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This study examines how macro- and micro-scale built environment characteristics
influence robotaxi crash frequency in San Francisco. Using California Department of Motor
Vehicles (DMV)-reported AV collision data (2019-2025), we integrate spatial, streetscape,
and socio-demographic variables at the Census Block Group (CBG) level. A Random Forest
model with SHAP interpretation identifies key predictors of crash risk. Results show that
while density metrics (e.g., population, building) are positively associated with crash
frequency, their effects are non-linear. Visual enclosure emerges as the most influential
streetscape factor, indicating that perceptual constraints may challenge AV sensor
performance. Land use diversity and pedestrian infrastructure are associated with reduced
crash risk, whereas socio-demographic variables such as homelessness and felony rates
exhibit complex spatial patterns. These findings suggest that built environment interventions
could complement existing AV safety frameworks, including Vision Zero and complete
streets initiatives, and support more context-sensitive, equitable planning for autonomous
mobility.

1. Background

As autonomous vehicle (AV) technology continues to evolve, particularly with the rise of
autonomous ride-hailing or robotaxi, transportation planners are closely watching its potential
to reshape urban mobility. In recent years, advanced robotaxi services with human safety
operators have gained traction worldwide in cities like Phoenix, San Francisco, Guangzhou,
and Wuhan (Carlson, 2022; Dai et al., 2023; Magramo, 2024). Notably, Cruise and Waymo
have begun testing and commercializing fully autonomous (safety-operator-free) robotaxis
(Carlson, 2022; Dai et al., 2023). By 2035, experts project that the share of passenger miles
traveled (PMT) in robotaxi and autonomous shuttles will increase from 1 percent today to 8
percent, while PMT in private cars will drop by about 15%. It will also impact transit
demand, road use, and infrastructure priorities (McKinsey & Company, 2023).

2. Literature Review

While previous studies have extensively investigated the impact of built environment
variables on conventional transportation safety (Zhang et al., 2024), few studies have
explored how these parameters affect the crash frequency of robot cabs. This literature
analysis combines previous research on macro and micro built environment elements and
their impact on self-driving car and pedestrian crashes to provide a foundation for analyzing
robot cab safety in San Francisco.

2.1 Macro-Level Built Environment Factors and Crash Frequency
2.1.1 Urban Density and Land Use

Existing research suggests that urban density and land-use diversity have a major
impact on traffic safety. Higher population, building, and work density tend to



increase traffic exposure, resulting in increased collision risk (Dong et al., 2023).
Mixed-use areas, which include residential, business, and recreational zones, are
related with lower vehicle speeds and improved pedestrian safety due to heightened
driver caution and walkability incentives (Wang & Vermeulen, 2021). Research on
pedestrian safety backs up these findings, demonstrating that higher commercial
land-use density correlates with more pedestrian crashes, whereas residential areas
had lower crash risks. However, the impact of land use on AV safety is questionable.
Given that AVs must strictly obey traffic laws and may encounter human driver
unpredictability in mixed-use areas, it is critical to research whether robotaxis have
more or fewer crashes in high-density commercial zones than conventional cars.

2.1.2 Street Design and Road Infrastructure

According to research, street network layout such as intersection density, street
width, and roadway class directly affects the occurrence of crashes (Dai et al., 2024).
An increase in intersection density increases crash risk due to frequent stops, turns,
and pedestrian crossings. On the other hand, a well-designed grid-like roadway
network with controlled intersections reduces the severity of crashes (Dong et al.,
2023). Additionally, distance from transportation hubs can affect collision frequency.
Pedestrian traffic and self-driving car-human interactions often increase in areas near
public transportation stops, which may pose additional safety concerns for robotic
cabs. Studies have shown that pedestrian-related crashes occur more frequently in
high-traffic areas, meaning that robotic cabs deployed in these areas may require
additional pedestrian recognition and avoidance mechanisms.

