
Week 13 - Guide to Deploying your Web Server
For codeworks alumni, but could otherwise be adopted to other cases

(WIP)

Technology Overview

​ [Type]​ Purpose​ ​ Product​ ​ [Website]​
​ ​ ​

​ Code Version Control:​ ​ GIT​ ​ ​ [https://git-scm.com]

[SaaS]​ Code Repository:​ ​ GITHUB ​ ​ [https://github.com]

[PaaS]​ Container: ​ ​ ​ DOCKER ​ ​ [https://docker.com]
​ Container Repository: ​ DOCKERHUB ​ [https://hub.docker.com]

[IaaS]​ Server “HW”:​ ​ ​ AWS EC2​ ​ [
https://console.aws.amazon.com]

​ DB Language:​ ​ ​ MySQL​ ​ [
https://www.mysql.com]

​ [Web Server/Reverse Proxy]:​ NGINX​ ​ ​ [https://www.nginx.com]

​ Domain Registrar:​ ​ CLOUDFLARE​ [https://cloudflare.com]

Stage 0 – Assumptions:

-​ Using AWS’s Free Tier/Trial opportunities for new & existing accounts

-​ Utilizing the latest version of ` bcw ` (3.4.1 as of this writing)
-​ Run ` npm i -g bcw ` to globally install the latest version

-​ Utilizing a vue template created after 12/20/2023 (vue-starter, express-vue, dotnet-vue)

-​ (this guide is only for full-stack applications at this moment)

-​ Utilizing the latest versions of the BCW templates

NOTES

●​ Commands with surrounding < > indicate a variable where you supply the value.

https://git-scm.com
https://github.com/
https://docker.com/
https://hub.docker.com/
https://console.aws.amazon.com
https://www.mysql.com
https://www.nginx.com
https://cloudflare.com

Do not include the < > characters.

●​ Entries highlighted with this color have additional notes

Click on the highlighted area to draw in and focus the note.

●​ Other entries that are highlighted or colored differently are to help identify where something was mentioned and

that might be reused later.

Stage 1 – AWS EC2 – CREATE A SERVER INSTANCE
(From a AWS’s website - https://console.aws.amazon.com)

1.​ Create a new AWS account (below – New to AWS? –) and add a Credit Card to the account
(required for incidentals, but free tier things are available for the first year)

2.​ Select a region in the top-right – eg. US West (Oregon)

https://console.aws.amazon.com

3.​ Navigate to AWS’s EC2 Service panel to get started

​ ​

a.​ Click on `Launch Instance`

​ ​

b.​ (Give it a name)

c.​ Select `Ubuntu` for the ‘Application and OS Images’ option.

​ ​

d.​ [conditional] Consider the preferred architecture to use (64-bit : x86 vs ARM) **NEW** ***Special***​
Either of the options are fine and neither adversely affect the setup process

●​ 64-bit(x86) w/ Free Tier = ` t2.micro ` @ 1 vCPU 1GB RAM (1 Yr @ new

Account)​
OR

●​ 64-bit(Arm) w/ Free Trial = ` t4g.small ` @ 2 vCPU 2GB RAM (EoY 2024)

Select the `t2.micro` | OR | `t4g.small` under ‘Architecture’ depending on your choice above

​
OR​

e.​ ‘Create new key pair’ to use as an authentication key (at your terminal + GitHub secrets)

​ ​

■​ Give it a name, keep the defaults (RSA & .pem), then hit Create
The file will auto download - move this to a better location outside of your Downloads folder
** This will be your EC2_PEM_KEY and how you remotely log in to manage your server **

​ ​ ​ (KeyPair file downloads to your system)

f.​ Under ‘Network Settings’, you’ll be creating a security group.

■​ Check all boxes:
-​ Allow SSH traffic from Anywhere
-​ Allow HTTPS traffic from the internet
-​ Allow HTTP traffic from the internet

​ ​

■​ In the top right section of ‘Network Settings’, click on ‘edit’
-​ At the bottom of the section, click ‘Add security group rule’
-​ Set ‘Type’ to ‘MYSQL/Aurora’
-​ Set ‘Source type’ to ‘Anywhere’

​ ​

g.​ ‘Storage’ Leave the default 8 GB storage size or increase it up to 15 GB

​ ​

4.​ Click ‘Launch Instance’ at the bottom of the Summary section on the right to begin the EC2 instance build

Click on the instance ID (eg. (i-0a7f04d45f7a684bd))

Click on the instance ID again but from the list

5.​ Find the ‘Public IPv4 address’ under the instance details and keep this handy for future tasks
-​ Note: This will be used in multiple places

-​ EC2_IP_ADDRESS GitHub repository secret
-​ Connection string in your dev environment (VSCode file: appsettings.Development.json)

1.​ Bonus [optional] Set up a static IP through **EC2’s Elastic IP** **NEW** ($)
a.​ On the side menu bar, find Network & Security > Elastic IPs

b.​ Click on “Allocate Elastic IP address”

i.​ Verify region match under “Network Border Group” - eg. “us-west-2” for Oregon
ii.​ Keep default of “Amazon’s pool of IPv4 addresses”
iii.​ Click “Allocate”

c.​ With the new ElasticIP entry selected, Click on Actions > ‘Associate Elastic IP address’

i.​ Click in to “Choose an instance” and select your EC2 instance
ii.​ Click on ‘Associate’ to finish
iii.​ Verify your EC2 instance has the new Elastic IP allocation associated on the ‘Instances‘ panel

Stage 2 – AWS EC2 - CUSTOMIZE INSTANCE
(Setup for your EC2 Ubuntu server environment - MySQL, DOCKER, NGINX)

Stage 2.1 – Login, update, then upgrade
(From the EC2 terminal)

1.​ Log in to your EC2 server from your computer’s terminal
(navigate to where your key was saved OR include the full path to it)

` ssh -i <ec2-server-key-file> ubuntu@<EC2_IP_ADDRESS> `​

eg. on a Windows command prompt:

2.​ Both Update && Upgrade your system’s package manager (apt)
a.​ ~$ sudo apt update​

​

b.​ ~$ sudo apt upgrade​
​ Type ‘y’ and press enter to continue when prompted (this may take a minute to complete)

​ ​

c.​ Accept defaults by pressing enter to restart the affected daemon services

Stage 2.2 – DOCKER & NGINX Setup
(From the EC2 terminal)

1.​ Install Docker via Snap
a.​ ` sudo snap install docker `

+ NOTE: Additional Docker related tasks will be handled externally later in Stages 5 & 6

2.​ Install NGINX via apt

a.​ ` sudo apt install nginx `
b.​ ` sudo systemctl enable nginx `

+ NOTE: Additional NGINX related tasks will be handled later in Stage 4

Stage 2.3 – MySQL Setup **(note)

(From the EC2 terminal, then into the MySQL environment, and finally testing connectivity in VSC)

1.​ Install MySQL via APT and enable the MySQL service on system boot

a.​ ~$ sudo apt install mysql-server
b.​ ~$ sudo systemctl enable mysql

2.​ Secure the MySQL installation - Removes default accounts & data

a.​ ~$ sudo mysql_secure_installation
i.​ Choose ‘yes’ and confirm everything by following the prompts
ii.​ Select #2 for strong password requirements

b.​ ~$ sudo mysql `

c.​ Assign a password for your MySQL root user account

mysql> ALTER USER 'root'@'localhost' IDENTIFIED WITH mysql_native_password BY '<password>';

mysql> FLUSH PRIVILEGES;

d.​ Return to the EC2 [ubuntu] server terminal

mysql> exit

[recommended] Set up a password manager or locked file to track all dev environment credentials
eg. via Bitwarden - https://vault.bitwarden.com/#/vault

3.​ Restrict size potential of MySQL && Reduce RAM usage by disabling performance trackers **NEW**

a.​ Edit the my.cnf file in your server’s /etc/mysql directory to further customize MySQL

~$ sudo nano /etc/mysql/my.cnf

b.​ Copy/Paste in the following highlighted lines at the end of that file:

[mysqld]

performance_schema = 0

max_connections = 12

c.​ CTRL+S, then CTRL+X (to Save then Exit from the nano text-editor)

​ ​

4.​ Permit anyone to talk to the MySQL server

a.​ ~$ sudo nano /etc/mysql/mysql.conf.d/mysqld.cnf
b.​ Locate the [mysqld] section and modify as: ` bind-address = 0.0.0.0 `
c.​ CTRL+S, then CTRL+X (to Save then Exit from the nano text-editor)

​ ​ ​

5.​ Restart the mysql service to load in the config changes (note: no output will be returned on restarts)

a.​ ~$ sudo systemctl restart mysql

6.​ Log in to mysql again

~$ sudo mysql -p [Enter], then type in your root user’s password

7.​ Add your remote mysql db user ​

(only one account required for the sake of this lab - but each user requires sending all the commands listed below)

https://vault.bitwarden.com/#/vault

​ For one remote user with access to everything:
a.​ mysql> CREATE USER '<remote.sql.usr>'@'localhost' IDENTIFIED BY '<new-password>';
b.​ mysql> CREATE USER '<remote.sql.usr>'@'%' IDENTIFIED BY '<new-password>';
c.​ mysql> GRANT ALL PRIVILEGES ON *.* to '<remote.sql.usr>'@'localhost';
d.​ mysql> GRANT ALL PRIVILEGES ON *.* to '<remote.sql.usr>'@'%';
e.​ mysql> FLUSH PRIVILEGES;
f.​ mysql> EXIT

8.​ Test your MySQL connectivity with the EC2_IP_ADDRESS and the remote mysql user just created

a.​ Use the VSC MySQL extension (pancakes) and create a new connection, save, and connect to test
i.​ Select MySQL for Server Type
ii.​ Input your EC2 server instance’s public IP Address for Host
iii.​ Input the remote sql user created earlier for the Username field
iv.​ Input the corresponding user’s password
v.​ Note: Setting a Database name here is not required if the specified remote sql user was not limited to a

specific database​

​

b.​ Create the databases that your apps can use (eg. inspire, tower, etc)
i.​ Click the + button on the new connection to create a DB

Add a name and click on the “Execute” button to send the command
CREATE DATABASE <db_name> DEFAULT CHARACTER SET = 'utf8mb4';

​

c.​ Assign the desired database association in your VSCode
i.​ Open the dbSetup.sql file
ii.​ Click on “🔒 Active Connection” at the top of the file

iii.​ Navigate to your desired database by clicking through the new Connection and finding the DB name

that was just created

 →

1.​ Optionally try configuring some mysql parameters (just for these lab conditions)

 SET GLOBAL innodb_undo_log_truncate=ON;
 SET GLOBAL innodb_max_undo_log_size=104857600;
 SET GLOBAL binlog_expire_logs_seconds=604800;

Stage 3 – DOMAIN NAME, DNS RECORDS & SSL CERT
(Obtain your own internet domain ($), point the address, create SSL cert, permit auth0 access)

Stage 3.1 - DNS & SSL setup
(From a web browser, then back in to EC2)

1.​ Sign up to a domain registrar and buy a domain ($) of your choice
Cloudflare is known as a decent registrar to work through and provides free SSL certs

2.​ If not already opened, click in to your purchased domain

https://dash.cloudflare.com/sign-up?pt=f

​

3.​ Navigate to your DNS > Records page of the “Website” / Domain on Cloudflare

4.​ Add multiple A records for your sites using the Public IP of your EC2 server

Type​ Name​ ​ IPv4 address
 A​ inspire​ ​ 34.123.248.32
 A​ tower​ ​ 34.123.248.32
 A​ capstone​ 34.123.248.32
etc..

