A New Frontier in Fighting Brain Cancer: Cutting Edge
Magnetic Resonance Imaging Techniques

ABSTRACT

Of the currently available brain imaging techniques for diagnosing tumors, diffusion-weighted MRI and perfusion
MRI are cutting-edge techniques and may provide improved diagnostic capacity compared to traditional techniques
such as positron emission tomography. Moreover, they are fully non-invasive and avoid the exposure to radiation.
While MRI in general has been used in research and medicine for decades, the more recent development of
multi-modal and multiparametric imaging in neuro oncology holds much promise for the enhancement of diagnosis,
prognosis, and patient-tailored treatments in this field. This review will evaluate how these various imaging
techniques provide clinical value above and beyond previous techniques.

Introduction

Neuro-oncologists are increasingly using diffusion-weighted imaging (DWTI) and perfusion MRI to not only
diagnose brain tumors, but also guide surgical procedures and monitor the tumor treatment response. DWI allows for
the detection of water diffusion. Water diffusion is inversely related to tumor cellularity- meaning the increase of one
causes the decrease of the other; in other words, as cellularity decreases due to damage or altered structure, the free
diffusion of water in a tissue increases, allowing for the noninvasive detection of tumor cellularity Perfusion MRI
techniques also help oncologists evaluate tumor structure by analyzing tumor vascularity in the context of
neoangiogenesis, a process where new blood vessels grow to support the invasion of tumor cells. These advanced
techniques are becoming the standard of use for the detection, characterization, and staging of viable tumor lesions.
Additionally, these tools become especially useful in malignant tumors such as glioblastomas, metastatic tumors,

and lymphomas.

Within DWI and perfusion MRI, different novel MRI analytic techniques further provide unique benefits to
oncologists. For example, intravoxel incoherent motion (IVIM), found in DWI, is utilized, with the absence of
contrast agents, for the evaluation of tissue perfusion and separation of microcirculation from true water molecular
diffusion.' Diffusion kurtosis imaging (DKI) can serve a multitude of tasks.” DKI locates non-Gaussian diffusion,
which may help describe the brain regions' structural components.? Perfusion MRI comprises three main methods
that are all primarily used to evaluate malignant brain tumors.® The three primary perfusion MRI techniques used in
neuro oncology—dynamic susceptibility contrast (DSC) perfusion MRI, dynamic contrast-enhanced (DCE)
perfusion MRI, and arterial spin labeling (ASL)—gift unique characterizations of the pathophysiology of a patient’s
pre- and post-treatment brain tumors.*

As a biomarker of the glioma outcome, the tumor microvessel area (MVA) could be accurately derived from the
relative cerebral blood volume (rCBV) calculated from the DSC perfusion MR1.> DCE perfusion MRI differentiates
mature from immature tumor vessels.® ASL can be used to obtain cerebral blood flow (CBF), which is extremely
useful for oncologists because CBF may predict tumor vascular normalization, a therapeutic strategy aimed towards
preventing angiogenesis.” Cerebral blood flow (CBF) is the rate at which the arterial blood is transported into the
brain’s capillary bed. Contrast-enhanced susceptibility-weighted imaging (CE-SWI) may further evaluate the
cellular and vascular consistency of tumors above and beyond the ability of techniques without contrast agents.®
This review will discuss each advanced MR imaging techniques separately—diving deep into the clinical usefulness
as well as limitations of each method.

Discussion

Apparent Diffusion Coefficient Characterizes Many Tumor Aspects and Tracks Antiangiogenic
Drugs Response



Diffusion-weighted MRI is able to detect the magnitude of this microscopic, subvoxel water motion and this is used
to derive several metrics, including the apparent diffusion coefficient (ADC), a measure of the degree of water
diffusion within a voxel.’ Water molecules found in extracellular, intracellular, and intravascular regions are
restricted in their movement differently, producing differential ADC signals and allowing for tissue-type
segmentation'® Specifically, each space is characterized by different microscopic anatomical barriers, which leads to
differential perfusion of water, both in terms of the directionality and extent of diffusion.'® Generally, ADC gives
oncologists a fair approximation of the water diffusion within the extracellular and extravascular space." Since
tumors are composed of tightly packed cells (they are highly cellular), the extracellular water motion within this
tissue is restricted. So when the tumor cellularity is increased, the water diffusion is decreased, which means the
ADC is also decreased." Generally, necrosis or cellular lysis, caused by antitumor treatments, can decrease
cellularity.'” Because decreased tumor cell population precedes any measurable tumor size change, DWI can thus
predict early treatment outcomes, monitor early treatment response, and detect recurrent tumors."