2.2 Micro-Level Built Environment Factors and Street Safety
2.2.1 Streetscape Design and Pedestrian Safety

Micro-scale urban design features such as sidewalk widths, crosswalks, and
intersection geometries have an impact on both pedestrian safety and robot cab crash
risk. Zhang et al. (2024) found that small sidewalks and poor pedestrian infrastructure
resulted in higher pedestrian injury rates in school zones. These findings suggest that
poorer pedestrian infrastructure may raise similar safety concerns at self-driving
vehicle deployment sites. In addition, green infrastructure and street trees have been
shown to reduce vehicle speeds while improving pedestrian safety (Dong et al., 2023).
However, from the perspective of self-driving cars, too much greenery may obscure
sensor visibility, making target identification difficult and increasing the likelihood of
near-collisions or emergency stops in heavily vegetated locations (Chen et al., 2024).

2.2.2 Street View Imageability and Road Perception

Recent research has highlighted the importance of perceived urban aesthetics,
openness and closure in shaping driver behavior. Highly figurative streets defined by
salient features, visual coherence, and clear lane markings are associated with lower
crash rates (Li et al., 2018). However, visually cluttered urban environments, such as
locations with complex signage, numerous billboards, or an overabundance of street
furniture, may confuse the audiovisual perceptual system, leading to misinterpretation
and delayed responses in real-time navigation (Dai et al., 2024). In addition, lighting
conditions and nighttime visibility are important variables that affect audiovisual



safety. According to research, poorly illuminated roads increase the probability of
pedestrian accidents because motorists' vision is restricted. Given that self-driving car
sensors use both camera-based vision and LiDAR for navigation, further research is
needed to assess whether low-illumination environments disproportionately affect the
perceived accuracy and crash rates of self-driving cars.

2.3 Spatial and Socioeconomic Influences on Crash Frequency
2.3.1 Spatial Heterogeneity in Built Environment and AV Safety

According to studies using spatially weighted regression models, the impact of the
built environment on crash risk varies by city. Geographically weighted regression
(GWR) models indicate that the impact of road network density and land use diversity
on safety varies by neighborhood characteristics. This implies that spatial modeling
approaches should be used to analyze macro- and micro-level built environment
variables to explain local variations in crash incidence (Chen et al., 2024).

2.3.2 Socioeconomic Factors and Traffic Safety

In addition to physical infrastructure, socioeconomic factors also influence
differences in automobile crash risk. Low-income neighborhoods tend to have higher
pedestrian crash rates due to inadequate infrastructure improvements and limited
pedestrian-friendly streetscapes (Zhang et al., 2024). Additionally, property values
and median household income may be associated with roadway safety, as wealthier
communities benefit from better-maintained infrastructure and traffic calming
measures (Li et al., 2018). For robotaxi deployment, this means that robotic axles
operating in low-income neighborhoods may face additional road risks due to poor
street conditions, fewer crosswalks, and increased jaywalking. Understanding these
socioeconomic disparities is critical to developing AV legislation and safety actions
that promote equitable access to safe autonomous transportation.

3. Research Question
How Built Environments Shape Robotaxi Crashes in San Francisco?
4. Data and Methodology
4.1 Study Area
This study focuses on robotaxi crash data in San Francisco County, California. Its
status as an early and extensive adopter of robotaxi services, combined with its
diverse and complex urban fabric, makes it an ideal location for investigating the
interplay between AVs and the built environment. The unit of analysis is the Census
Block Group (CBG).

4.2 Data Collection

4.2.1 Dependent Variable: Robotaxi crash density



Robotaxi crash count was derived from collision reports (as PDF format) involving
AVs submitted by manufacturers to the California DMV, as mandated. Data covered
the period from January 2019 to January 2025. Geocoded crash locations (parsing.py)
were aggregated to the CBG level to calculate crash density (df_final Sci3.geojson).
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Figure 1. Crash density in San Francisco per each CBG (count/km’)
Figure 2. Report of traffic collision involving an AV (CADMYV)

4.2.2 Independent Variables: Built Environment and Socio-Demographics

A comprehensive set of independent variables was compiled, categorized as
follows: (Refer to Appendix A for detailed variable descriptions)

1. Macro-scale built environment features (5D): Capturing broader urban form

and function based on the "5D" framework.

m Density: Population density, building density, intersection density, road
network density, traffic signal density, etc.

m Diversity: Land use mix (e.g., proportions of Commercial, Industrial,
Residential land uses; Gini_Simpson index), commercial POI density.

m Design: Tree density, open space area proportion, mean street slope, mean
elevation.

m Destination accessibility: (Partially captured through POI densities).

m Distance to transit: Bus stop density, bus line density, metro/subway
station density, parking meter density.