a.​ Click on “Add record” to expand the form​

b.​ Enter the Name & Public IP Address of your EC2 server (remaining settings on defaults)​
And hit “Save”

​

5.​ Add a couple CNAME records for your landing page​
 (Using GitHub as the host - ie. <github_username>.github.io)​

Type​ ​ Name​ ​ Target address example
CNAME​ @​ ​ koreangeekman.github.io
CNAME​ www​ ​ koreangeekman.github.io​

a.​ Click to “Add Record”,
b.​ Select “CNAME” under Type,
c.​ “@” to designate the root under Name,
d.​ Input your GitHub landing page repository name under Target

​

Final resulting list of A & CNAME records will look something like the below image ​
​ (The number of A records will vary depending on the number of apps to be deployed)

6.​ Enable end-to-end encryption for your domain (between the DNS servers and EC2 Server)

a.​ Navigate to SSL/TLS > Overview page​

​

b.​ Change the SSL/TLS encryption mode to Full (strict) ​

7.​ Let Cloudflare auto-redirect all HTTP requests to HTTPS at the DNS servers

a.​ Navigate to SSL/TLS > Edge Certificates page​

​

b.​ Enable Always Use HTTPS​

8.​ Create an Origin SSL certificate for HTTPS functionality

a.​ Navigate to SSL/TLS > Origin Server page​

​

b.​ Click on ‘Create Certificate’

i.​ Default values are acceptable, click ‘Create’

c.​ Note the Origin Certificate and Private Key fields - we will be copying these two fields in the next step

(Keep this page open until everything in this stage is complete)​

9.​ Jump back into your EC2 server instance and add your SSL cert as 2 files

a.​ Navigate to the /etc/ssl folder of your EC2 instance
~$ cd /etc/ssl

b.​ Create two new files, cert.pem & key.pem, using the nano text editor

~$ sudo nano cert.pem
Copy/paste in ALL contents of the Origin Certificate textarea, (no leading/trailing spaces or lines)
CTRL+S (to save), then CTRL+X (to exit)

~$ sudo nano key.pem
Copy/paste in ALL contents of the Private Key textarea, (no leading/trailing spaces or lines)
CTRL+S (to save), then CTRL+X (to exit)

​ ​

Stage 3.2 - Permit your domain in Auth0
(From a web browser)

1.​ Open up the Auth0 dashboard https://manage.auth0.com/dashboard

2.​ Navigate to Applications/Applications > open your “Single Page Application” entry

3.​ Under Settings, add your domain to each of the four Allowed text-blocks as a new entry
a.​ Using the wildcard form with https - eg. https://*.koreangeekman.dev

Add to:
○​ Allowed Callback URLs
○​ Allowed Logout URLs
○​ Allowed Web Origins
○​ Allowed Origins (CORS)

eg. textblock contents as:​

https://manage.auth0.com/dashboard

http://localhost:8080, http://localhost:8081, http://localhost:3000, http://localhost:3001,

http://localhost:7045, https://localhost:7045, https://*.koreangeekman.dev

 x4 locations

4.​ Be sure to [Save Changes] at the bottom

​

Stage 4 – ADD FILES & CUSTOMIZE CONFIG
(Back to your local machine terminal & VSC)

1.​ Navigate to your app’s root folder via terminal

2.​ Run ` bcw add ` and select ` workflow_docker_ec2 `

​

a.​ Expected path/file creation: (2 script files for `Github Actions` automation)

/.github/workflows/build.yml

/.github/workflows/deploy.yml

In VSCode (outside workspace): ​

In VSCode (inside workspace):

3.​ [conditional - only IF you have more than one Node or .NET project] ​
Configure a custom port for routing

DOCKER-COMPOSE: ` /server/docker-compose.yml `

i.​ [conditional] Customize the port in docker-compose.yml when necessary:

1.​ Node.js projects default to port 3000
a.​ Update the docker port translation for additional Node.js projects

` docker-compose.yml : line 8 `= ` - “3001:3000” `

2.​ .NET projects default to port 7045
a.​ Update the docker port translation for additional .NET projects

` docker-compose.yml : line 8 `= ` - “7046:80” `

ii.​ [optional] Keep a record of all ports to apps being created for tracking - for example:

Port​ App​ ​ DNS entry​ ​ ​ ​
DNS [Type (A | CNAME): Target]

3000​ Tower​ ​ tower.koreangeekman.dev​ ​
A: 34.123.248.32

3001​ Capstone​ capstone.koreangeekman.dev​A: 34.123.248.32
7045​ Keepr​ ​ keepr.koreangeekman.dev​ ​
A: 34.123.248.32

7046​ All Spice​ allspice.koreangeekman.dev​A: 34.123.248.32
----​ Landing Page @ [aka] koreangeekman.dev​CNAME: koreangeekman.github.io

4.​ [optional but recommended - for older templates] Customize the Dockerfile images

DOCKERFILE: ​ ` /server/Dockerfile `

i.​ (DOTNET APP) On line 36: **NEW**

[recommended] For a smaller docker image build, change

Line 2 : ` node:20 ` into ` --platform=linux/amd64 node:20-slim `

Line 19: `/sdk:8.0 ` into ` /sdk:8.0-alpine-amd64 `

Line 36: `/sdk:8.0 ` into ` /aspnet:8.0-alpine `

ii.​ (NODE/EXPRESS APP) On line 2 & 20: **NEW**

[recommended] For a smaller docker image build, change

Line 2 : ` node:20 ` into ` --platform=linux/amd64 node:20-slim `

Line 20: ` node:20 ` into ` node:20-slim `

Stage 5 – FORWARD DOMAIN ROUTES VIA NGINX
(From the EC2 server terminal)

1.​ Edit your default nginx load file to enable the custom routes

a.​ ` sudo nano /etc/nginx/sites-available/default `

b.​ Either comment out or delete everything currently active and paste in the desired code

SUB-DOMAIN CONFIG
(Use the entire block-pair for every subdomain/app you want to route)

server {

 listen 80;

 listen [::]:80;

 server_name <App.TargetDomainAddress.tld>;

 return 301 https://$server_name$request_uri;

}

server {

 listen 443 ssl http2;

 listen [::]:443 ssl http2;

 ssl_certificate /etc/ssl/cert.pem;

 ssl_certificate_key /etc/ssl/key.pem;

 server_name <App.TargetDomainAddress.tld>;

 location / {

 proxy_pass http://127.0.0.1:<port>;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection "upgrade";

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_read_timeout 86400;

 }

}

c.​ CTRL+S, CTRL+X (to save & exit)

d.​ Test your config changes for obvious errors (fix any issues Before restarting the nginx service)

` sudo nginx -t `

e.​ Restart the NGINX service to load in the new default config
` sudo systemctl restart nginx `

NOTE: [optional] Add a default redirector for all unspecified cases

See APPENDIX A - NGINX Routing logic & Default Redirection Config for more details

Stage 6 – DOCKER & DOCKERHUB REPOS
(From the Docker website, then into VSC)

1.​ Sign up for a Docker account - https://hub.docker.com/signup
​ *** A docker user/password pair will be required for automation ***

[Option 1] - Manually enter an email/password
[Option 2] - Sign up with Github/Gmail, then add a password to the account

2.​ Create a Dockerhub repo for your app and remember this *** repo-name ***

a.​ [optional] match exactly the repo-name to the app-name.. IF possible on these conditions:

Your repository name must contain a combination of alphanumeric characters
and may contain the special characters . , _ , or - . Letters must be lowercase.

3.​ Open your ` docker-compose.yml ` file from Stage 4, Step 3.a.
a.​ Input your Dockerhub username in place of `your-dockerhub-username` on line 4

b.​ [IF unable to match the dockerhub repo-name to the app-name]

Adjust the ` image ` and ` env ` entries below to match the Dockerhub repository

eg. if Dockerhub repo is ` tower_app `, then

image: koreangeekman/tower_app:latest
env_file:
​ - tower_app-env

https://hub.docker.com/signup

Stage 7 – ADD REPO SECRETS TO GITHUB REPO
(From the Github website)

1.​ Navigate to your app’s secrets store
Github > AppRepo > Settings > Security > Secrets and variables > Actions

eg. https://github.com/koreangeekman/Tower/settings/secrets/actions

2.​ Referencing ` /.github/workflows/deploy.yml ` for variable names, add your repository secrets

NOTE 1:

Each secret will be a single line value, with exception to the EC2_PEM_KEY & ENV_FILE
** Be sure to remove any leading and trailing spaces/blank lines **

NOTE 2:
​ Secrets will not be visible after saving - editing a secret will always show blank
contents

EC2_IP_ADDRESS: <EC2 Public IP>

EC2_USERNAME: ubuntu

EC2_PEM_KEY: <full contents from when generated>

REPO_NAME: <docker-repo-name> (eg. tower_app)

DOCKER_USERNAME: <self-explanatory>

DOCKER_PASSWORD: <self-explanatory>

ENV_FILE: <depends on project type - see below *>

​ * For (NODE/EXPRESS APPs): copy all contents of ` /server/.env ` file into ENV_FILE
 - Change your ` NODE_ENV=dev ` from ‘dev’ to ‘production’ when submitting it as a secret

​ * For (.NET/C# APPs): copy, and reformat, env variable contents of the

​ ` /server/appsettings.Development.json ` file into ENV_FILE – template below:

CONNECTION_STRING=server=<EC2_IP_ADDRESS>;database=<DBName>;port=3306;user id=<username>;password=<password>;

AUTH0_DOMAIN=<auth0-domain>

AUTH0_AUDIENCE=<auth0-audience>

Stage 8 – THE FINAL PUSH
SAVE FILES & PUSH/SYNC, CREATE ‘production’ BRANCH ON GITHUB, WAIT & HOPE

1.​ Save & Commit all new files and changes, push/sync up to github

2.​ Create branch from ‘main’ called ‘production’ on your github repo

3.​ 🙏 Pray 😂

4.​ Watch the process in Github Actions for errors
For potential solutions: Refer to the troubleshooting guide in APPENDIX T

or reach out to me (DJ)

Stage 9001 – ONGOING MAINTENANCE **NEW**
Every server requires some kind of monitoring or maintenance

Whether automated or manual, something needs to keep watch over a new system and setup in case of bugs or
unexpected conditions.