Shifts in the ADC symbolizes certain long-term patient responses to treatments.?® For example, the degree of change
in ADC after chemotherapy is predictive of patient’s overall survival.”” Changes in ADC might also help identify
chemotherapy-resistant tumor types.?” Therefore, ADC is a valuable tool in monitoring the patients’ treatment
response.”” However, when oncologists analyze pretreatment ADC in recurrent glioblastomas, they found that ADC
is effective in predicting antiangiogenic therapy’s response, but not chemotherapy’s response.?® Therefore,
monitoring ADC over the course of treatment serves as a tracker for prescription of antiangiogenic therapy in
recurrent glioblastoma but perhaps not when utilizing chemotherapy alone.?

Apparent Diffusion Coefficient’s Inaccurate Representation of Tumor Cellularity

However, this technique is not without limitation. Since ADC is affected by capillaries’ microcirculation, it may be
susceptible to changes in vascularization.”? Malignant brain tumors express higher tumor cellularity and vascularity
compared to benign brain tumors.” Unlike the high tumor vascularity, which increases ADC, high tumor cellularity
decreases it.** This phenomenon proves that the DWI signal attenuation in hypervascular brain tumors can be
influenced by two opposing manners, which, as mentioned previously, limits the ADC value for grading
hypervascular brain tumors.? This under-performance can give rise to contradictory results. To account for this,
tumor vascularity can be assessed through a pathology review of tumor sections.*

Moreover, different tumor subtypes may interfere with the use of ADC. High-grade gliomas, which are more
invasive and harder to treat compared to low-grade gliomas, are heterogeneous regarding their microstructure and
genetics.'> High DWI signals can result from tumor coagulation necrosis or ischemia.'® However, highly cellular
tumor areas in combo with inflammatory processes can dramatically restrict the intensity of the diffusion signal,
adding complexity to the characterization of tumor progression.'® As a result, the usage of mean ADC values to
accurately grade tumors can be ineffective due to this heterogeneity;!” for instance, tumor necrosis can restrict water
diffusion and falsely suggest high cellularity; indeed, tumor cell density, metabolic activity, ischemia, and
compression are all possible factors responsible for the restriction of diffusion within and around cancerous tissue.”

Intravoxel Incoherent Motion to Differentiate Perfusion from Diffusion

A pseudo diffusion, often observed in abnormally oriented capillary blood flow, can interfere with diffusion
measures in DWI images. This occurs only when the befa parameter of a DW image are set to relatively small
values.” To distinguish true diffusion from pseudo diffusion, we can identify the isotropic diffusion in water from
the “incoherent motion” present in blood vessels.***' This can be done by taking multiple DWI images while
systematically altering their b values corresponding to the weighting of diffusion (where higher b values result in
higher-intensity images given a constant degree of diffusion). For each voxel, the b value used across multiple
images and the resulting intensity of the voxel can be fit to previously-defined models which differentiate free water
diffusion from that observed in blood.

Multiple forms of these models have been employed. Mono-exponential fitting involves the use of a single variable
while bi-exponential fitting involves the use of multiple variables. In recent research, scientists, using simple
mono-exponential fitting, which doesn't account for the contribution of the perfusion effect, discovered that



lymphoma patients have drastically lower ADC compared to other tumor patient groups.*’ Meanwhile, scientists,
using the bi-exponential fitting, which accounts for the contribution of the perfusion effect, discovered that
lymphoma patients have similar “true” diffusion parameters compared to other tumor patient groups.*’ This finding
suggests that the ADC difference is strongly correlated to the perfusion effect’s contribution and perfusion of blood
may sometimes produce spurious differences between groups when not taken into account.*' It can therefore be
concluded that a mono exponentially fitted ADC may not give oncologists the best accuracy in terms of the inverse
correlation between the ADC and tumor cellularity.*>*

However, IVIM also has its limitations. For example, it requires a high signal-to-noise ratio, when oncologists use it
to separate perfusion from diffusion.*® Furthermore, the phenomena of vascular tubular flow and glandular secretion
can produce artifacts.’” Lastly, different vessel sizes can produce different IVIM signals and result in different levels
of sensitivity.*” All of these challenges makes the differentiation process that much more difficult and future efforts
should address these remaining limitations.

