.11 Since 
tumors are composed of tightly packed cells (they are highly cellular), the extracellular water motion within this 
tissue is restricted. So when the tumor cellularity is increased, the water diffusion is decreased, which means the 
ADC is also decreased.11 Generally, necrosis or cellular lysis, caused by antitumor treatments, can decrease 
cellularity.12 Because decreased tumor cell population precedes any measurable tumor size change, DWI can thus 
predict early treatment outcomes, monitor early treatment response, and detect recurrent tumors.13  
 
Shifts in the ADC symbolizes certain long-term patient responses to treatments.26 For example, the degree of change 
in ADC after chemotherapy is predictive of patient’s overall survival.27 Changes in ADC might also help identify 
chemotherapy-resistant tumor types.27 Therefore, ADC is a valuable tool in monitoring the patients’ treatment 
response.27 However, when oncologists analyze pretreatment ADC in recurrent glioblastomas, they found that ADC 
is effective in predicting antiangiogenic therapy’s response, but not chemotherapy’s response.28 Therefore, 
monitoring ADC over the course of treatment serves as a tracker for prescription of antiangiogenic therapy in 
recurrent glioblastoma but perhaps not when utilizing chemotherapy alone.28 
 
Apparent Diffusion Coefficient’s Inaccurate Representation of Tumor Cellularity 
 
However, this technique is not without limitation. Since ADC is affected by capillaries’ microcirculation, it may be 
susceptible to changes in vascularization.22 Malignant brain tumors express higher tumor cellularity and vascularity 
compared to benign brain tumors.23 Unlike the high tumor vascularity, which increases ADC, high tumor cellularity 
decreases it.24 This phenomenon proves that the DWI signal attenuation in hypervascular brain tumors can be 
influenced by two opposing manners, which, as mentioned previously, limits the ADC value for grading 
hypervascular brain tumors.25 This under-performance can give rise to contradictory results. To account for this, 
tumor vascularity can be assessed through a pathology review of tumor sections.22 
 
Moreover, different tumor subtypes may interfere with the use of ADC. High-grade gliomas, which are more 
invasive and harder to treat compared to low-grade gliomas, are heterogeneous regarding their microstructure and 
genetics.15 High DWI signals can result from tumor coagulation necrosis or ischemia.16 However, highly cellular 
tumor areas in combo with inflammatory processes can dramatically restrict the intensity of the diffusion signal, 
adding complexity to the characterization of tumor progression.16 As a result, the usage of mean ADC values to 
accurately grade tumors can be ineffective due to this heterogeneity;17 for instance, tumor necrosis can restrict water 
diffusion and falsely suggest high cellularity; indeed, tumor cell density, metabolic activity, ischemia, and 
compression are all possible factors responsible for the restriction of diffusion within and around cancerous tissue.20 

Intravoxel Incoherent Motion to Differentiate Perfusion from Diffusion 
 
A pseudo diffusion, often observed in abnormally oriented capillary blood flow, can interfere with diffusion 
measures in DWI images. This occurs only when the beta parameter of a DW image  are set to relatively small 
values.29 To distinguish true diffusion from pseudo diffusion, we can identify the isotropic diffusion in water from 
the “incoherent motion” present in blood vessels.30,31 This can be done by taking multiple DWI images while 
systematically altering their b values corresponding to the weighting of diffusion (where higher b values result in 
higher-intensity images given a constant degree of diffusion). For each voxel, the b value used across multiple 
images and the resulting intensity of the voxel can be fit to previously-defined models which differentiate free water 
diffusion from that observed in blood.  
 
Multiple forms of these models have been employed. Mono-exponential fitting involves the use of a single variable 
while bi-exponential fitting involves the use of multiple variables. In recent research, scientists, using simple 
mono-exponential fitting, which doesn't account for the contribution of the perfusion effect, discovered that 
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lymphoma patients have drastically lower ADC compared to other tumor patient groups.40 Meanwhile, scientists, 
using the bi-exponential fitting, which accounts for the contribution of the perfusion effect, discovered that 
lymphoma patients have similar “true” diffusion parameters compared to other tumor patient groups.40 This finding 
suggests that the ADC difference is strongly correlated to the perfusion effect’s contribution and perfusion of blood 
may sometimes produce spurious differences between groups when not taken into account.41 It can therefore be 
concluded that a mono exponentially fitted ADC may not give oncologists the best accuracy in terms of the inverse 
correlation between the ADC and tumor cellularity.42,43  
 
However, IVIM also has its limitations. For example, it requires a high signal-to-noise ratio, when oncologists use it 
to separate perfusion from diffusion.36 Furthermore, the phenomena of vascular tubular flow and glandular secretion 
can produce artifacts.37 Lastly, different vessel sizes can produce different IVIM signals and result in different levels 
of sensitivity.37 All of these challenges makes the differentiation process that much more difficult and future efforts 
should address these remaining limitations.  
 