2. Micro-scale streetscape quality features (Street View Index, SVI): Quantifying
perceptual attributes of the street environment using Street View Indices
derived from street-level imagery.

m  Openness/enclosure: Sky view index, enclosure index.
m  Greenness: Green view index / vegetation percentage.
m  Walkability: Spatial walkability / sidewalk percentage.
m Other: Street furniture percentage, street obstacles percentage.

3. Socio-demographic features:
m  Economic: Median household income, median property value, median


https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-collision-reports/
https://github.com/yjmark/robotaxi/blob/main/data/layers/parsing.py
https://github.com/yjmark/robotaxi/blob/main/data/model/df_final_Sci3.geojson

rent, unemployment rate.

m Demographic: Population density, proportions of White, Black, Asian
populations, ethnic diversity.

m Social: Homeless density, crime densities.

4.3 Analytical Framework

The analysis proceeded through the following stages:

4.3.1 Variable Filtering

To address potential multicollinearity among independent variables, Variance

Inflation Factor (VIF) scores were calculated. Variables exhibiting high VIF values
(e.g., > 10) were systematically removed to ensure model stability and interpretability.

4.3.2 Model Development

1.

Ordinary Least Squares (OLS) Regression: An OLS model was initially fitted
to serve as a baseline, examining linear relationships between the filtered
independent variables and robotaxi crash density.

Random Forest (RF) Regression: Recognizing the potential for non-linear
relationships and complex interactions, a RF model was employed as the
primary analytical tool. RF, an ensemble method, is robust to outliers and
capable of capturing intricate patterns while providing measures of feature
importance.

4.3.3 Model Evaluation and Interpretation

5. Result

1.

Model Performance: Models were evaluated using standard metrics including
R-squared (R?), Mean Squared Error (MSE), and Mean Absolute Error
(MAE).

Feature Importance: RF provides an inherent measure of feature importance
based on contribution to model accuracy.

SHAP (SHapley Additive exPlanations): To interpret the RF model's
predictions, the SHAP framework was utilized. SHAP values quantify the
marginal contribution of each feature to individual predictions, enabling both
global interpretation (e.g., overall feature importance, summary plots) and
local interpretation (e.g., dependence plots showing how changes in a feature's
value impact predictions).

5.1 Independent Variable Filtering

Following VIF analysis, 24 independent variables were retained for modeling. The
descriptive statistics and final VIF values for these variables are presented below,
indicating that multicollinearity was adequately addressed (all VIF < 7.5).



Table 1: Descriptive Table for final 24 independent variables

Variables Mean std VIF
Socio-Demographic
Population Density 13543.798 12361.668 2.7
Whites % 43.756 21.528 7.6
Black % 4.765 8.043 1.8
Asian % 33.992 21.328 5.8
Ethnic Diversity 0.577 0.138 2.1
Median Household Income 150413.627 61399.407 1.9
Felony Density 650.637 1358.800 2.1
Homeless Density 479.902 1205.658 1.6
Macro-scale Built Environment
Building Density 0.360 0.109 4.9
POI Density 4978.382 6126.947 2.8
Parking Meter Density 1723.467 2794.020 2.7
Gini Simpson Index 0.285 0.200 1.6
Intersection Density 507.100 317.792 1.7
Open Space Density 6.750 16.282 1.2
Elevation 57.309 39.255 2.1
Street Slope 5.903 3.315 2.4
Avg. Speed Limit 21.324 10.436 1.8
Transit Stop Density 120.611 113.759 1.4
Micro-scale Streetscape
Visual Enclosure 0.277 0.155 6.2
Visual Walkability 0.055 0.013 2.2
Visual Motorization 0.426 0.014 2.5
Visual Vegetation 0.068 0.036 1.7
Visual Obstacle 0.004 0.004 1.9
Visual Furniture 0.004 0.001 2.1

5.2 Evaluation of Model Performance

5.2.1 OLS Model

The baseline OLS regression model achieved an R-squared of 0.718 and an
adjusted R-squared of 0.706. The F-statistic was highly significant (p < 0.001),
indicating that the selected variables collectively explain a substantial portion of the
variance in robotaxi crash density.