Diffusion Kurtosis Imaging Reflects Gray and White Matter’s Structural Components

The Gaussian law can be easily observed in free, unobstructed, diffusion.* Unsurprisingly, a non-Gaussian
distribution occurs when the diffusion of water molecules are restrictively affected by the complex microstructure of
different tissue types.* Therefore, the tissue’s microstructure, namely the cell membranes, organelles, and water
compartments, could give rise to specific non-Gaussian diffusion patterns.*

DKI is a modified version of DTI. Compared to diffusion tensor imaging (DTI), non-Gaussian diffusion, derived
from diffusion kurtosis imaging (DKI), can more accurately evaluate aspects of both normal and pathologic tissue
by taking advantage of this property.* The microstructural complexity index might thus be represented by the mean
kurtosis (mk).*® Since MK works regardless of whether the tissue is spatially oriented in a certain plain, it proves to
be a better venue compared to DTI-derived fractional anisotropy (FA) in the context of neurooncology.*® For
instance, MK can be applied for both the gray and white matter without regard to the directionality of the underlying
healthy cytoarchitecture.

Diffusion Kurtosis Imaging Reliably Grades Glioma

Increased kurtosis is indicative of increased tissue complexity in high-grade glioma.*’” A variety of events such as
hemorrhage, tumor invasion, necrosis, endothelial proliferation and more, could be involved in increasing the tissue
complexity of tumors.*” Unsurprisingly, decreased kurtosis parameters are indicative of decreased tissue complexity.
This may be used to detect low-grade glioma, which have more homogeneous and less packed cells.*’ Studies have
pinpointed that the difference between the intra- and extracellular space can be used to identify low-grade from
high-grade gliomas.* This difference might be attributed to the different characteristics between these forms of
gliomas.* High-grade gliomas have more crowding cells and myelin breakdown products, which makes the
membrane structure tightly packed.* Low-grade gliomas have more differentiated, neoplastic astrocytes, which
makes the membrane structure loosely packed.* Thus, while both high-grade and low-grade gliomas have more
kurtosis than normal tissue, differential kurtosis within tumor tissue may provide clues to which subtype best
characterizes a tumor in the absence of a biopsy.

Dynamic susceptibility contrast perfusion MRI can measure CBV

Dynamic susceptibility contrast (DSC) perfusion MRI operates similarly to the popular T2*-weighted MR
techniques (e.g., ASL, discussed below) that are often used for the estimation of tCBV in functional MRI.**-%
However, DSC perfusion MRI instead uses gadolinium-based contrast agents in order to increase signal to noise
ratio. This is useful because rCBV can be used to predict tumor vascular morphometry, such as MVA (discussed
below).”” However, it should be noted that rCBV can’t accurately predict such measures when the glioblastomas
have heterogeneous vessel sizes, which is often the case.

One major problem to consider is contrast agent leakage, which often occurs in tumor vessels when the blood-brain
barrier is severely sabotaged.* This can amplify the abnormal effects on T1 or T2*.% The effects T2* exerted as a



consequence of contrast-agent leakage can be influenced by the tumor cells’ density and spatial distribution.”
Moreover, these effects could result in the addition of a susceptibility calibration factor, which could partly, but not
fully, compensate for the leakage effects.”® Due to these limitations of T2, T1 kinetic parameters are more reliable
when it comes to analyzing complex tumor vessels with mostly heterogeneous vascular characteristics as these
tumors are more likely to present with blood-brain barrier damage.®

DSC Perfusion MRI Eliminates the Problem of Pseudoprogression

After glioblastomas patients were treated with chemoradiotherapy, oncologists took into account the presence of
transiently enlarging, contrast-enhanced lesions in order to decide whether to continue or switch to a second-line
therapy.®' Pseudoprogression is the detected expansion of a tumor that is not caused by the tumor’s actual growth. In
other words, it’s false tumor growth. It occurs because during immunotherapy, immune cells surround the tumor and
enlarge the region. Inaccurate interpretation of the pseudoprogression in tumors have reduced salvage treatment
trials.” To prevent the false-positive evaluation of a new drug’s effects, it is therefore necessary to exclude
pseudoprogression.®® Oncologists often rely on the histopathologic diagnosis, which is derived from second-look
surgery and highly prone to sampling errors, to separate the early tumor progression cases from the
pseudoprogression ones.** To limit these sampling errors, alternative methods have been integrated, namely the
interpretation of MRI findings and clinical manifestations.® Dynamic susceptibility contrast perfusion MRI is a
specific alternative that researchers have looked to.%