Here are a few things to keep in mind and check on occasion:

●​ Disk space utilization
○​ Run the command ` df -h ` to check on total drive space usage

■​ If running low.. See APPENDIX T - EC2 disk space full (if really close to full, cleanup or
expand BEFORE it fills or risk corrupting MySQL)

○​ Run ` sudo du -cha --max-depth=2 /var/ | grep -E "^[0-9\.]*[MG]" ` for a summary
of usage by file & folder in the /var directory

○​ Run ` sudo docker images ` to check on old or orphaned images on your EC2 instance
■​ Run ` sudo docker image prune ` to clean up any unused old versions of images
■​ Run ` sudo docker image remove <imageID> ` to remove an unused & orphaned

image from local storage
●​ Images used in any containers listed from ` sudo docker ps -a ` (active or

not) CANNOT be removed (docker prevents it)
●​ You must remove the container it is locked in association with in order to remove

an image from your system
●​ This can be set up to run automatically with crontab on a daily basis at one

minute past midnight (12:01am) **NEW**
○​ Edit your crontab file: ` crontab -e ` and select a text editor (default #1

of nano is sufficient)
○​ Input this line at the end: ` 1 7 * * * sudo docker image prune -f `

○​ Run ` sudo snap list —all ` to check on old or orphaned images on your EC2 instance

■​ Run ` sudo snap remove <snap-name> --revision=<revision#> ` to remove a
disabled image from local storage

●​ A default of 3 revisions are kept for rollbacks - you can limit this down to 2 at a minimum
with the command: **NEW**
 ` sudo snap set system refresh.retain=2 `

●​ Memory (RAM) utilization

○​ Run the command ` top ` and use the keyboard shortcut: ` [SHIFT] + M ` to sort by memory
utilization

■​ ` [SPACE] or [ENTER] ` to updates the table on demand (default updates every 3
seconds)

●​ To change the auto-update speed, press ` [s] ` and enter an integer or float
value ie. ` 1 ` || ` 1.0 ` for 1 second, then hit ` [ENTER] `

○​ SIDE NOTE: Update speeds faster than once per second and your free
trial instance may be too slow to keep up

■​ ` [CTRL] + C ` to exit the process table

○​ Run the command ` systemctl status <process-name> ` to see the memory usage on a
single process

■​ ie. ` systemctl status mysql `
●​ If your MySQL is using more than 300MB of RAM when idle, be sure to disable

the performance monitoring schema
(Process detailed in Stage 2.2 - Step.3)

●​ You may also want to flush your MySQL memory from any past connections
mysql> ` FLUSH HOSTS; ` Deprecated as of MySQL 8.0.23 - soon to be removed..
Replacement command is ` TRUNCATE TABLE
performance_schema.host_cache; `
But if you have disabled the performance_schema as instructed, it’s not a
necessary flush

●​ This can be set up to run automatically with crontab on a daily basis at midnight
(server time = UTC) (5pm MST) **NEW**

○​ Edit your crontab file: ` sudo crontab -e ` and select a text editor
(default option1 of nano is sufficient)

○​ Input this line at the end: ` 0 0 * * * mysql --login-path=dev -e
'flush hosts;' `

●​ CPU utilization

in our case, we’re extremely limited on the first year Free Tier but our CPU resource requirements are
fortunately quite minimal

⬇️​ ​ ⬇️​ ​ ⬇️

NOTES & TROUBLESHOOTING GUIDE

APPENDIX A - ADDITIONAL NOTES

CODEWORKS TEMPLATES & BCW
How does the ` bcw create ` or ` bcw add ` work?

●​ When running the create or add features, the program pulls the latest revision of the templates from their
respective github repositories.

○​ https://github.com/codeworks-templates

●​ Each of the templates - front end, full-stack, etc - are built from individual component templates and then
assembled/organized into their respective folders, where their packages are populated after ` npm i ` is run in
each directory with package.json dependency lists (server & client folders)

Project Template Front-End Repo Back-End Repo

mvc mvc n/a

mvc-auth mvc-auth n/a

node-server-auth0 n/a node-server-auth0

express-mvc mvc-auth node-server-auth0

express-vue vue-starter node-server-auth0

express-react react-starter node-server-auth0

vue-starter vue-starter n/a

react-starter react-starter n/a

dotnet-vue vue-starter dotnet-webapi

dotnet-react react-starter dotnet-webapi

` bcw add ` workflow_docker_ec2

Alternate BUILD Config for Github Actions
-​ For MULTI-ARCHITECTURE docker image builds, use the below config as is
-​ For a specific one, specify just the one desired in the “platforms” field below

name: Docker Build

on:

 push:

https://github.com/codeworks-templates
https://github.com/codeworks-templates/mvc
https://github.com/codeworks-templates/mvc-auth
https://github.com/codeworks-templates/node-server-auth0
https://github.com/codeworks-templates/mvc-auth
https://github.com/codeworks-templates/node-server-auth0
https://github.com/codeworks-templates/vue-starter
https://github.com/codeworks-templates/node-server-auth0
https://github.com/codeworks-templates/react-starter
https://github.com/codeworks-templates/node-server-auth0
https://github.com/codeworks-templates/vue-starter
https://github.com/codeworks-templates/react-starter
https://github.com/codeworks-templates/vue-starter
https://github.com/codeworks-templates/dotnet-webapi
https://github.com/codeworks-templates/react-starter
https://github.com/codeworks-templates/dotnet-webapi
https://github.com/codeworks-templates/workflow_docker_ec2

 branches:

 - production

jobs:

 build-push-deploy:

 runs-on: ubuntu-latest

 steps:

 - name: Checkout Repository 👀

 uses: actions/checkout@v4

 - name: Set up QEMU

 uses: docker/setup-qemu-action@v3

 - name: Set up Docker Buildx

 uses: docker/setup-buildx-action@v3

 - name: Login to Docker Hub 🔐

 uses: docker/login-action@v3

 with:

 username: ${{ secrets.DOCKER_USERNAME }}

 password: ${{ secrets.DOCKER_PASSWORD }}

 - name: Build and Push Docker Image 🐋

 uses: docker/build-push-action@v5

 with:

 platforms: linux/amd64,linux/arm64

 tags: ${{ secrets.DOCKER_USERNAME }}/${{ secrets.REPO_NAME }}:latest

 file: server/Dockerfile

 context: .

 push: true

GITHUB PRs (Pull Requests) Disabled?
●​ [WHEN creating a pull request && WHEN only one commit since the last ‘production’ branch pull] The pull

request gets auto-populated with the commit’s information so it’s available to click through.

●​ [WHEN creating a pull request && WHEN multiple commits since the last ‘production’ branch pull] The button
to create the pull request will be ‘disabled’ because it needs you to provide a summary of all commits. Add
something to the title and the button will re-enable.

ENV_FILE & docker-compose.yml - Verification
(Available after a ‘Deploy to EC2’ attempt that successfully logged in to your EC2 server)

●​ [IF uncertain of the ENV_FILE || docker-compose.yml contents used in a deployment]

(using the Dockerhub repo name)

○​ ‘cat’ out OR open the file via nano - they are created in your EC2 user’s (ubuntu) home path

` ls -l ~ `
` cat ~/<repoName>-env `​
` cat ~/<repoName>-compose `

○​ You can edit the reponame-compose and reponame-env files from the home directory then re-run the

docker instance build to test immediate changes without re-deploying from github actions

` sudo docker-compose -p <repoName> -f <repoName>-compose up -d `

Disable auto-loading Swagger on .NET projects
Tired of getting flash-banged by the bright white Swagger page?

-​ To disable the auto-browser launch for swagger, you can comment out this section of code in the folder>file: `.
vscode/launch.json ` (lines 18-21)

Useful MySQL Commands
-​ MySQL run-state is managed as a service on the server - use systemctl to control

` systemctl status mysql `
` sudo systemctl restart mysql `
` sudo systemctl stop mysql `

-​ You can show the databases created on your MySQL environment with the following query:

mysql> SHOW DATABASES;

-​ You can show the users configured on your MySQL environment with the following query:

mysql> SELECT user,host FROM mysql.user;

-​ You can show the privileges granted on your MySQL environment with the following query:

mysql> SHOW GRANTS for ’<username>’;

mysql> SHOW GRANTS for ’<username>’@’localhost’;

-​ You can show the database sizes (file-size) on your MySQL environment with the following query:

mysql> SELECT table_schema AS "Database",

 ROUND(SUM(data_length + index_length) / 1024 / 1024, 2) AS "Size (MB)"

 FROM information_schema.TABLES

 GROUP BY table_schema;

-​ You can convert from a TABLE view to a vertical column/‘stacked’ view of the data ​
by adding ` \G ` at the end in place of the ending semi-colon ` ; `

MySQL defaults

mysql> select user,host from mysql.user;

+------------------+-----------+

| user | host |

+------------------+-----------+

| debian-sys-maint | localhost |

| mysql.infoschema | localhost |

| mysql.session | localhost |

| mysql.sys | localhost |

| root | localhost |

+------------------+-----------+

5 rows in set (0.01 sec)

mysql> show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| performance_schema |

| sys |

+--------------------+

4 rows in set (0.01 sec)

mysql> SELECT table_schema AS "Database",

 ROUND(SUM(data_length + index_length) / 1024 / 1024, 2) AS "Size (MB)"

 FROM information_schema.TABLES

 GROUP BY table_schema;

+--------------------+-----------+

| Database | Size (MB) |

+--------------------+-----------+

| information_schema | 0.00 |

| mysql | 2.63 |

| performance_schema | 0.00 |

| sys | 0.02 |

+--------------------+-----------+

4 rows in set (0.16 sec)

Useful NGINX Commands
-​ NGINX run-state is managed as a service on the server - use systemctl to control

` systemctl status nginx `
` sudo systemctl restart nginx `
` sudo systemctl stop nginx `

-​ Note: Useful commands for troubleshooting or additional information (not required for startup)

` sudo nginx -t `
` sudo nginx -T `
` sudo systemctl restart nginx `
` systemctl status nginx `

Useful DOCKER Commands
-​ Note: Useful commands for troubleshooting or additional information (not required for startup)

` sudo docker images `
` sudo docker ps ` == ` sudo docker container ls `
` sudo docker ps -a `
` sudo docker-compose -p <repoName> -f ~/<repoName>-compose up -d `
` sudo docker container prune `
` sudo docker image prune `
` sudo docker image remove <imageID> `
` sudo docker image remove $(sudo docker images -q)`
` sudo docker container stop $(sudo docker ps -q) `

Alternative Port Reassignment Option for Node projects
Change the hard-coded port to run additional node projects at the same time locally

-​ Search for all instances of port 3000 and update to a new port (eg. to port 3001)

` docker-compose.yml : line 8 ` = ` - “3001:3001” `
` env.js : line 2 ` = ` localhost:3001 `
(server side) ` main.js : line 10 ` = ` || 3001 `

NGINX Routing logic & Default Redirection Config

●​ Add the below highlighted config, customized to your domain, to the END of your NGINX config file to redirect
all queries to undefined paths

NOTE: May break your locally run copy’s access to SQL.. but still works on deployment
Need to do some testing

server {

 listen 443 default_server;

 listen [::]:443 default_server;

 server_name koreangeekman.dev koreangeekman.net;

 ssl_certificate /etc/ssl/cert.pem;

 ssl_certificate_key /etc/ssl/key.pem;

 return 301 https://koreangeekman.dev;

}

server {

 listen 80 default_server;

 listen [::]:80 default_server;

 server_name _;

 return 301 https://koreangeekman.info;

}

●​ Troubleshooting Note: Docker hosted images are all running plain HTTP and are not handling anything

HTTPS, so the translation needs to be to a plain text port & protocol (HTTP) on the internal side of the nginx
reverse proxy

APPENDIX T - TROUBLESHOOTING

MySQL DB Unresponsive / No data from DB
1.​ Determine WHERE it is unresponsive / inaccessible

a.​ From the local dev environment (via VSCode) to your EC2 server
i.​ [IF working on the live deployment but not locally on dev]

1.​ Check your NGINX and remove the default_server tag
2.​ Save and restart the NGINX service, then give it a few minutes to clear

ii.​ Jump to [Step 2]

b.​ From a deployed live site
i.​ [IF from a fresh deployment]

1.​ Double-check the connection-string in the env file used in deployment
` cat ~/<app-name>-env `

[IF incorrect values] Update your Github Secrets and redeploy

ii.​ [IF from an already open tab (potentially still running off cached page)]
Assuming the website itself is still fully responsive.. (verify with a full page refresh)

1.​ Check another app that also uses the SQL DB

iii.​ [IF the page refresh fails to load the website itself]
Your EC2 server itself probably crashed (since it hosts both the SQL DB & Website)

1.​ Jump to [Step 3]

c.​ [IF you recently had to rebuild your server]
Double-check that you’ve added all your SQL Users && DBs && Tables back in