Although the OLS model shows a high R-squared, it's potentially less suitable for
this analysis. OLS assumes linear relationships, likely oversimplifying the complex,
non-linear effects of the built environment on crashes which RF can better capture.
Furthermore, the table indicates Covariance Type: nonrobust, meaning the model's
significance tests (p-values) could be unreliable if the underlying assumption of
constant error variance is violated.

OLS Regression Results

Dep. Variable: crash_den R-squared:  (0.718
Model: OLS Adj. R-squared: 0.706
Method: Least Squares F-statisticc = 62.91

Date: Wed, 30 Apr 2025 Prob (F-statistic): 9.84e-146
Time: 23:19:11 Log-Likelihood: -290.83
No. Observations: 619 AlC: 631.7
Df Residuals: 594 BIC: 742.4

Df Model: 24
Covariance Type: nonrobust

Figure 3. OLS Regression Results
5.2.2 RF Model

The RF model demonstrated comparable explanatory power, achieving an
R-squared of approximately 0.701 on standardized data, with an MSE of 0.123 and
MAE of 0.268. Given its ability to handle non-linearities, subsequent interpretation
focuses primarily on the RF model.

5.3 Feature Importance

The feature importance scores derived from the RF model (Figure 4) highlight the

relative influence of different variables. SVI Enclosure (SVI_Enclos) emerged as the
most influential predictor, followed by Population density (Population) and Building
density (Building d). Other variables with notable importance include tree density
(tree_densi), felony density (Felony den), commercial POI density (commerci 1),
intersection density (intersecti), and sidewalk percentage (SVI sidewa).
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Figure 4. RF Feature Importance

5.4 SHAP Analysis: Interpreting Built Environment Impacts

SHAP analysis provided deeper insights into how each feature influences the RF

model's predictions of robotaxi crash density.



5.4.1 SHAP Summary Plot

Figure 5 presents the SHAP summary plot, illustrating the global importance and
impact direction of each feature on the RF model's prediction of crash density.
Features are ranked vertically by importance (mean absolute SHAP value), with
Visual Enclosure clearly being the most influential predictor. Each point represents an
observation (CBG), where the horizontal position indicates the SHAP value (impact
on prediction) and the color signifies the feature's value (red for high, blue for low).
High values of Visual Enclosure (red dots) predominantly correspond to large positive
SHAP values, indicating a strong positive association with increased predicted crash
risk. Following Visual Enclosure, Population Density, Building Density, POI Density,
and Visual Motorization are also highly ranked, generally showing that higher values
(red dots) tend to increase the predicted crash risk (positive SHAP wvalues).
Conversely, features like Gini Simpson Index (Land Use Diversity) and Asian %
show that higher values (red dots) tend to decrease the predicted risk (negative SHAP
values), while others like Visual Obstacle and Ethnic Diversity exhibit weaker overall
impacts hovering around zero.
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Figure 5. Results of SHAP feature importance analysis



5.4.2 Non-linear Relationships (from SHAP Dependence Plots): Examining SHAP
dependence plots reveals specific patterns

1. Macro-scale Built Environment (5D) Impacts (Figure 6)
m Density

The density-related built environment variables (X1: Building Density,
X2: POI Density, X3: Parking Meter Density) all exhibit non-linear
relationships with the predicted crash density, rather than simple linear
associations. Specifically, Building Density (X1) and POI Density (X2)
generally show a positive correlation where higher density relates to higher
predicted risk, however, this effect is not constant, as the rate of risk increase
slows considerably at higher density levels, indicating diminishing marginal
risk effects. The relationship for Parking Meter Density (X3) is more complex,
showing minimal impact at lower densities but transitioning to a significant
positive association with predicted crash risk only after exceeding a certain
threshold (around 4000-6000).

m Diversity

The Gini-Simpson Index (X4), which measures built environment
diversity (how mixed land uses are), shows a non-linear negative relationship
with predicted crash density. As the index increases (meaning more land use
mix), the SHAP value decreases, indicating that higher diversity is linked to
lower predicted crash risk. This downward trend is fairly consistent across the
range, suggesting a continuous safety benefit as diversity increases.