Previous studies show that we can predict the patient’s chance of one-year survival based on how their rCBV
percentage has changed following radiation-temozolomide therapy.®” Scientists have developed a tool to differentiate
pseudoprogression from true progression: a rCBV-derived parametric response map.®® It was also found that true
tumor progression can be expected if the patients experience a rCBV decrease three weeks after therapy.” After
chemoradiotherapy, early tumor progression patients experience something the pseudoprogression patients did not:
negative changes of skewness and kurtosis of rCBV histograms™ (rCBV histograms shows the distribution of
normalized rCBYV values over time). In short, as vascular proliferation remains a prominent element indicative of
true tumor progression, DSC perfusion MRI likely holds value in the detection of true tumor progression out of
many pseudo progressions, despite its caveats.”

Microvessel Density/ Area

Compared to MVD (microvessel density), MVA (microvessel area) shows both the microvessels' density and
character, which gives oncologists a better evaluation of the tumor’s microvessel morphometric complexity, overall
vascular surface area, and stages of angiogenesis.’! For instance, an increase in MVD suggests a decrease in vessel
size. There are many explanations for this phenomena such as the presence of delicate microvessels or glomeruloid
vascular structure (made of tumor-derived immature microchannels) in invasive tumors in the brain’s grey matter.*
The field has thus turned to MVA as a better predictor for patient survival than MVD, which has less ability to
predict tumor progression.*® Specifically, in high MVA tumors, glomeruloid vessels are more common, while low
MVA tumors possess more delicate (capillary-like) vessels.” Importantly, such high MVA tumors are more likely to
undergo metastasis or invasion. This suggests that prognosing a glioma patient involves the examination of their
tumor morphology and techniques such as MVA, which can do so without surgery, may non-invasively provide
guidance for treatment options (e.g., the decision to surgically remove tumors).

Arterial Spin Labeling to Predict Tumor Normalization and Drug Response

As stated, tumor vascular characteristics can be indicative of certain therapeutic responses.”’ This is due, in part, to
the fact that particular tumor vessels’ patterns play a big role in increasing or decreasing the efficacy of
chemotherapeutic drug delivery.”? For instance, higher tumor blood perfusion is linked to more positive outcomes
regarding antiangiogenic treatment.”® Thus, high CBF, which may be assessed using arterial spin labeling (ASL),
signifies low tumor vessels’ permeability.”* This makes the chemotherapeutic drug delivery to tumor cells more
efficient and effective, giving a more favorable outcome.” Leveraging the endogenous tracer without any contrast
agent injection, ASL noninvasively measures CBF*® (An endogenous tracer is a molecule or subatomic particles that
comes from within the system that are used to track another molecule. ASL’s endogenous tracer is arterial blood



water protons tagged by a radio-frequency pulse prior to the blood entering the cerebrum). Aside from accurately
evaluating the CBF, ASL is also valuable for assessing tumor blood-vessel attenuation and grading gliomas
alongside other methods like MVA.” Due to all of its capability, ASL is highly helpful in cases where CBF is
correlated to clinical outcome measures, such as in the context of drug delivery through the blood stream.’

Arterial Spin Labeling Depicts Efficacy of Drug Delivery

The structure and function of tumor vessels drastically change in angiogenesis.”” By inhibiting vascular endothelial
growth factor signaling, antiangiogenic treatment eradicates mutated vessels and reestablishes the
normally-functioning vasculature.’® This reestablishment of vasculature promotes effective drug delivery as it
increases CBF and decreases tumor-induced hypoxia and interstitial fluid pressure, which may kill nearby cells.”
So, increased tumor perfusion during chemotherapy might serve as a good signal of longer survival.'® Cytotoxic
chemotherapeutic agents showed different effectiveness in high-CBF patients versus low-CBF patients.'®' The
high-CBF groups experience a longer median time-to-progression (TTP) compared to their negative-CBF
counterparts.'” High CBF can thus be used to predict favorable TTP and outcomes. Moreover, this is regardless of
the MGMT promoter methylation status;'®® MGMT is an enzyme that helps tumors resist chemotherapy and its
methylation-dependent expression thus impacts drug-treatment. In sum, high CBF demonstrates hyperperfusion and
normalized tumor vessels, which may enhance drug delivery.'®