(Also, the network section of your browser’s Dev Tools can often reveal missing tables,etc)

2.​ Determine HOW it is unresponsive / inaccessible

a.​ Setup your connection via the VSCode MySQL extension [SQL Server Client(mssql)]

b.​ Check from the reaction from your connection attempt

i.​ Timeout

ii.​ Access denied

○​ [IF Timeout]
■​ Assuming the service was accessible before: Jump to [Step 3]

○​ [IF Access denied]

■​ Verify your MySQL credentials
●​ Ensure you can access from the extension as a 3rd party test

○​ Once that is functional, update related connection strings
●​ If additional DB access troubleshooting is required:

○​ Refer to MySQL Remote User Access Troubleshooting section

■​ Where to update:
●​ [IF Live / Deployed project]

○​ ENV_FILE contents in Github Secrets
●​ [IF Offline/Dev/Local project]

○​ [node] .env - connection string
○​ [dotnet] appsettings.Development.json - connection string

3.​ Check your EC2 instance status of your MySQL server on your AWS Console

(https://console.aws.amazon.com)
○​ EC2 > Instances > [open into the instance details]

○​ Find the ` Status and alarms ` tab

○​ [IF both status checks are reported as ‘Running’]

■​ Double-check your security
■​ Skip to the next step: [Step 4]

○​ [IF either status check is not in a green state]

■​ Attempt a reboot on your EC2 instance

https://console.aws.amazon.com

■​ Click on ` Instance state ` >> ` Reboot instance `
NOTE: This may take a few minutes to succeed, if it will

4.​ Attempt to log in to your EC2 server

` ssh -i <ec2server.pem> ubuntu@EC2_IP_ADDRESS `

○​ [IF the login attempt timed out]
■​ Attempt a reboot on your EC2 instance
■​ Click on ` Instance state ` >> ` Reboot instance `

NOTE: This may take a few minutes to succeed, if it will
IF after ~5-10 min the server is still unresponsive, jump to Stopping the instance

5.​ [IF able to login to the EC2 server]

a.​ Check on the MySQL service status
` systemctl status mysql ` (should also have logs at the end of the reply)

■​ [IF flopping between active and inactive with uptime < 30sec]
●​ Stop the mysql service

` sudo systemctl stop mysql `
●​ Something is preventing it from successfully starting/staying live so look to the logs and

troubleshoot *insert magic fix - see an instructor if unable to determine cause*

■​ [IF NOT active (running)] Continue to 5.b
■​ [IF active (running)] Jump to 5.c

b.​ Re-enable the mysql service

■​ From the EC2 terminal
` sudo systemctl start mysql `

■​ Check for any logs that can point to errors/issues preventing startup
■​ Re-check the mysql service status

c.​ Check on DB accessibility locally from the server - login to mysql

■​ Log in to MySQL
` sudo mysql -p `

■​ Issue a command to see if mysql is responsive beyond just the shell

` SELECT user,host FROM mysql.user; `

■​ Issue some kind of query to the targeted DB
` SELECT id,name,email FROM keepr.accounts; ` (as the local root account)

6.​ [IF (unfortunately) all else fails] Rebuild your EC2 instance

MySQL Remote User Access Troubleshooting
●​ Edit your connection via the VSCode MySQL extension [SQL Server Client(mssql)]

○​ Note which user [and database] is configured
○​ Double-check connection ability from the extension

■​ [IF Timeout]
●​ Double-check your server IP matches
●​ Make sure the MySQL service is still active
●​ Double-check MySQL daemon’s bind-address set to allow all (dev env only)
●​ Double-check your EC2 instance Security Group allows MySQL @ 3306

■​ [IF Access Denied]

●​ Re-verify your remote SQL User/Password combo
●​ Reset the passwords on the SQL user account entries (x2)
●​ Double-check granted privileges

■​ [ELSE]

●​ Set up a new user in MySQL from the server terminal and test with that
○​ (5x commands)

●​ See APPENDIX A - Useful MySQL Commands for supporting informational queries

EC2 Instance Crashed & Unresponsive
●​ Possible causes:

○​ OOM (Out Of Memory)
■​ SQL defaults use around 400 MB, disable performance trackers to reduce
■​ SQL can still use more RAM when multiple users access at the same time

○​ Out of Storage/Drive space
■​ Need to monitor space usage and set a minimum - 10GB isn’t enough b/c of SQL
■​ Enable undo file truncations & reduce log period
■​ Update Dockerfiles to use smaller deployment images

●​ [IF you had to stop / force stop your instance && IF you don’t have an Elastic IP ($)]

○​ Your server will have a new public IP

●​ There are up to 3 places we need to update with the new IP:

-​ Local Machine’s SSH connection string to access the EC2 server
` ssh -i <key.pem> ubuntu@<newIPaddress> `

-​ Github Secrets:

-​ EC2_IP_ADDRESS

-​ ENV_FILE (in the connection string of your C#/MySQL projects)

-​ To avoid re-entering a new public IP every time, you can use the “Elastic IP” service ($)
** this will no longer be free starting Feb.1, 2024

- $0.005 /hr charges will be applied [~$44/year or ~$3.65/month per IP]

EC2 Reboot || Stop/Start - Web apps unreachable
●​ Unless the ` restart: unless-stopped ` condition was enabled on build, you will need to either manually

start up your app instances or re-run the “Deploy to EC2” action on Github.

●​ To enable auto-instance restarts on server boots:

○​ [IF your docker instances are already up and running]
Use this command to update the run state and include an auto-restart of the instance on every
active instance as a pre-emptive config change

` sudo docker update --restart unless-stopped $(sudo docker ps -q) `

○​ [IF you had to reboot or stop/start the instance]
Add the condition to the compose file then start it back up.
(Also add it to your docker-compose.yml in your project files so it’s there for future builds)

` sudo nano ~/<repoName>-compose `

​ Add ` restart: unless-stopped ` to the end of the file, save and exit
` sudo docker-compose -p <repoName> -f <repoName>-compose up -d `

EC2 disk space full
MySQL or your Docker images may fill up your drive faster than thought!
This is the process to extend your storage space on a linux EC2 instance (a two-part process)

[IF completely at 0 space or not enough to process the below steps for expansion]
●​ Start by checking on your docker images list with sudo docker images

[IF more than one copy per app] Run sudo docker image prune
​ This is the quickest way to free up space if this is one of the culprits
​ *** Remember to set up recurring scheduled task to auto-prune at least weekly if not daily

(depending on frequency of changes)
If this is the only issue, you do not necessarily need to expand your storage array

(in other words: you can stop here)​

●​ Second option is stopping one of your Docker container instances and removing the container & associated
image

​ ​ (We can easily rebuild the docker instance and is the safest method to quickly free space)

Open your AWS console in a web browser and navigate to the EC2 services

●​ Open the EC2 instance details
●​ Click on the Storage tab
●​ Click into the VolumeID
●​ Click into the VolumeID details

○​ Modify (in the top right)
○​ Enter the new Size (in GB)
○​ Click Modify then Modify again (pop-up modal has links to this guide for linux)
○​ Log in to your EC2 instance to finish the steps like below

(if anything doesn’t match exactly, refer to the above linked guide for your case)

HOW you proceed depends on the TYPE that matches your system..
(from the EC2 terminal)

ubuntu@ip-172-31-21-230:~$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS

[...]

nvme0n1 259:0 0 8G 0 disk

├─nvme0n1p1 259:1 0 7.9G 0 part /
└─nvme0n1p15 259:2 0 99M 0 part /boot/efi

---=-–-

ubuntu@ip-172-31-26-93:~$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS

[...]

xvda 202:0 0 10G 0 disk

├─xvda1 202:1 0 7.9G 0 part /
├─xvda14 202:14 0 4M 0 part
└─xvda15 202:15 0 106M 0 part /boot/efi

THEN:

ubuntu@ip-172-31-21-230:~$ sudo growpart /dev/nvme0n1 1

[...]

---OR-–-

ubuntu@ip-172-31-26-93:~$ sudo growpart /dev/xvda 1
CHANGED: partition=1 start=227328 old: size=16549855 end=16777183 new: size=20744159 end=20971487

THEN: (to verify)

ubuntu@ip-172-31-21-230:~$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS

[...]

nvme0n1 259:0 0 20G 0 disk

├─nvme0n1p1 259:1 0 19.9G 0 part /
[...]

---=-–-

ubuntu@ip-172-31-26-93:~$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS

[...]

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html

xvda 202:0 0 10G 0 disk

├─xvda1 202:1 0 9.9G 0 part /
[...]

THEN: (check on filesystem type)

ubuntu@ip-172-31-21-230:~$ df -hT

Filesystem Type Size Used Avail Use% Mounted on

/dev/root ext4 8G 4.2G 3.4G 53% /

[...]

---=-–-

ubuntu@ip-172-31-26-93:~$ df -hT

Filesystem Type Size Used Avail Use% Mounted on

/dev/root ext4 7.6G 7.5G 66M 100% /

ubuntu@ip-172-31-21-230:~$ sudo resize2fs /dev/nvme0n1p1

[...]

---OR-–-

ubuntu@ip-172-31-26-93:~$ sudo resize2fs /dev/xvda1

[...]

ubuntu@ip-172-31-21-230:~$ df -h

Filesystem Size Used Avail Use% Mounted on

/dev/root 20G 4.2G 16G 22% /

[...]

---=-–-

ubuntu@ip-172-31-26-93:~$ df -h

Filesystem Size Used Avail Use% Mounted on

/dev/root 9.6G 7.6G 2.0G 80% /

.NET app build issue - Server/API side (solution files)
●​ [IF your .NET project’s server side isn’t starting up && logs show ‘ server.sln ’ file, either missing or multiple]

○​ Keep just one .sln file, if any, only in the root directory

(your /server folder does not need a .sln file - delete it)

○​ Navigate to your app’s server folder via cmd line, run ` code . ` to open just your server side in VSC

○​ CTRL+P, then type ` >.net ` and click on ` .NET: Generate Assets for Build and Debug `

■​ Note: If you look into the file changes under [Source Control], it will have updated your
` /server/.vscode/tasks.json ` file to remove the ` server.sln ` entries (x3)
and insert the <appname>.csproj in its place

Client side build issue on Docker image build
Local `npm run build` may seem to ‘work’ and local debug runs, but Github actions run on more case sensitive
environments

ie:

> [linux/amd64 client-builder 6/6] RUN npm run build:

1.009 vite v5.0.2 building for production...

1.142 transforming...

1.709 ✓ 28 modules transformed.