m Design

Intersection Density (X5) shows a strong positive association, where
predicted risk increases sharply at lower densities and continues to rise, albeit
more slowly, at higher densities. Open Space (X6) exhibits a slightly positive,
near-linear trend, suggesting marginally higher predicted risk with more open
space, which might be counter-intuitive and warrants further investigation.
Elevation (X7) displays a distinct non-linear pattern, with predicted risk being
lowest at very low and very high elevations, peaking at moderate elevation
levels (around 50-100 units). Lastly, Street Slope (X8) demonstrates a
relationship that is relatively flat but shows a slight overall positive trend,
suggesting that steeper slopes are associated with a marginally higher
predicted crash density.

m Accessibility/ Distance to Transit:

Average Speed Limit (X9) exhibits a relationship that is mostly flat,
indicating small impact on predicted crash density within this model for
speeds above approximately 25 mph. However, there is a noticeable non-linear
trend where very low speed limits (below ~20 mph) are associated with
negative SHAP values (lower predicted risk); this suggests that very low speed
limits might indeed reduce crash probability. Transit Stop Density (X10)



displays a clear non-linear positive association: at low densities, the impact is
negligible or slightly negative, but beyond a threshold of approximately 150
stops/area unit, higher density is consistently linked to an increasing predicted
crash risk, likely reflecting greater pedestrian activity and complex traffic
interactions near transit hubs.
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2. Micro-scale Streetscape Quality (SVI) Impacts (Figure 7)
m Enclosure/Constraint

Visual Enclosure (X11), identified as a strongly predictive variable
contributing significantly to feature importance (~40%), exhibits a distinct
positive sigmoidal relationship. At low enclosure levels (below ~0.2), its
impact on predicted risk is minimal; however, there is a sharp and substantial
increase in predicted risk as enclosure rises between approximately 0.2 and
0.4, after which the impact plateaus at a high positive level. This indicates a
critical threshold beyond which increased visual enclosure drastically elevates
predicted crash risk. Visual Motorization (X13) presents another complex
non-linear pattern: predicted risk slightly decreases at lower motorization
levels, then rises sharply within a specific intermediate range (~0.42 to 0.44),
before leveling off again at higher values, suggesting a particular band of
visible vehicle presence is most strongly associated with increased risk.

m  Openness/Pedestrian Environment

Visual Walkability (X12) displays a slightly negative trend, suggesting that
while more visible walking space might reduce predicted risk. Both Visual
Obstacle (X15) and Visual Furniture (X16) exhibit very weak, mostly flat
relationships hovering close to zero impact across their observed ranges,
indicating they have minimal influence on predicted crash density within this
model's framework.

m  Greenness
Visual Vegetation (X14) shows a generally positive association, where
predicted risk tends to increase as vegetation becomes more prominent,

particularly up to a level of around 0.125, after which the effect seems to
stabilize.
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Figure 7. Non-linear relationships between crash density and streetscape variables

3.

Socio-Demographic Impacts (Figure 8)
m  Demographic

Socio-demographic variables show varied non-linear impacts. Population
Density (X17) has a strong positive association with predicted risk, rising
sharply initially then more slowly at higher densities, suggesting diminishing
marginal risk. Ethnic composition relationships are weaker and complex:
Whites % (X18) is mostly flat with minor dips and rises; Black % (X19)
shows minimal negative impact; Asian % (X20) has a more consistent
negative association that may level off; and Ethnic Diversity (X21) appears
largely unrelated to predicted risk in this model. These demographic links
should be interpreted cautiously, likely reflecting correlations with
unmeasured factors.

m Economic/Social
Homeless Density (X24) shows a positive non-linear trend, where
predicted risk increases as density rises from zero but the rate of increase

slows considerably at higher densities (above ~2000-4000), eventually
flattening out. These patterns suggest that while higher levels of crime and

12
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predicted crash density. The SHAP values remain close to zero across the
income spectrum, suggesting that, within this model, income level has
minimal direct influence on the predicted risk after accounting for other

factors.
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Figure 8. Non-linear relationships between crash density and socio-demographic variables.
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5.5 Web Application

Using the results of this study, the web application is developed to provide
information to the public sector, particularly in the planning and safety department,
considering robotaxi incidents in their work. Unlike traditional PDF format incident
reports, this application allows users not only to understand the spatial distribution of
robotaxi crashes but also to manage and predict these incidents alongside other urban
variables considered in this study. The home screen displays 600 points representing
robotaxi incidents from CADMYV and 676 polygons representing CBGs in San Francisco,
as shown in Figure 9.