Dynamic Contrast-Enhanced Perfusion MRI Detects Immature Vessels

While leakage of contrast agents may limit techniques like DSC, it may also be used to assess the vascular
architecture of tumors”. Naturally, the intravascular compartment and the extravascular, extracellular compartment
interchange contrast agents with each other at some rate.”* To quantify the rate of this exchange, Dynamic
Contrast-Enhanced (DCE) perfusion MRI uses a pharmacokinetic model, which can derive the transfer coefficient
(Ktrans), which is indicative of the tumor’s vessel permeability.” Brain tumors’ contrast agents usually extravasates
(leaks out from blood vessels) due to the presence of immature hyperpermeable vessels.” Measuring this
extravasation is useful in two ways: differentiating mature tumor vessels from immature ones and identifying the
tumor-vessel permeability”’; both can be utilized as a biomarker for brain tumor progression.”

DCE perfusion MRI, in order to function, requires complex data acquisition and analysis that the DSC perfusion
MRI does not.” First, determination of T1 values in brain tissue before contrast injection is required for the
calculation of tissue contrast concentration curve with time.” After that, scientists need to accurately measure the
arterial input function, which is the concentration of tracer (molecules with specific characteristics that allow them
to trace a biological process) in the artery’s blood.* This can be very challenging because inflow might disrupt
either the MR signal intensity or absolute contrast concentration.*

Despite the required complexity, DCE MRI also has many advantages over other methods like DSC:
three-dimensional acquisition of images, a higher signal-to-noise ratio, and a higher spatial resolution compared to
DSC MRIL® Also, since DCE MRI can more sensitively monitor small vessels compared to DSC MRI, it could
better track drug delivery.?' In theory, DCE perfusion MRI also has other potentials such as the promise of
developing more accurate pharmacokinetic models that can be used to modulate tumor drug delivery and patient’s
response to chemotherapeutic drugs based on estimates of tumor vascularity detected using other imaging
techniques.® Ultimately, DCE perfusion MRI can be extremely helpful if used correctly and when its limitations are
properly taken into account.®

DCE Perfusion MRI Improves Assessment of Patient’s Drug Response

Oncologists also use dynamic contrast-enhanced perfusion MRI to evaluate the physiologic aspect of the
regeneration of tumor vessels, namely the microcirculation.*® Dynamic contrast-enhanced perfusion MRI is
extremely useful because it can serve as a noninvasive tracker of not only tumor progression, but also treatment
response.®®*” Researchers have found that the combo method of DSC/DCE, MRI, and DWI performs better in
differentiating recurrent glioblastoma from radiation necrosis compared to the combo the use of only MRI and
DWL® In other words, the addition of DSC or DCE improved diagnostic performance. Oncologists are encouraged



to include any form of perfusion MRI to their traditional MRI protocol of MRI and DWI, since perfusion MRI
increases accuracy in the recognition of recurrent glioblastoma.® More importantly, the specific combination of
conventional MRI, DWI, and DCE MRI (not DSC MRI) proves to have the best recurrent glioblastoma diagnostic
performance.”

CE-SWI Highlights Tumor Necrosis and Vessels

Susceptibility-weighted images (SWI) are gradient echo sequences that are able to illustrate the cerebral veins and
microhemorrhage.'” SWI describes edema and contrast enhancement, examples of T2 effects related to T1
effects.'™ The capture of the tumor's architecture is necessary to evaluate tumor necrosis.'” The tumor's architecture
shown on SWI is much more useful compared to that shown on contrast-enhanced T1-weighted imaging because
contrast-enhanced T1 imaging captures the tumor's architecture based on the presence of necrosis, cysts, and tumor
boundaries, while SWI captures the tumor's architecture based on the presence of blood products and tumor
vessels.'06-17

When analyzing brain mass lesions using susceptibility signals, gadolinium-based contrast agents can be integrated
into the procedure to improve the analysis.'” SWI and contrast-enhanced (CE)-SWI can show similar susceptibility
signals. But, there are cases when only the CE-SWI shows a particular susceptibility signal, meriting the use of
contrast in some patients. Importantly, if oncologists use SWI before and after the contrast agent is applied,
oncologists can more easily differentiate hemorrhages from veins.'” This is because the signal intensity of blood
vessels changes from the absence to presence of contrast agent while the signal intensity of hemorrhages, which take
much longer to take on contrast agents, remains the same.'” CE-SWI can be seen as a high-resolution, structural
MRI, which has a great potential for contrast-enhancing tumor segmentation.'?