Diffusion Kurtosis Imaging Reflects Gray and White Matter’s Structural Components 
 
The Gaussian law can be easily observed in free, unobstructed, diffusion.44 Unsurprisingly, a non-Gaussian 
distribution occurs when the diffusion of water molecules are restrictively affected by the complex microstructure of 
different tissue types.44 Therefore, the tissue’s microstructure, namely the cell membranes, organelles, and water 
compartments, could give rise to specific non-Gaussian diffusion patterns.44  
 
DKI is a modified version of DTI. Compared to diffusion tensor imaging (DTI), non-Gaussian diffusion, derived 
from diffusion kurtosis imaging (DKI), can more accurately evaluate aspects of both normal and pathologic tissue 
by taking advantage of this property.45 The microstructural complexity index might thus be represented by the mean 
kurtosis (mk).46 Since MK works regardless of whether the tissue is spatially oriented in a certain plain, it proves to 
be a better venue compared to DTI-derived fractional anisotropy (FA) in the context of neurooncology.46 For 
instance, MK can be applied for both the gray and white matter without regard to the directionality of the underlying 
healthy cytoarchitecture. 
 
Diffusion Kurtosis Imaging Reliably Grades Glioma  
 
Increased kurtosis is indicative of increased tissue complexity in high-grade glioma.47 A variety of events such as 
hemorrhage, tumor invasion, necrosis, endothelial proliferation and more, could be involved in increasing the tissue 
complexity of tumors.47 Unsurprisingly, decreased kurtosis parameters are indicative of decreased tissue complexity. 
This may be used to detect low-grade glioma, which have more homogeneous and less packed cells.47 Studies have 
pinpointed that the difference between the intra- and extracellular space can be used to identify low-grade from 
high-grade gliomas.48 This difference might be attributed to the different characteristics between these forms of 
gliomas.49 High-grade gliomas have more crowding cells and myelin breakdown products, which makes the 
membrane structure tightly packed.49 Low-grade gliomas have more differentiated, neoplastic astrocytes, which 
makes the membrane structure loosely packed.49 Thus, while both high-grade and low-grade gliomas have more 
kurtosis than normal tissue, differential kurtosis within tumor tissue may provide clues to which subtype best 
characterizes a tumor in the absence of a biopsy. 
 
Dynamic susceptibility contrast perfusion MRI can measure CBV  
 
Dynamic susceptibility contrast (DSC) perfusion MRI operates similarly to the popular T2*-weighted MR 
techniques (e.g., ASL, discussed below) that are often used for the estimation of rCBV in functional MRI.55,56 
However, DSC perfusion MRI instead uses gadolinium-based contrast agents in order to increase signal to noise 
ratio. This is useful because rCBV can be used to predict tumor vascular morphometry, such as MVA (discussed 
below).57 However, it should be noted that rCBV can’t accurately predict such measures when the glioblastomas 
have heterogeneous vessel sizes, which is often the case.   
 
One major problem to consider is contrast agent leakage, which often occurs in tumor vessels when the blood-brain 
barrier is severely sabotaged.58 This can amplify the abnormal effects on T1 or T2*.59 The effects T2* exerted as a 

 

  3 
 



 
   

 
consequence of contrast-agent leakage can be influenced by the tumor cells’ density and spatial distribution.59 
Moreover, these effects could result in the addition of a susceptibility calibration factor, which could partly, but not 
fully, compensate for the leakage effects.59 Due to these limitations of T2, T1 kinetic parameters are more reliable 
when it comes to analyzing complex tumor vessels with mostly heterogeneous vascular characteristics as these 
tumors are more likely to present with blood-brain barrier damage.60  
 