1.710 Could not resolve "./components/NewVaultModal.vue" from "src/App.vue"

1.710 file: /app/client/src/App.vue

1.714 error during build:

1.714 RollupError: Could not resolve "./components/NewVaultModal.vue" from "src/App.vue"

1.714 at error (file:///app/client/node_modules/rollup/dist/es/shared/parseAst.js:337:30)

1.714 at ModuleLoader.handleInvalidResolvedId

(file:///app/client/node_modules/rollup/dist/es/shared/node-entry.js:17935:24)

1.714 at file:///app/client/node_modules/rollup/dist/es/shared/node-entry.js:17895:26

Dockerfile:17

15 |

16 | # Build the client-side code

17 | >>> RUN npm run build

18 |

Check the file-name on the imports match the file name exactly (including case sensitivity)
​ This MUST be compared to what your filesystem sees, not what VSCode tells you

CAUSE: ‘Renaming’ files from within VSCode by only changing the case on the file names does not update the files

themselves with the new case given.​
​ ie. when you rename `newVaultModal.vue` to `NewVaultModal.vue`

FIX:​ Match to what your file system sees (Windows Explorer, Finder, Console) ​
​ ie. rename all your imported code entries to match the casing of
`newVaultModal.vue`

​
-OR- Rename the files from within VSCode by adding/removing characters while changing case or
renaming it completely to something new and replacing all used entries to the new name ​
​ ie. rename `newVaultModal.vue` to `NewVault.vue` and update all code matches

​
-OR- Rename the file to something else completely like `boop.vue` then back to the name and case you
want it to be `NewVaultModal`​
​ ie. rename `newVaultModal.vue` to `boop.vue` then to `NewVaultModal.vue`

Full-Stack app just deployed but not loading - fresh setup
●​ [IF You just deployed your app] &&

○​ the Cloudflare page not found reply || the page says redirected too many times
■​ Check that FULL (STRICT) mode enabled for your domain’s SSL/TLS settings

See STAGE 3, STEP 5

Landing Page via domain name to *.github.io not loading
●​ [IF First time setup && going to <username>.github.io directly works]

○​ Verify CNAME record in Cloudflare w/ root/apex record pointing to <username>.github.io
○​ Go to your github repository > Settings > Pages > add your domain to Custom Domain

APPENDIX U - UPDATED FILES
In some instances, it may be simpler to rebuild a project entirely with the updated template by copying over all of your
custom code into the new template instead of troubleshooting the old to fit the new

BCW Alumni Pre- Fall-23 cohort
●​ For older versions of the full-stack templates, rename the folder structure to client & server

●​ For older copies of your build & deploy file contents, see/copy/replace with what has changed from the

templates repos
○​ https://github.com/codeworks-templates/workflow_docker_ec2/tree/main/.github/workflows

●​ For updated Dockerfile & docker-compose.yml file contents, check out the related template repos and pull

them from the respective project types
○​ https://github.com/codeworks-templates
○​ For more info, see APPENDIX A - CODEWORKS TEMPLATES & BCW

IF You have apps from older templates, check on these files:

1.​ CODE-WORKSPACE: ` /code-workspace `

a.​ [conditional] Add this code to the folders list in the code-workspace document if not there

` , { "path": ".github/workflows", "name": "workflows" } `

2.​ DOCKER-COMPOSE: ` /server/docker-compose.yml `

https://github.com/codeworks-templates/workflow_docker_ec2/tree/main/.github/workflows
https://github.com/codeworks-templates

a.​ [conditional] Add this as the last line ` restart: unless-stopped`
to auto-start container instances in case of recoverable failures/reboots

5.​ DOCKERFILE: ` /server/Dockerfile `

a.​ (DOTNET APP) Verify contents of `Dockerfile` on line 39

The name of the `.dll` needs to match exactly the app-name given upon creation

You can verify it against a namespace declaration in a controller/service/repo file

eg. ` CMD ASPNETCORE_URLS=http://*:$PORT dotnet Tower.dll `

Matches spelling/case exactly from ` namespace Tower.Controllers; `

APPENDIX V - VISUAL DIAGRAMS (TBD/WIP)
To aide in a better understanding of what is going on with the code or behind the scenes

Full Stack Web App (File-Structure) **
File organization (dev) vs (prod)

Node.js vs .NET project (Content differences + similarities)
npm i ~= dotnet restore (technically not required if using dotnet publish? Needs verification)
npm run build ~= dotnet publish

Docker (Containers; build & deploy from EC2/Dockerhub high-level)
The layering/processing/functionality

Dockerfile (Build File)
How the file processes https://www.figma.com/file/fqLmy20tGxnUXBOW3v7dWV/Understanding-the-Dockerfile
Stages, Multi-Arch, Parallel processing
Deciding on which packages to use and when (.NET SDK vs ASP.NET vs .NET Runtime)
Shared data constants - external folder inclusion

Github Actions (Build Files)
How the files work and get called

MySQL Connectivity (Network)
VSC MySQL extension
Node API
.NET API

https://www.figma.com/file/fqLmy20tGxnUXBOW3v7dWV/Understanding-the-Dockerfile

ubuntu@ec2 terminal via root

EC2 Server (from hardware to software to network edges)
Physical server unit > VMs :: Network :: EBS
[Potential service interconnections] like load-balancing, S3, etc
Core > Distribution > Access layers > racks of servers
https://www.figma.com/file/KyqrPDcQkioxjGyDMpY4rF/Deploy-to-Cloud-Overview-for-BCW

EC2 Connectivity (Network - logical)
You > ssh > terminal
User > [80] : 443 > https web frontend
Docker container internals (front-end > back-end > mysql | mongoDB)
​ Config file examples surrounding container?, highlighted and line-drawn to show associations
Github Actions
Dockerhub < (pull from)
Docker containers (generalized)
NGINX routing
Elastic IP
EBS Storage (network bound/attached storage block)

APPENDIX Z - zINFORMATIONAL (extra data from testing)
Documenting details from testing

DOCKER IMAGE RESIZING:

Changing the node env to node:20-slim trimmed almost 1GB off

For .NET (https://mcr.microsoft.com/en-us/product/dotnet/sdk/tags / https://hub.docker.com/_/microsoft-dotnet-sdk)
https://github.com/dotnet/dotnet-docker/blob/main/documentation/image-variants.md

Odd thing: dotnet/sdk:8.0-bookworm-slim-amd64 runs the same size as just plain dotnet/sdk:8.0 ... Where’s
the slim??? 😅

​ Size​ ​ ​ Image Name
​ 848 MB​ ​ dotnet/sdk:8.0

​ 848 MB​ ​ dotnet/sdk:8.0-bookworm-slim-amd64 ……???

​ 827 MB​ ​ dotnet/sdk:8.0-jammy-amd64

​ 700 MB​ ​ dotnet/sdk:8.0-alpine-amd64 (docker image)

​ 700 MB​ ​ dotnet/sdk:8.0-alpine (manifest list ^ includes the above)

​ 260 MB​ ​ dotnet/aspnet:8.0

​ 118 MB​ ​ dotnet/aspnet:8.0-alpine

https://www.figma.com/file/KyqrPDcQkioxjGyDMpY4rF/Deploy-to-Cloud-Overview-for-BCW
https://mcr.microsoft.com/en-us/product/dotnet/sdk/tags
https://hub.docker.com/_/microsoft-dotnet-sdk
https://github.com/dotnet/dotnet-docker/blob/main/documentation/image-variants.md

Final image sizes: (compared to original sizes: 1.1GB+ from node and ~850MB+ from dotnet)

EC2 SERVER RAM MANAGEMENT:
(We can’t run more than two apps at a time due to the < 1GB RAM of the server and MySQL taking up ~400MB by
itself.. And even then it can crash)

MySQL using about 38%+ of the RAM; both node + .net instances only using around 7-9% RAM, potential variant up
to 12% (just in their immediate environment, does not account for the sub-layers and other container processes)
Expect each app to typically use around 100 MB of RAM at minimum

BEFORE

AFTER

MySQL variable allocations after changes

+--+--------------------+

| key_buffer_size | 8.000 MB |

| query_cache_size | 0.000 MB |

| innodb_buffer_pool_size | 64.000 MB |

| innodb_additional_mem_pool_size | 0.000 MB |

| innodb_log_buffer_size | 16.000 MB |

+--+--------------------+

| BASE MEMORY | 88.000 MB |

+--+--------------------+

| sort_buffer_size | 0.250 MB |

| read_buffer_size | 0.125 MB |

| read_rnd_buffer_size | 0.250 MB |

| join_buffer_size | 0.250 MB |

| thread_stack | 0.125 MB |

| binlog_cache_size | 0.031 MB |

| tmp_table_size | 16.000 MB |

+--+--------------------+

| MEMORY PER CONNECTION | 17.031 MB |

+--+--------------------+

| Max_used_connections | 1 |

| max_connections | 8 |

+--+--------------------+

| TOTAL (MIN) | 105.031 MB |

| TOTAL (MAX) | 224.250 MB |

+--+--------------------+

FYI on Multi-Arch Docker image deployment:

Open your Dockerhub repo, click on Tags, and you can see which cpu architecture is supported.
Our original Dockerfile/Build config only supported the amd64 image
AMD64 builds in < 1min with the node:20-slim image
Adding the ARM64 image and building both takes ~3.5min to build.. need to improve that
Force amd64 with “FROM --platform=linux/amd64 node:20-slim AS client-builder” to reduce processing
time back closer to familiar levels but still about 1-2min

Building ARM64 by itself on .NET ~3min..

When the client-build attempts to run on arm64 versions, it takes an additional 2.5+ minutes to process
Forced the client-build to be only amd64 on both architecture image revisions and entire build process back down
under 1-2min.

(during trial & error stages)
Testing arm64 builds - quemu emulators required?

With quemu enabled pre-build via github build file
` docker run -it --rm --privileged tonistiigi/binfmt --install all `

FYI on pruning docker images:

One minor change and rebuild, pulled latest (each “299MB” but only downloaded half the stack), rebuilt with latest,
then pruned image stack: reclaimed 76MB from flattening/merging the second image [layer set]. Each image is not the
full image ‘size’ listed.

Logging space failure (man-db & logrotate)

ubuntu@ip-172-31-21-230:~$ systemctl status

● ip-172-31-21-230
 State: degraded

 Jobs: 1 queued

 Failed: 2 units

 Since: Mon 2024-01-15 20:09:20 UTC; 2 weeks 6 days ago

[...]

ubuntu@ip-172-31-21-230:~$ systemctl --failed

 UNIT LOAD ACTIVE SUB DESCRIPTION

● logrotate.service loaded failed failed Rotate log files
● man-db.service loaded failed failed Daily man-db regeneration

ubuntu@ip-172-31-21-230:~$ systemctl status logrotate

× logrotate.service - Rotate log files

 Loaded: loaded (/lib/systemd/system/logrotate.service; static)

 Active: failed (Result: exit-code) since Mon 2024-02-05 18:25:31 UTC; 10 hr ago

TriggeredBy: ● logrotate.timer
 Docs: man:logrotate(8)

 man:logrotate.conf(5)

 Process: 478837 ExecStart=/usr/sbin/logrotate /etc/logrotate.conf (code=exited,

status=226/NAMESPACE)

 Main PID: 478837 (code=exited, status=226/NAMESPACE)

 CPU: 1ms

Feb 05 18:25:31 ip-172-31-21-230 systemd[1]: Starting Rotate log files...

Feb 05 18:25:31 ip-172-31-21-230 systemd[478837]: logrotate.service: Failed to set up mount

namespacing: /run/systemd/unit-root/dev: No space left on device

Feb 05 18:25:31 ip-172-31-21-230 systemd[478837]: logrotate.service: Failed at step NAMESPACE

spawning /usr/sbin/logrotate: No space left on device

Feb 05 18:25:31 ip-172-31-21-230 systemd[1]: logrotate.service: Main process exited,

code=exited, status=226/NAMESPACE

Feb 05 18:25:31 ip-172-31-21-230 systemd[1]: logrotate.service: Failed with result 'exit-code'.

Feb 05 18:25:31 ip-172-31-21-230 systemd[1]: Failed to start Rotate log files.

ubuntu@ip-172-31-21-230:~$ systemctl status man-db

× man-db.service - Daily man-db regeneration

 Loaded: loaded (/lib/systemd/system/man-db.service; static)

 Active: failed (Result: exit-code) since Mon 2024-02-05 18:26:09 UTC; 10hr ago

TriggeredBy: ● man-db.timer
 Docs: man:mandb(8)

 Process: 478862 ExecStart=/usr/bin/install -d -o man -g man -m 0755 /var/cache/man

(code=exited, status=0/SUCCESS)

 Process: 478863 ExecStart=/usr/bin/find /var/cache/man -type f -name *.gz -atime +6 -delete

(code=exited, status=226/NAMESPACE)

 Main PID: 478863 (code=exited, status=226/NAMESPACE)

 CPU: 8ms

Feb 05 18:26:09 ip-172-31-21-230 systemd[1]: Starting Daily man-db regeneration...