The search box in the top left enables users to find crashes at specific locations. They
can search for an address, and the app allows them to zoom into the map. The incident list
below the search box automatically filters to show only crashes within the current view.
In the Incident List, users can edit, delete, or add a new incident by clicking any location
on the map. Any newly created, edited, or deleted incident will reflect on the map and in
real-time on Firebase.

Moving on to modeling, toggle switches in the layer list allow users to view the
spatial distribution of each independent variable. Additionally, there are three crash
density prediction scenarios based on a RF model: 1) Predicted crash density if the Gini
Simpson Index increases by 10%, ii) Predicted crash density if the SVI Walkability
decreases by 10% (count/’km?), and iii) Predicted crash density if the SVI Visual Furniture
increases by 10% (count/km?). These scenarios enable planners to consider the impact of
robotaxi incidents as they modify planning elements within each block group. In the top
right corner, the radar chart illustrates how each block group scores on the Top-4
SHAP-contributing variables: SVI Enclosures, Population, Building Density, and
Commercial POI Density. A larger radar area indicates a higher predicted crash risk for
that area.

Finally, the "Download Data” button next to it allows users to filter crash data by
robotaxi brand and vehicle year, which can then be downloaded in JSON format.

How Built Environments Shape Robotaxi Crashes in San Francisco - Wang, Shuai; Jiang, Emmanuel; Jun, Youngsang How to Use This Site.  Download Data

Find Locations
SVi-Enclos
Search
Commercial POI density -w Population
Incident List
To add a new incident, click on the map to select the location Buiya deml
of the accident place.
~a Blvd

Waymo ®

1/20/2022, 2:24:00 AM i

Polk Street at Sacramento Street, San Francisco, CA, Zoox
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Figure 9. Web application screenshot
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6. Discussion

This study investigated the influence of built environment factors on robotaxi crash
frequency in San Francisco using DMV collision data and a range of environmental and
socio-demographic variables. By employing RF modeling and SHAP interpretation, we
identified key attributes associated with predicted crash risk.

6.1 Summary of Key Findings
6.1.1 Density Metrics Consistently Increase Predicted Risk, but Non-Linearly

Various density measures (Population, Building, Intersection, Transit Stop
densities) are positively associated with higher predicted crash risk, aligning with the
expectation that denser areas foster more interactions and potential conflicts.
However, the SHAP analysis reveals these relationships are distinctly non-linear,
often exhibiting diminishing marginal risk increases at very high densities, indicating
density's impact isn't uniformly proportional across its range.

6.1.2 Visual Enclosure is the Primary Micro-Scale Risk Factor, Linked to
Macro-Density

The micro-scale streetscape feature 'Visual Enclosure' emerged as the single most
important predictor in the model (accounting for ~40% of feature importance). It
exhibits a positive sigmoidal relationship with predicted risk: beyond a threshold
(~0.2-0.4), predicted crash risk increases sharply and substantially. This high visual
enclosure (often implying a high building-to-road-space ratio) is itself closely
correlated with the macro-scale high-density features mentioned in the first key
finding (like building and population density), commonly found in urban core areas.
Therefore, high enclosure signifies not only more concentrated population and travel
activity (increasing baseline exposure to potential collisions), but we also speculate
that this 'street canyon' environment poses direct challenges to AV sensors (e.g.,
limited sightlines, signal interference), further elevating the predicted crash risk. This
finding underscores the need for urban planners designing AV-friendly environments
to address and mitigate excessive visual enclosure, potentially by enhancing street
openness and visibility.