DSC Perfusion MRI Eliminates the Problem of Pseudoprogression  
 
After glioblastomas patients were treated with chemoradiotherapy, oncologists took into account the presence of 
transiently enlarging, contrast-enhanced lesions in order to decide whether to continue or switch to a second-line 
therapy.61 Pseudoprogression is the detected expansion of a tumor that is not caused by the tumor’s actual growth. In 
other words, it’s false tumor growth. It occurs because during immunotherapy, immune cells surround the tumor and 
enlarge the region. Inaccurate interpretation of the pseudoprogression in tumors have reduced salvage treatment 
trials.62 To prevent the false-positive evaluation of a new drug’s effects, it is therefore necessary to exclude 
pseudoprogression.63 Oncologists often rely on the histopathologic diagnosis, which is derived from second-look 
surgery and highly prone to sampling errors, to separate the early tumor progression cases from the 
pseudoprogression ones.64 To limit these sampling errors, alternative methods have been integrated, namely the 
interpretation of MRI findings and clinical manifestations.65 Dynamic susceptibility contrast perfusion MRI is a 
specific alternative that researchers have looked to.66  
 
Previous studies show that we can predict the patient’s chance of one-year survival based on how their rCBV 
percentage has changed following radiation-temozolomide therapy.67 Scientists have developed a tool to differentiate 
pseudoprogression from true progression: a rCBV-derived parametric response map.68 It was also found that true 
tumor progression can be expected if the patients experience a rCBV decrease three weeks after therapy.69 After 
chemoradiotherapy, early tumor progression patients experience something the pseudoprogression patients did not: 
negative changes of skewness and kurtosis of rCBV histograms70 (rCBV histograms shows the distribution of 
normalized rCBV values over time). In short, as vascular proliferation remains a prominent element indicative of 
true tumor progression, DSC perfusion MRI likely holds value in the detection of true tumor progression out of 
many pseudo progressions, despite its caveats.72 
 
Microvessel Density/ Area 
 
Compared to MVD (microvessel density), MVA (microvessel area) shows both the microvessels' density and 
character, which gives oncologists a better evaluation of the tumor’s microvessel morphometric complexity, overall 
vascular surface area, and stages of angiogenesis.51 For instance, an increase in MVD suggests a decrease in vessel 
size. There are many explanations for this phenomena such as the presence of delicate microvessels or glomeruloid 
vascular structure (made of tumor-derived immature microchannels) in invasive tumors in the brain’s grey matter.52 
The field has thus turned to MVA as a better predictor for patient survival than MVD, which has less ability to 
predict tumor progression.53 Specifically, in high MVA tumors, glomeruloid vessels are more common, while low 
MVA tumors possess more delicate (capillary-like) vessels.53  Importantly, such high MVA tumors are more likely to 
undergo metastasis or invasion. This suggests that prognosing a glioma patient involves the examination of their 
tumor morphology and techniques such as MVA, which can do so without surgery, may non-invasively provide 
guidance for treatment options (e.g., the decision to surgically remove tumors).  
 
Arterial Spin Labeling to Predict Tumor Normalization and Drug Response  
 
As stated, tumor vascular characteristics can be indicative of certain therapeutic responses.91 This is due, in part, to 
the fact that particular tumor vessels’ patterns play a big role in increasing or decreasing the efficacy of 
chemotherapeutic drug delivery.92 For instance, higher tumor blood perfusion is linked to more positive outcomes 
regarding antiangiogenic treatment.93 Thus, high CBF, which may be assessed using arterial spin labeling (ASL), 
signifies low tumor vessels’ permeability.94 This makes the chemotherapeutic drug delivery to tumor cells more 
efficient and effective, giving a more favorable outcome.95 Leveraging the endogenous tracer without any contrast 
agent injection, ASL noninvasively measures CBF96 (An endogenous tracer is a molecule or subatomic particles that 
comes from within the system that are used to track another molecule. ASL’s endogenous tracer is arterial blood 
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water protons tagged by a radio-frequency pulse prior to the blood entering the cerebrum). Aside from accurately 
evaluating the CBF, ASL is also valuable for assessing tumor blood-vessel attenuation and grading gliomas 
alongside other methods like MVA.96 Due to all of its capability, ASL is highly helpful in cases where CBF is 
correlated to clinical outcome measures, such as in the context of drug delivery through the blood stream.96 
 
Arterial Spin Labeling Depicts Efficacy of Drug Delivery 
 
The structure and function of tumor vessels drastically change in angiogenesis.97 By inhibiting vascular endothelial 
growth factor signaling, antiangiogenic treatment eradicates mutated vessels and reestablishes the 
normally-functioning vasculature.98 This reestablishment of vasculature promotes effective drug delivery as it 
increases CBF and decreases tumor-induced hypoxia and interstitial fluid pressure, which may kill nearby cells.99 
So, increased tumor perfusion during chemotherapy might serve as a good signal of longer survival.100 Cytotoxic 
chemotherapeutic agents showed different effectiveness in high-CBF patients versus low-CBF patients.101 The 
high-CBF groups experience a longer median time-to-progression (TTP) compared to their negative-CBF 
counterparts.102 High CBF can thus be used to predict favorable TTP and outcomes. Moreover, this is regardless of 
the MGMT promoter methylation status;102 MGMT is an enzyme that helps tumors resist chemotherapy and its 
methylation-dependent expression thus impacts drug-treatment. In sum, high CBF demonstrates hyperperfusion and 
normalized tumor vessels, which may enhance drug delivery.102  
 