Feb 05 18:26:09 ip-172-31-21-230 systemd[478863]: man-db.service: Failed to set up mount

namespacing: /run/systemd/unit-root/dev: No space left on device

Feb 05 18:26:09 ip-172-31-21-230 systemd[478863]: man-db.service: Failed at step NAMESPACE

spawning /usr/bin/find: No space left on device

Feb 05 18:26:09 ip-172-31-21-230 systemd[1]: man-db.service: Main process exited, code=exited,

status=226/NAMESPACE

Feb 05 18:26:09 ip-172-31-21-230 systemd[1]: man-db.service: Failed with result 'exit-code'.

Feb 05 18:26:09 ip-172-31-21-230 systemd[1]: Failed to start Daily man-db regeneration.

After ‘sudo reboot’

cannot create temporary directory for the root file system: No space left on device

ubuntu@ip-172-31-21-230:~$ systemctl status

● ip-172-31-21-230
 State: starting

 Jobs: 7 queued

 Failed: 9 units

 Since: Mon 2024-02-05 18:39:23 UTC; 20min ago

ubuntu@ip-172-31-21-230:~$ systemctl --failed
 UNIT LOAD ACTIVE SUB DESCRIPTION

● cloud-config.service loaded failed failed Apply the settings specified in cloud-config
● cloud-init-local.service loaded failed failed Initial cloud-init job (pre-networking)
● cloud-init.service loaded failed failed Initial cloud-init job (metadata service crawler)
● snap.docker.dockerd.service loaded failed failed Service for snap application docker.dockerd
● snap.docker.nvidia-container-toolkit.service loaded failed failed Service for snap application docker.nvidia-container-toolkit
● snap.lxd.activate.service loaded failed failed Service for snap application lxd.activate
● snapd.seeded.service loaded failed failed Wait until snapd is fully seeded
● systemd-hostnamed.service loaded failed failed Hostname Service
● systemd-resolved.service loaded failed failed Network Name Resolution

Welcome to Ubuntu 22.04.3 LTS (GNU/Linux 6.2.0-1018-aws aarch64)

 * Documentation: https://help.ubuntu.com

 * Management: https://landscape.canonical.com

 * Support: https://ubuntu.com/advantage

 System information as of Thu Jan 25 22:27:15 UTC 2024

 System load: 0.0

 Usage of /: 36.6% of 9.52GB (was not properly reporting)

 Memory usage: 43%

 Swap usage: 0%

 Processes: 158

 Users logged in: 0

 IPv4 address for br-36c8ec28ea99: 172.22.0.1

 IPv4 address for br-66961326ed07: 172.20.0.1

 IPv4 address for br-998210b1e8b4: 172.18.0.1

 IPv4 address for br-a569365596eb: 172.19.0.1

 IPv4 address for br-c17b47b733f1: 172.21.0.1

 IPv4 address for docker0: 172.17.0.1

 IPv4 address for ens5: 172.31.21.230

Expanded Security Maintenance for Applications is not enabled.

15 updates can be applied immediately.

1 of these updates is a standard security update.

To see these additional updates run: apt list --upgradable

Enable ESM Apps to receive additional future security updates.

See https://ubuntu.com/esm or run: sudo pro status

Last login: Mon Feb 5 18:56:10 2024 from 18.237.140.164

ubuntu@ip-172-31-21-230:~$ df -h

Filesystem Size Used Avail Use% Mounted on

/dev/root 9.6G 9.6G 0 100% /

tmpfs 924M 0 924M 0% /dev/shm

tmpfs 370M 29M 341M 8% /run

tmpfs 5.0M 0 5.0M 0% /run/lock

/dev/nvme0n1p15 98M 6.3M 92M 7% /boot/efi

tmpfs 185M 4.0K 185M 1% /run/user/1000

ubuntu@ip-172-31-21-230:~$ sudo du -cha / | grep -E "^[0-9\.]*[G]"

1.5G /usr

2.4G /var/lib/mysql/undo_001

2.6G /var/lib/mysql/mysql.ibd

5.7G /var/lib/mysql

6.7G /var/lib

1.1G /var/snap/docker/common/var-lib-docker

1.1G /var/snap/docker/common

1.1G /var/snap/docker

1.1G /var/snap

8.0G /var

2.8G /snap

13G /

13G total

After rebuilding mysql from scratch:
(baseline of file sizes)

ubuntu:~$ sudo du -cha --max-depth=3 /var | grep -E "^[0-9\.]*[MG]"

2.5M /var/log/amazon

4.3M /var/log/btmp.1

1.6M /var/log/syslog.1

161M /var/log/journal/ec29acff36ddf885e4a78978e648851b

161M /var/log/journal

173M /var/log

3.2M /var/lib/command-not-found

4.0M /var/lib/ubuntu-advantage

1.7M /var/lib/mysql/performance_schema

16M /var/lib/mysql/undo_001

8.2M /var/lib/mysql/#ib_16384_1.dblwr

101M /var/lib/mysql/#innodb_redo

12M /var/lib/mysql/ibdata1

16M /var/lib/mysql/undo_002

27M /var/lib/mysql/mysql.ibd

12M /var/lib/mysql/ibtmp1

195M /var/lib/mysql

31M /var/lib/dpkg

154M /var/lib/apt

91M /var/lib/mecab

276M /var/lib/snapd/seed

485M /var/lib/snapd/snaps

762M /var/lib/snapd

1.3G /var/lib

4.1M /var/cache/debconf

31M /var/cache/apt/archives

44M /var/cache/apt/srcpkgcache.bin

44M /var/cache/apt/pkgcache.bin

117M /var/cache/apt

1.3M /var/cache/snapd

3.0M /var/cache/apparmor/30d07b40.0

1.9M /var/cache/apparmor/a4dd844e.0

4.8M /var/cache/apparmor

1.3M /var/cache/man

129M /var/cache

975M /var/snap/docker

975M /var/snap

1.8M /var/backups

2.5G /var

2.5G total

Seeing same issue on my AMD64 system:
ubuntu@ip-172-31-26-93:~$ sudo du -cha --max-depth=3 /var | grep -E "^[0-9\.]*[MG]"

4.0M /var/lib/ubuntu-advantage/apt-esm

4.0M /var/lib/ubuntu-advantage

902M /var/lib/snapd/snaps

41M /var/lib/snapd/seed

945M /var/lib/snapd

1.3G /var/lib/mysql/undo_001

12M /var/lib/mysql/ibdata1

9.1M /var/lib/mysql/sys

1.7M /var/lib/mysql/performance_schema

97M /var/lib/mysql/#innodb_redo

353M /var/lib/mysql/undo_002

1.4G /var/lib/mysql/mysql.ibd

8.2M /var/lib/mysql/#ib_16384_1.dblwr

3.1G /var/lib/mysql

166M /var/lib/apt/lists

166M /var/lib/apt

91M /var/lib/mecab/dic

91M /var/lib/mecab

3.4M /var/lib/command-not-found/commands.db

3.4M /var/lib/command-not-found

34M /var/lib/dpkg/info

35M /var/lib/dpkg

4.3G /var/lib

1.8M /var/backups

1.9M /var/log/cloud-init.log

1.3M /var/log/syslog

129M /var/log/journal/1f7b9499923b4c32a9c0fcc9f8ae6b06

129M /var/log/journal

1.7M /var/log/amazon/ssm

1.7M /var/log/amazon

138M /var/log

3.3M /var/cache/snapd/commands.db

3.4M /var/cache/snapd

3.0M /var/cache/apparmor/30d07b40.0

1.8M /var/cache/apparmor/a4dd844e.0

4.7M /var/cache/apparmor

11M /var/cache/apt/pkgcache.bin.L8ckQu

12M /var/cache/apt/pkgcache.bin.CiRto9

91M /var/cache/apt/archives

47M /var/cache/apt/srcpkgcache.bin

160M /var/cache/apt

1.5M /var/cache/man

2.4M /var/cache/debconf/templates.dat

2.4M /var/cache/debconf/templates.dat-old

4.8M /var/cache/debconf

175M /var/cache

924M /var/snap/docker/common

924M /var/snap/docker

924M /var/snap

5.6G /var

5.6G total

ubuntu@ip-172-31-26-93:~$ systemctl status mysql

× mysql.service - MySQL Community Server

 Loaded: loaded (/lib/systemd/system/mysql.service; enabled; vendor preset: enabled)

 Active: failed (Result: exit-code) since Thu 2024-02-08 17:52:10 UTC; 1min 7s ago

 Process: 170386 ExecStartPre=/usr/share/mysql/mysql-systemd-start pre (code=exited,

status=0/SUCCESS)

 Process: 170394 ExecStart=/usr/sbin/mysqld (code=exited, status=1/FAILURE)

 Main PID: 170394 (code=exited, status=1/FAILURE)

 Status: "Server shutdown complete"

 Error: 2 (No such file or directory)

 CPU: 19.072s

ubuntu@ip-172-31-26-93:~$ systemctl status mysql

● mysql.service - MySQL Community Server
 Loaded: loaded (/lib/systemd/system/mysql.service; enabled; vendor preset: enabled)

 Active: activating (start) since Thu 2024-02-08 17:55:49 UTC; 1min 5s ago

 Process: 171268 ExecStartPre=/usr/share/mysql/mysql-systemd-start pre (code=exited,

status=0/SUCCESS)

 Main PID: 171276 (mysqld)

 Status: "Server upgrade in progress"

 Tasks: 28 (limit: 1121)

 Memory: 313.9M

 CPU: 17.744s

 CGroup: /system.slice/mysql.service

 └─171276 /usr/sbin/mysqld

NOTE:
UNABLE to successfully restart MySQL service even after freeing up space and expanding the volume

Reboot pending.. Reboot also does not allow MySQL to start - likely process/data corruption present
Running a re-install of mysql-server to check
$ sudo apt reinstall mysql-server

(hangs at ~43%.. Waiting…still failed)

ubuntu@ip-172-31-26-93:~$ sudo ls -lh /var/lib/mysql

total 3.3G

-rw-r----- 1 mysql mysql 192K Feb 8 18:41 '#ib_16384_0.dblwr'

-rw-r----- 1 mysql mysql 8.2M Feb 8 18:41 '#ib_16384_1.dblwr'

drwxr-x--- 2 mysql mysql 4.0K Feb 8 18:41 '#innodb_redo' (default-database-name?)

drwxr-x--- 2 mysql mysql 4.0K Feb 8 18:41 '#innodb_temp' (default-database-name?)

drwxr-x--- 2 mysql mysql 4.0K Jan 8 02:20 allspice (database-name)

-rw-r----- 1 mysql mysql 56 Dec 18 19:07 auto.cnf

drwxr-x--- 2 mysql mysql 4.0K Dec 24 18:04 bcw_replay (database-name)