6.1.3 Built Environment Diversity and Walkability Show Protective Associations

Contrary to density metrics, higher built environment diversity (measured by the
Gini-Simpson Index, X4) consistently correlates with lower predicted crash risk
across its range, suggesting potential safety benefits inherent in mixed-use
environments. Furthermore, prioritizing pedestrian infrastructure also appears
beneficial for reducing predicted risk. Greater 'Visual Walkability' (X12), representing
the percentage of sidewalk space, shows a negative association with predicted crash
frequency, although this effect is less pronounced than that of diversity. This finding
underscores the importance of robust pedestrian infrastructure — specifically providing
ample and well-defined walking space like wider sidewalks — in creating street
environments where predicted robotaxi crashes are less likely. The 'Visual Furniture'
(X16) shows the same trend, indicating comprehensive pedestrian infrastructure
contributes to overall street safety and predictability.
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6.1.4 Socio-Demographic Factors Exhibit Complex and Varied Associations

Beyond Population Density (a positive predictor), other socio-demographic
variables show intricate patterns. Higher Felony and Homelessness densities are
linked to increased predicted risk, but non-linearly (peaking or flattening).
Conversely, Median Household Income shows minimal direct impact in this model.
Ethnic composition variables display complex and weaker associations requiring
cautious interpretation.

6.2 Policy and Practical Implications
6.2.1 Supporting Vision Zero and Complete Streets through AV Risk Insights

Our findings suggest that built environment factors—particularly population and
building density—are associated with increased predicted robotaxi crash risk, though
in non-linear patterns. While these results are exploratory and context-specific, they
may offer additional perspectives to help inform ongoing policy refinement such as
San Francisco’s existing Vision Zero and Complete Streets initiatives. This could
potentially complement existing tools used by planners when identifying high-risk
areas. If integrated thoughtfully, these data-driven insights may support more targeted
deployment of established measures—such as traffic calming infrastructure, 20-mph
zones, or AV speed caps—in dense urban corridors.

6.2.2 Highlighting Built Form Features That May Warrant Further Attention

This model suggests that certain urban design elements—most notably visual
enclosure, vegetation density, and curbside activity—may be associated with
increased crash risk for robotaxis. While these findings require further validation, they
highlight features that could be worth examining more closely in the context of AV
deployment and street design.

For instance, visual enclosure demonstrated a non-linear relationship with crash
risk in this model, which may reflect challenges for sensor-based navigation in
visually constrained environments. Similarly, vegetation and curbside dynamics may
influence AV sensor performance, depending on configuration and traffic conditions.
These results suggest that planners and engineers might consider integrating visibility
standards or clear sightline principles—already common in pedestrian safety
guidelines—into future AV readiness discussions.

6.2.3 Reinforcing the Relevance of Micro-Scale Design in AV Planning

Our findings add to the growing recognition that micro-scale urban design
elements, such as sidewalk presence, vegetation, and street openness, may influence
AV navigation and safety performance. They align with broader planning concepts
such as “AV Urbanism” (NACTO, 2024), which emphasize the need to consider built
form in the transition to autonomous mobility.

In this regard, this study may contribute additional evidence in support of
discussions around how streetscape features affect AV operation. While macro-level
planning remains essential, incorporating fine-grained design attributes into AV
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readiness frameworks—particularly in high-deployment areas—could further refine
existing policy responses.

7. Limitations

This study contributes to a growing body of research examining the relationship between
built environment features and AV safety. Nonetheless, several limitations must be
acknowledged to contextualize the findings and inform future inquiry.

7.1 Limited AV Crash Data

The analysis relies on AV crash data submitted by manufacturers in compliance with
California DMV regulations. While this dataset provides rare empirical access to
real-world AV incidents, it is constrained in several ways. First, it includes only officially
reported events, excluding minor collisions, near-misses, or edge-case sensor failures that
did not trigger formal reporting. Dynamic and situational variables such as real-time
traffic volumes, pedestrian flows, weather conditions, road condition (e.g., road pit), and
vehicle-specific AV configurations (e.g., sensor placements, operational design domains)
were excluded. The absence of such variables may result in unobserved heterogeneity or
residual confounding, thus limiting the explanatory completeness of the model.