Dynamic Contrast-Enhanced Perfusion MRI Detects Immature Vessels  
 
While leakage of contrast agents may limit techniques like DSC, it may also be used to assess the vascular 
architecture of tumors73. Naturally, the intravascular compartment and the extravascular, extracellular compartment 
interchange contrast agents with each other at some rate.74 To quantify the rate of this exchange, Dynamic 
Contrast-Enhanced (DCE) perfusion MRI uses a pharmacokinetic model, which can derive the transfer coefficient 
(Ktrans), which is indicative of the tumor’s vessel permeability.75 Brain tumors’ contrast agents usually extravasates 
(leaks out from blood vessels) due to the presence of immature hyperpermeable vessels.76 Measuring this 
extravasation is useful in two ways: differentiating mature tumor vessels from immature ones and identifying the 
tumor-vessel permeability77; both can be utilized as a biomarker for brain tumor progression.77  
 
DCE perfusion MRI, in order to function, requires complex data acquisition and analysis that the DSC perfusion 
MRI does not.78 First, determination of T1 values in brain tissue before contrast injection is required for the 
calculation of tissue contrast concentration curve with time.79 After that, scientists need to accurately measure the 
arterial input function, which is the concentration of tracer (molecules with specific characteristics that allow them 
to trace a biological process) in the artery’s blood.80 This can be very challenging because inflow might disrupt 
either the MR signal intensity or absolute contrast concentration.80  
 
Despite the required complexity, DCE MRI also has many advantages over other methods like DSC: 
three-dimensional acquisition of images, a higher signal-to-noise ratio, and a higher spatial resolution compared to 
DSC MRI.81 Also, since DCE MRI can more sensitively monitor small vessels compared to DSC MRI, it could 
better track drug delivery.81 In theory, DCE perfusion MRI also has other potentials such as the promise of 
developing more accurate pharmacokinetic models that can be used to modulate tumor drug delivery and patient’s 
response to chemotherapeutic drugs based on estimates of tumor vascularity detected using other imaging 
techniques.82 Ultimately, DCE perfusion MRI can be extremely helpful if used correctly and when its limitations are 
properly taken into account.83 
 
DCE Perfusion MRI Improves Assessment of Patient’s Drug Response 
 
Oncologists also use dynamic contrast-enhanced perfusion MRI to evaluate the physiologic aspect of the 
regeneration of tumor vessels, namely the microcirculation.84,85 Dynamic contrast-enhanced perfusion MRI is 
extremely useful because it can serve as a noninvasive tracker of not only tumor progression, but also treatment 
response.86,87 Researchers have found that the combo method of DSC/DCE, MRI, and DWI performs better in 
differentiating recurrent glioblastoma from radiation necrosis compared to the combo the use of only MRI and 
DWI.88 In other words, the addition of DSC or DCE improved diagnostic performance. Oncologists are encouraged 
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to include any form of perfusion MRI to their traditional MRI protocol of MRI and DWI, since perfusion MRI 
increases accuracy in the recognition of recurrent glioblastoma.89 More importantly, the specific combination of 
conventional MRI, DWI, and DCE MRI (not DSC MRI) proves to have the best recurrent glioblastoma diagnostic 
performance.90 
 
CE-SWI Highlights Tumor Necrosis and Vessels 
 
Susceptibility-weighted images (SWI) are gradient echo sequences that are able to illustrate the cerebral veins and 
microhemorrhage.103 SWI describes edema and contrast enhancement, examples of T2 effects related to T1 
effects.104 The capture of the tumor's architecture is necessary to evaluate tumor necrosis.105 The tumor's architecture 
shown on SWI is much more useful compared to that shown on contrast-enhanced T1-weighted imaging because 
contrast-enhanced T1 imaging captures the tumor's architecture based on the presence of necrosis, cysts, and tumor 
boundaries, while SWI captures the tumor's architecture based on the presence of blood products and tumor 
vessels.106,107  
 