-rw-r----- 1 mysql mysql 201 Jan 7 00:00 binlog.000244

-rw-r----- 1 mysql mysql 201 Jan 8 00:00 binlog.000245

-rw-r----- 1 mysql mysql 665 Jan 8 21:54 binlog.000246

-rw-r----- 1 mysql mysql 201 Feb 6 00:00 binlog.000247

-rw-r----- 1 mysql mysql 180 Feb 6 08:05 binlog.000248

-rw-r----- 1 mysql mysql 80 Feb 6 00:00 binlog.index

-rw------- 1 mysql mysql 1.7K Dec 18 19:08 ca-key.pem

-rw-r--r-- 1 mysql mysql 1.1K Dec 18 19:08 ca.pem

-rw-r--r-- 1 mysql mysql 1.1K Dec 18 19:08 client-cert.pem

-rw------- 1 mysql mysql 1.7K Dec 18 19:08 client-key.pem

-rw-r--r-- 1 mysql mysql 0 Feb 8 18:28 debian-5.7.flag

-rw-r----- 1 mysql mysql 4.1K Feb 6 08:05 ib_buffer_pool

-rw-r----- 1 mysql mysql 12M Feb 8 18:41 ibdata1

drwxr-x--- 2 mysql mysql 4.0K Dec 18 19:48 keepr (database-name)

drwxr-x--- 2 mysql mysql 4.0K Feb 8 18:40 mysql (default-database-name)

-rw-r----- 1 mysql mysql 1.5G Feb 8 18:41 mysql.ibd

-rw-r----- 1 mysql mysql 6 Feb 8 18:41 mysql_upgrade_info

drwxr-x--- 2 mysql mysql 4.0K Dec 18 19:08 performance_schema(default-database-name)

-rw------- 1 mysql mysql 1.7K Dec 18 19:08 private_key.pem

-rw-r--r-- 1 mysql mysql 452 Dec 18 19:08 public_key.pem

-rw-r--r-- 1 mysql mysql 1.1K Dec 18 19:08 server-cert.pem

-rw------- 1 mysql mysql 1.7K Dec 18 19:08 server-key.pem

drwxr-x--- 2 mysql mysql 4.0K Dec 18 19:08 sys

drwxr-x--- 2 mysql mysql 4.0K Dec 20 15:29 topomodoro (database-name)

-rw-r----- 1 mysql mysql 1.4G Feb 8 18:41 undo_001

-rw-r----- 1 mysql mysql 400M Feb 8 18:41 undo_002

https://www.tecmint.com/mysql-backup-and-restore-commands-for-database-administration/
(only useful if mysql is responsive..)

Testing recovery by backing up all files in /var/lib/mysql (via adding to a compressed file)
(tar will save even the directory it’s pulled from as specified, so do not need to specify full directory on extraction)
$ tar zcf ~/mysql-backup-1.tgz /var/lib/mysql

$ tar xvf ~/mysql-backup-1.tgz -C /

ubuntu@ip-172-31-26-93:~$ sudo du -cha --max-depth=1 /var/lib/mysql | grep -E "^[0-9\.]*[MG]"

1.4G /var/lib/mysql/undo_001

12M /var/lib/mysql/ibdata1

9.1M /var/lib/mysql/sys

1.7M /var/lib/mysql/performance_schema

101M /var/lib/mysql/#innodb_redo

401M /var/lib/mysql/undo_002

1.5G /var/lib/mysql/mysql.ibd

12M /var/lib/mysql/ibtmp1

8.2M /var/lib/mysql/#ib_16384_1.dblwr

3.4G /var/lib/mysql

3.4G total

-rw-rw-r-- 1 ubuntu ubuntu 698M Feb 8 19:36 mysql-backup-1.tgz

----- fresh install -----

ubuntu@ip-172-31-26-93:~$ sudo ls -lh /var/lib/mysql

total 90M

-rw-r----- 1 mysql mysql 192K Feb 8 20:11 '#ib_16384_0.dblwr'

-rw-r----- 1 mysql mysql 8.2M Feb 8 20:11 '#ib_16384_1.dblwr'

drwxr-x--- 2 mysql mysql 4.0K Feb 8 20:11 '#innodb_redo'

drwxr-x--- 2 mysql mysql 4.0K Feb 8 20:11 '#innodb_temp'

-rw-r----- 1 mysql mysql 56 Feb 8 20:11 auto.cnf

-rw-r----- 1 mysql mysql 180 Feb 8 20:11 binlog.000001

-rw-r----- 1 mysql mysql 404 Feb 8 20:11 binlog.000002

-rw-r----- 1 mysql mysql 157 Feb 8 20:11 binlog.000003

-rw-r----- 1 mysql mysql 48 Feb 8 20:11 binlog.index

-rw------- 1 mysql mysql 1.7K Feb 8 20:11 ca-key.pem

-rw-r--r-- 1 mysql mysql 1.1K Feb 8 20:11 ca.pem

-rw-r--r-- 1 mysql mysql 1.1K Feb 8 20:11 client-cert.pem

-rw------- 1 mysql mysql 1.7K Feb 8 20:11 client-key.pem

-rw-r--r-- 1 root root 0 Feb 8 20:11 debian-5.7.flag

-rw-r----- 1 mysql mysql 3.4K Feb 8 20:11 ib_buffer_pool

-rw-r----- 1 mysql mysql 12M Feb 8 20:11 ibdata1

-rw-r----- 1 mysql mysql 12M Feb 8 20:11 ibtmp1

-rw-r----- 1 mysql mysql 5 Feb 8 20:11 ip-172-31-26-93.pid

drwxr-x--- 2 mysql mysql 4.0K Feb 8 20:11 mysql

-rw-r----- 1 mysql mysql 25M Feb 8 20:11 mysql.ibd

https://www.tecmint.com/mysql-backup-and-restore-commands-for-database-administration/

drwxr-x--- 2 mysql mysql 4.0K Feb 8 20:11 performance_schema

-rw------- 1 mysql mysql 1.7K Feb 8 20:11 private_key.pem

-rw-r--r-- 1 mysql mysql 452 Feb 8 20:11 public_key.pem

-rw-r--r-- 1 mysql mysql 1.1K Feb 8 20:11 server-cert.pem

-rw------- 1 mysql mysql 1.7K Feb 8 20:11 server-key.pem

drwxr-x--- 2 mysql mysql 4.0K Feb 8 20:11 sys

-rw-r----- 1 mysql mysql 16M Feb 8 20:11 undo_001

-rw-r----- 1 mysql mysql 16M Feb 8 20:11 undo_002

ubuntu@ip-172-31-26-93:~$ sudo du -cha --max-depth=1 /var/lib/mysql | grep -E "^[0-9\.]*[MG]"

16M /var/lib/mysql/undo_001

12M /var/lib/mysql/ibdata1

1.7M /var/lib/mysql/performance_schema

101M /var/lib/mysql/#innodb_redo

16M /var/lib/mysql/undo_002

26M /var/lib/mysql/mysql.ibd

12M /var/lib/mysql/ibtmp1

8.2M /var/lib/mysql/#ib_16384_1.dblwr

192M /var/lib/mysql

192M total

-rw-rw-r-- 1 ubuntu ubuntu 698M Feb 8 19:36 mysql-backup-1.tgz

-rw-rw-r-- 1 ubuntu ubuntu 2.0M Feb 8 20:12 mysql-defaults.tgz

MySQL logs

2024-02-08T17:30:15.595602Z 0 [System] [MY-010116] [Server] /usr/sbin/mysqld (mysqld 8.0.36-0ubuntu0.22.04.1) starting as process

165667

2024-02-08T17:30:15.655450Z 1 [System] [MY-013576] [InnoDB] InnoDB initialization has started.

2024-02-08T17:30:16.694537Z 0 [Warning] [MY-012637] [InnoDB] 131072 bytes should have been written. Only 61440 bytes written.

Retrying for the remaining bytes.

2024-02-08T17:30:16.694592Z 0 [Warning] [MY-012638] [InnoDB] Retry attempts for writing partial data failed.

2024-02-08T17:30:16.694605Z 0 [ERROR] [MY-012639] [InnoDB] Write to file ./#innodb_redo/#ib_redo1501_tmp failed at offset 3145728,

131072 bytes should have been written, only 61440 were written. Operating system error number 28. Check that your OS and file

system support files of this size. Check also that the disk is not full or a disk quota exceeded.

2024-02-08T17:30:16.694618Z 0 [ERROR] [MY-012640] [InnoDB] Error number 28 means 'No space left on device'

2024-02-08T17:30:16.694640Z 0 [ERROR] [MY-012888] [InnoDB] Cannot resize redo log file ./#innodb_redo/#ib_redo1501_tmp to 3 MB

(Failed to set size)

2024-02-08T17:30:16.713563Z 0 [Warning] [MY-012637] [InnoDB] 131072 bytes should have been written. Only 57344 bytes written.

Retrying for the remaining bytes.

2024-02-08T17:30:16.713599Z 0 [Warning] [MY-012638] [InnoDB] Retry attempts for writing partial data failed.

2024-02-08T17:30:16.713612Z 0 [ERROR] [MY-012888] [InnoDB] Cannot resize redo log file ./#innodb_redo/#ib_redo1501_tmp to 3 MB

(Failed to set size)

2024-02-08T17:30:16.728328Z 0 [Warning] [MY-012637] [InnoDB] 131072 bytes should have been written. Only 61440 bytes written.

Retrying for the remaining bytes.

2024-02-08T17:30:16.728361Z 0 [Warning] [MY-012638] [InnoDB] Retry attempts for writing partial data failed.

2024-02-08T17:30:16.728374Z 0 [ERROR] [MY-012888] [InnoDB] Cannot resize redo log file ./#innodb_redo/#ib_redo1501_tmp to 3 MB

(Failed to set size)

2024-02-08T17:30:16.747147Z 0 [Warning] [MY-012637] [InnoDB] 131072 bytes should have been written. Only 57344 bytes written.

Retrying for the remaining bytes.

2024-02-08T17:30:16.747182Z 0 [Warning] [MY-012638] [InnoDB] Retry attempts for writing partial data failed.

2024-02-08T17:30:16.747261Z 0 [ERROR] [MY-012888] [InnoDB] Cannot resize redo log file ./#innodb_redo/#ib_redo1501_tmp to 3 MB

(Failed to set size)

2024-02-08T17:30:16.762264Z 0 [Warning] [MY-012637] [InnoDB] 131072 bytes should have been written. Only 61440 bytes written.

Retrying for the remaining bytes.

2024-02-08T17:30:16.762296Z 0 [Warning] [MY-012638] [InnoDB] Retry attempts for writing partial data failed.

2024-02-08T17:30:16.762309Z 0 [ERROR] [MY-012888] [InnoDB] Cannot resize redo log file ./#innodb_redo/#ib_redo1501_tmp to 3 MB

(Failed to set size)

2024-02-08T17:30:16.780563Z 0 [Warning] [MY-012637] [InnoDB] 131072 bytes should have been written. Only 57344 bytes written.

Retrying for the remaining bytes.

2024-02-08T17:30:16.780601Z 0 [Warning] [MY-012638] [InnoDB] Retry attempts for writing partial data failed.

2024-02-08T17:30:16.780618Z 0 [ERROR] [MY-012888] [InnoDB] Cannot resize redo log file ./#innodb_redo/#ib_redo1501_tmp to 3 MB

(Failed to set size)

2024-02-08T17:30:16.795656Z 0 [Warning] [MY-012637] [InnoDB] 131072 bytes should have been written. Only 61440 bytes written.

Retrying for the remaining bytes.

2024-02-08T17:30:16.795689Z 0 [Warning] [MY-012638] [InnoDB] Retry attempts for writing partial data failed.

2024-02-08T17:30:16.795702Z 0 [ERROR] [MY-012888] [InnoDB] Cannot resize redo log file ./#innodb_redo/#ib_redo1501_tmp to 3 MB

(Failed to set size)

2024-02-08T17:30:16.813746Z 0 [Warning] [MY-012637] [InnoDB] 131072 bytes shoul2024-02-08T17:30:47.377511Z 1 [ERROR] [MY-010334]

[Server] Failed to initialize DD Storage Engine

2024-02-08T17:30:47.380329Z 0 [ERROR] [MY-010020] [Server] Data Dictionary initialization failed.