Previous studies examining the effectiveness of CE-SWI have also shown that it can be used to detect tumor
invasion zones.'!" These are zones that experience less tumor-cell density because tumor cells migrate away from
these zones into the surrounding brain tissue for invasion.'" Since this process can be fatal to patients, CE-SWI can
be extremely helpful in detecting these processes. In pre-contrast SWI, susceptibility signals may detect highly
pathological vessels, micro-hemorrhage, and extensive necrosis; however, CE is necessary for the detection of more
subtle qualities such as tumor invasion zones.'

CE SWI Enhance Tumor Evaluation

SWI is a necessary addition to conventional imaging techniques because it contrasts and detects the tumor’s venous
vasculature and hemorrhage, which could not be done using conventional imaging techniques.' By tracking the
intratumoral susceptibility signal (ITSS), oncologists have used SWI to non-invasively grade primary brain
tumors.""> Tumor grading is a process of identifying the levels of malignancy of the tumor base on its characteristics.
Glioblastomas are high-grade tumors that consist of hemorrhage and upregulated micro vascularity.''* SWI is
valuable because it can detect the presence of these components that traditional imaging methods can’t. There is a
strong link between how strong the ITSS is and what the maximum rCBYV is in the same tumor segments.'"”
However, this correlation of ITSS and maximum rCBYV also varies across different patients.'”” Since SWI gives off
the strongest ITSS in glioblastoma, ITSS might be a useful tool for oncologists to make accurate glioma diagnosis.
Researchers found out that SWI and DSC perfusion MRI have similar diagnostic and grading performance.''® Again,
compared to non-contrast SWI, contrast-enhanced SWI performs better in tumor evaluation.'”

Conclusion

As it stands, the use of conventional MRI in neuro-oncology faces diagnostic difficulties that may be solved by
emerging imaging techniques which, specifically, may better assess tumor subtypes and, especially, response to
treatment.

Nonetheless, the emerging MRI techniques discussed here have unique limitations and challenges. For example,
ADC aren’t stable for all types of tumors and treatments. For example, it works differently for antiangiogenic



therapy versus chemotherapy. Similarly, IVIM is sensitive to artifacts and different vessel sizes. DSC uses contrast
agents, but contrast agents leakage often occurs, thus creating problems. DCE requires more prerequisites compared
to DSC to be properly used, which makes its usage highly rigorous. Fortunately, ASL, the third perfusion MRI
technique, CE SWI, and DKI all face insignificant obstacles.

Regarding these 7 cutting-edge techniques covered, their usefulness and limitations overlap with or accompany each
other, suggesting that a variety of these techniques may provide the best picture of a patient’s condition. For
instance, ADC reflects diffusion, which is how well water flows in the patient’s brain. This is different from
perfusion, how well blood flows in the patient’s brain. So to differentiate the two, IVIM could be used. It’s important
to differentiate the two because they provide different suggestions for oncologists. High diffusion means low
cellularity, which means less malignant tumors. On the other hand, perfusion gives different measurements such as
CBF, CBYV, K-trans, and TTP, that reflects characteristics of blood vessels, which reflect how well a drug will
perform. The three perfusion MRI techniques discussed here: DSC, DCE, and ASL, are all useful for predicting the
efficacy of drug administration. DSC eliminates pseudoprogression which is important because less
pseudoprogression means less false-positives evaluation on drug effects. DCE estimates immature vessels which is
useful in predicting effectiveness of drug delivery. ASL provides CBF, which evaluates perfusion, which predicts
effectiveness of drug delivery. Lastly, DKI and CE SWI can both be used to classify tumors, high-grade or
low-grade. Thus, a consortium of advanced MRI techniques is likely to bring about the most effective treatment of
brain cancer, from detection to remission.
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