When analyzing brain mass lesions using susceptibility signals, gadolinium-based contrast agents can be integrated 
into the procedure to improve the analysis.108 SWI and contrast-enhanced (CE)-SWI can show similar susceptibility 
signals. But, there are cases when only the CE-SWI shows a particular susceptibility signal, meriting the use of 
contrast in some patients. Importantly, if oncologists use SWI before and after the contrast agent is applied, 
oncologists can more easily differentiate hemorrhages from veins.109 This is because the signal intensity of blood 
vessels changes from the absence to presence of contrast agent while the signal intensity of hemorrhages, which take 
much longer to take on contrast agents, remains the same.109 CE-SWI can be seen as a high-resolution, structural 
MRI, which has a great potential for contrast-enhancing tumor segmentation.110  
 
Previous studies examining the effectiveness of CE-SWI have also shown that it can be used to detect tumor 
invasion zones.111 These are zones that experience less tumor-cell density because tumor cells migrate away from 
these zones into the surrounding brain tissue for invasion.112 Since this process can be fatal to patients, CE-SWI can 
be extremely helpful in detecting these processes. In pre-contrast SWI, susceptibility signals may detect highly 
pathological vessels, micro-hemorrhage, and extensive necrosis; however, CE is necessary for the detection of more 
subtle qualities such as tumor invasion zones.113  
 
CE SWI Enhance Tumor Evaluation  
​
SWI is a necessary addition to conventional imaging techniques because it contrasts and detects the tumor’s venous 
vasculature and hemorrhage, which could not be done using conventional imaging techniques.114 By tracking the 
intratumoral susceptibility signal (ITSS), oncologists have used SWI to non-invasively grade primary brain 
tumors.115 Tumor grading is a process of identifying the levels of malignancy of the tumor base on its characteristics. 
Glioblastomas are high-grade tumors that consist of hemorrhage and upregulated micro vascularity.116 SWI is 
valuable because it can detect the presence of these components that traditional imaging methods can’t. There is a 
strong link between how strong the ITSS is and what the maximum rCBV is in the same tumor segments.117 
However, this correlation of ITSS and maximum rCBV also varies across different patients.117 Since SWI gives off 
the strongest ITSS in glioblastoma, ITSS might be a useful tool for oncologists to make accurate glioma diagnosis. 
Researchers found out that SWI and DSC perfusion MRI have similar diagnostic and grading performance.118 Again, 
compared to non-contrast SWI, contrast-enhanced SWI performs better in tumor evaluation.119  
 
Conclusion 
 
As it stands, the use of conventional MRI in neuro-oncology faces diagnostic difficulties that may be solved by 
emerging imaging techniques which, specifically, may better assess tumor subtypes and, especially, response to 
treatment.   
 
Nonetheless, the emerging MRI techniques discussed here have unique limitations and challenges. For example, 
ADC aren’t stable for all types of tumors and treatments. For example, it works differently for antiangiogenic 
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therapy versus chemotherapy. Similarly, IVIM is sensitive to artifacts and different vessel sizes. DSC uses contrast 
agents, but contrast agents leakage often occurs, thus creating problems. DCE requires more prerequisites compared 
to DSC to be properly used, which makes its usage highly rigorous. Fortunately, ASL, the third perfusion MRI 
technique, CE SWI, and DKI all face insignificant obstacles.  
​
Regarding these 7 cutting-edge techniques covered, their usefulness and limitations overlap with or accompany each 
other, suggesting that a variety of these techniques may provide the best picture of a patient’s condition. For 
instance, ADC reflects diffusion, which is how well water flows in the patient’s brain. This is different from 
perfusion, how well blood flows in the patient’s brain. So to differentiate the two, IVIM could be used. It’s important 
to differentiate the two because they provide different suggestions for oncologists. High diffusion means low 
cellularity, which means less malignant tumors. On the other hand, perfusion gives different measurements such as 
CBF, CBV, K-trans, and TTP, that reflects characteristics of blood vessels, which reflect how well a drug will 
perform. The three perfusion MRI techniques discussed here: DSC, DCE, and ASL, are all useful for predicting the 
efficacy of drug administration. DSC eliminates pseudoprogression which is important because less 
pseudoprogression means less false-positives evaluation on drug effects. DCE estimates immature vessels which is 
useful in predicting effectiveness of drug delivery. ASL provides CBF, which evaluates perfusion, which predicts 
effectiveness of drug delivery. Lastly, DKI and CE SWI can both be used to classify tumors, high-grade or 
low-grade. Thus, a consortium of advanced MRI techniques is likely to bring about the most effective treatment of 
brain cancer, from detection to remission. 
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