2024-02-08T17:30:47.381247Z 0 [ERROR] [MY-010119] [Server] Aborting

2024-02-08T17:36:04.477640Z 0 [System] [MY-010910] [Server] /usr/sbin/mysqld: Shutdown complete (mysqld 8.0.36-0ubuntu0.22.04.1)

(Ubuntu).

2024-02-08T17:36:05.154385Z 0 [System] [MY-010116] [Server] /usr/sbin/mysqld (mysqld 8.0.36-0ubuntu0.22.04.1) starting as process

166569

2024-02-08T17:36:05.169256Z 1 [System] [MY-013576] [InnoDB] InnoDB initialization has started.

2024-02-08T17:36:19.836752Z 1 [Warning] [MY-012637] [InnoDB] 1048576 bytes should have been written. Only 24576 bytes written.

Retrying for the remaining bytes.

2024-02-08T17:36:19.843118Z 1 [Warning] [MY-012638] [InnoDB] Retry attempts for writing partial data failed.

2024-02-08T17:36:19.843137Z 1 [ERROR] [MY-012639] [InnoDB] Write to file ./ibtmp1 failed at offset 0, 1048576 bytes should have

been written, only 24576 were written. Operating system error number 28. Check that your OS and file system support files of this

size. Check also that the disk is not full or a disk quota exceeded.

2024-02-08T17:36:19.844038Z 1 [ERROR] [MY-012640] [InnoDB] Error number 28 means 'No space left on device'

2024-02-08T17:36:19.844974Z 1 [ERROR] [MY-012267] [InnoDB] Could not set the file size of './ibtmp1'. Probably out of disk space

2024-02-08T17:36:19.844990Z 1 [ERROR] [MY-012926] [InnoDB] Unable to create the shared innodb_temporary.

2024-02-08T17:36:19.845000Z 1 [ERROR] [MY-012930] [InnoDB] Plugin initialization aborted with error Generic error.

2024-02-08T17:36:20.282168Z 1 [ERROR] [MY-010334] [Server] Failed to initialize DD Storage Engine

2024-02-08T17:36:20.283929Z 0 [ERROR] [MY-010020] [Server] Data Dictionary initialization failed.

2024-02-08T17:36:20.284365Z 0 [ERROR] [MY-010119] [Server] Aborting

2024-02-08T17:36:20.305912Z 0 [System] [MY-010910] [Server] /usr/sbin/mysqld: Shutdown complete (mysqld 8.0.36-0ubuntu0.22.04.1)

(Ubuntu).

2024-02-08T18:07:40.490680Z 0 [System] [MY-010116] [Server] /usr/sbin/mysqld (mysqld 8.0.36-0ubuntu0.22.04.1) starting as process

4030

2024-02-08T18:07:40.527823Z 1 [System] [MY-013576] [InnoDB] InnoDB initialization has started.

2024-02-08T18:08:15.187138Z 1 [System] [MY-013577] [InnoDB] InnoDB initialization has ended.

2024-02-08T18:08:19.205750Z 4 [System] [MY-013381] [Server] Server upgrade from '80035' to '80036' started.

2024-02-08T18:08:48.816111Z 4 [ERROR] [MY-013178] [Server] Execution of server-side SQL statement '-- Copyright (c) 2015, 2023,

Oracle and/or its affiliates. -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of

the GNU General Public License as published by -- the Free Software Foundation; version 2 of the License. -- -- This program is

distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of --

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have

received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation,

Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA -- NOTE: This needs to be replicated within the sys_config_clean.inc

file INSERT IGNORE INTO sys.sys_config (variable, value) VALUES ('statement_truncate_len', 64),

('statement_performance_analyzer.limit', 100), ('statement_performance_analyzer.view', NULL),

('diagnostics.allow_i_s_tables', 'OFF'), ('diagnostics.include_raw', 'OFF'), ('ps_thread_trx_info.max_length', 65535); '

failed with error code = 1436, error message = 'Thread stack overrun: 12464 bytes used of a 131072 byte stack, and 160000 bytes

needed. Use 'mysqld --thread_stack=#' to specify a bigger stack.'.

2024-02-08T18:08:48.850136Z 0 [ERROR] [MY-013380] [Server] Failed to upgrade server.

2024-02-08T18:08:48.853797Z 0 [ERROR] [MY-010119] [Server] Aborting

2024-02-08T18:08:50.659475Z 0 [System] [MY-010910] [Server] /usr/sbin/mysqld: Shutdown complete (mysqld 8.0.36-0ubuntu0.22.04.1)

(Ubuntu).

ubuntu@ip-172-31-26-93:~$

MySQL Vars executable code
#!/bin/sh

sudo mysql -p -e "show variables; show status" | awk '

{

VAR[$1]=$2

}

END {

MAX_CONN = VAR["max_connections"]

MAX_USED_CONN = VAR["Max_used_connections"]

BASE_MEM=VAR["key_buffer_size"] + VAR["query_cache_size"] + VAR["innodb_buffer_pool_size"] +

VAR["innodb_additional_mem_pool_size"] + VAR["innodb_log_buffer_size"]

MEM_PER_CONN=VAR["read_buffer_size"] + VAR["read_rnd_buffer_size"] + VAR["sort_buffer_size"] +

VAR["join_buffer_size"] + VAR["binlog_cache_size"] + VAR["thread_stack"] +

VAR["tmp_table_size"]

MEM_TOTAL_MIN=BASE_MEM + MEM_PER_CONN*MAX_USED_CONN

MEM_TOTAL_MAX=BASE_MEM + MEM_PER_CONN*MAX_CONN

printf "+--+--------------------+\n"

printf "| %40s | %15.3f MB |\n", "key_buffer_size", VAR["key_buffer_size"]/1048576

printf "| %40s | %15.3f MB |\n", "query_cache_size", VAR["query_cache_size"]/1048576

printf "| %40s | %15.3f MB |\n", "innodb_buffer_pool_size",

VAR["innodb_buffer_pool_size"]/1048576

printf "| %40s | %15.3f MB |\n", "innodb_additional_mem_pool_size",

VAR["innodb_additional_mem_pool_size"]/1048576

printf "| %40s | %15.3f MB |\n", "innodb_log_buffer_size",

VAR["innodb_log_buffer_size"]/1048576

printf "+--+--------------------+\n"

printf "| %40s | %15.3f MB |\n", "BASE MEMORY", BASE_MEM/1048576

printf "+--+--------------------+\n"

printf "| %40s | %15.3f MB |\n", "sort_buffer_size", VAR["sort_buffer_size"]/1048576

printf "| %40s | %15.3f MB |\n", "read_buffer_size", VAR["read_buffer_size"]/1048576

printf "| %40s | %15.3f MB |\n", "read_rnd_buffer_size", VAR["read_rnd_buffer_size"]/1048576

printf "| %40s | %15.3f MB |\n", "join_buffer_size", VAR["join_buffer_size"]/1048576

printf "| %40s | %15.3f MB |\n", "thread_stack", VAR["thread_stack"]/1048576

printf "| %40s | %15.3f MB |\n", "binlog_cache_size", VAR["binlog_cache_size"]/1048576

printf "| %40s | %15.3f MB |\n", "tmp_table_size", VAR["tmp_table_size"]/1048576

printf "+--+--------------------+\n"

printf "| %40s | %15.3f MB |\n", "MEMORY PER CONNECTION", MEM_PER_CONN/1048576

printf "+--+--------------------+\n"

printf "| %40s | %18d |\n", "Max_used_connections", MAX_USED_CONN

printf "| %40s | %18d |\n", "max_connections", MAX_CONN

printf "+--+--------------------+\n"

printf "| %40s | %15.3f MB |\n", "TOTAL (MIN)", MEM_TOTAL_MIN/1048576

printf "| %40s | %15.3f MB |\n", "TOTAL (MAX)", MEM_TOTAL_MAX/1048576

printf "+--+--------------------+\n"

}'

	Week 13 - Guide to Deploying your Web Server
	Technology Overview
	Stage 0 – Assumptions:
	Stage 1 – AWS EC2 – CREATE A SERVER INSTANCE
	Stage 2 – AWS EC2 - CUSTOMIZE INSTANCE
	Stage 2.1 – Login, update, then upgrade
	Stage 2.2 – DOCKER & NGINX Setup
	Stage 2.3 – MySQL Setup **(note)

	Stage 3 – DOMAIN NAME, DNS RECORDS & SSL CERT
	Stage 3.1 - DNS & SSL setup
	Stage 3.2 - Permit your domain in Auth0

	Stage 4 – ADD FILES & CUSTOMIZE CONFIG
	DOCKER-COMPOSE: ` /server/docker-compose.yml `
	DOCKERFILE: ​` /server/Dockerfile `

	Stage 5 – FORWARD DOMAIN ROUTES VIA NGINX
	SUB-DOMAIN CONFIG

	Stage 6 – DOCKER & DOCKERHUB REPOS
	Stage 7 – ADD REPO SECRETS TO GITHUB REPO
	Stage 8 – THE FINAL PUSH
	Stage 9001 – ONGOING MAINTENANCE **NEW**
	NOTES & TROUBLESHOOTING GUIDE
	APPENDIX A - ADDITIONAL NOTES
	CODEWORKS TEMPLATES & BCW
	Alternate BUILD Config for Github Actions
	GITHUB PRs (Pull Requests) Disabled?
	ENV_FILE & docker-compose.yml - Verification
	Disable auto-loading Swagger on .NET projects
	Useful MySQL Commands
	MySQL defaults
	Useful NGINX Commands
	Useful DOCKER Commands
	Alternative Port Reassignment Option for Node projects
	NGINX Routing logic & Default Redirection Config

	APPENDIX T - TROUBLESHOOTING
	MySQL DB Unresponsive / No data from DB
	MySQL Remote User Access Troubleshooting
	EC2 Instance Crashed & Unresponsive
	EC2 Reboot || Stop/Start - Web apps unreachable
	EC2 disk space full
	.NET app build issue - Server/API side (solution files)
	Client side build issue on Docker image build
	Full-Stack app just deployed but not loading - fresh setup
	Landing Page via domain name to *.github.io not loading

	
	APPENDIX U - UPDATED FILES
	BCW Alumni Pre- Fall-23 cohort
	IF You have apps from older templates, check on these files:
	1.​CODE-WORKSPACE: ` /code-workspace `
	2.​DOCKER-COMPOSE: ` /server/docker-compose.yml `
	5.​DOCKERFILE: ` /server/Dockerfile `

	APPENDIX V - VISUAL DIAGRAMS (TBD/WIP)
	Full Stack Web App (File-Structure) **
	Node.js vs .NET project (Content differences + similarities)
	Docker (Containers; build & deploy from EC2/Dockerhub high-level)
	Dockerfile (Build File)
	Github Actions (Build Files)
	MySQL Connectivity (Network)
	EC2 Server (from hardware to software to network edges)
	EC2 Connectivity (Network - logical)

	APPENDIX Z - zINFORMATIONAL (extra data from testing)
	DOCKER IMAGE RESIZING:
	EC2 SERVER RAM MANAGEMENT:
	MySQL variable allocations after changes

	FYI on Multi-Arch Docker image deployment:
	FYI on pruning docker images:
	Logging space failure (man-db & logrotate)
	After rebuilding mysql from scratch:

	MySQL logs
	MySQL Vars executable code