7.2 Spatial Aggregation and the Modifiable Areal Unit Problem (MAUP)

The use of CBGs as the spatial unit represents a compromise between geographic
granularity and data availability. However, this choice introduces the Modifiable Areal
Unit Problem (Openshaw, 1984), wherein observed spatial patterns may vary with the
level of aggregation. Critical micro-scale characteristics—such as intersection design,
pedestrian infrastructure, or visibility constraints—may be masked or diluted when
averaged at the CBG level. While the integration of Street View Indices (SVIs) attempts
to incorporate finer-scale perceptual features, these are still aggregated metrics and cannot
fully resolve localized effects relevant to AV navigation and risk.

7.3 Residual Multicollinearity Among Key Predictors

Despite applying Variance Inflation Factor (VIF) filtering to reduce multicollinearity,
some degree of conceptual and empirical overlap persists among certain predictors,
particularly between population density, building density, and visual enclosure. This
residual correlation complicates the interpretation of SHAP values, which assume feature
independence. In dense urban environments, where these variables tend to co-occur,
disentangling their individual effects on crash risk remains analytically challenging.

7.4 Absence of Spatially Explicit Modeling

While spatial heterogeneity is discussed in the results, the RF model used in this study
does not explicitly incorporate spatial autocorrelation or local spatial effects. This
omission limits the model’s ability to account for geographically clustered risks or spatial
dependence structures in crash data. Incorporating spatially explicit methods, such as
Geographically Weighted Random Forest (GW-RF) or hybrid approaches combining
GWR and machine learning, could enhance sensitivity to neighborhood-specific
dynamics, albeit with increased methodological complexity and computational demand.
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8. Conclusion

This study analyzed how built environment and socio-demographic factors influence
robotaxi crash risk in San Francisco using RF model, and developed a web application which
allows users to understand the spatial distribution of robotaxi crashes as well as to manage
and predict these incidents alongside other urban variables.

There were key findings including the non-linear impact of density, the predictive role of
visual enclosure, and the protective effects of walkability and land use diversity. Policy
implications may emphasize AV-friendly street design, micro-scale planning, and improved
visibility standards.

This study is quite timely, as robotaxis are expected to become more prevalent, with
Waymo launching its service in D.C. within the year. This study utilized CADMV’s
consistent accident dataset, but it would be much more meaningful and applicable if future
research could gather accident datasets from various cities across the U.S. or around the globe
and conduct the same analysis.
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Appendix A. Data Collection List and Result of Exploratory Analysis

Cate
Categ gory Name in  Data
oryl 2 Variables Description CSv Source count mean std
Median
household The total income 150413 61399.
income of households MedHHInc 620 .6274 4068
White
Americans 43.755 21.527
proportion Whites 675 9 9
African
Americans
proportion Black 675 4.7649 8.0432
Asian
Americans 33.992 21.327
proportion Asian 675 1 7
Native
American Native A
proportion me 675 0.5649 2.0972
Socio Simpson’s
demo diversity index of
graph Ethnic diversity races Ethics_div 675 0.5772 0.1381
ics Median house 2368.3 789.36
(SD) Median Rent  rent per unit MedRent 598 88 19
residential
Population population / total 13543, 12361.
density area Population 676 7982 6683
The property
value was at the 143433 377868
Property value CT level MedH Val 563 4441 .0486
Total homeless
Homeless incidents divided Homeless 479.90 1205.6
density by total area d 676 15 58
Total felony
incidents divided Felony de 650.63 1358.7
Felony density by total area n 676 72 998
Total
Misdemeanor  misdemeanor Misdemea 1043.1 27114
density incidents divided no 676 205 294
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by total area

Total violation

Violation incidents divided 481.16 1635.7
density by total area Violation. 676 7 148
Total homeless
Homeless incidents divided Homeless 479.90 1205.6
density by total area d 676 15 58
Rate of
Unemployment unemployed Unemploy
rate people me 672 5.4139 6.1345
Building Building area /
density total area Building d 674 0.3597 0.1091
Number of
Intersection intersections / 507.09 317.79
density total area intersecti 676 96 23
Road network  Length (mi) of 32.146 10.463
density roads / total area road densi 676 4 3
Dens Traffic signal  Number traffic 55.313
ity  density signal / total area traffic si 676 9 73.521
Number of
commercial-relate
Macr d points of
0-sca Commercial interest (POIs)/  commerci 4978.3 6126.9
le POI density total area 1 676 824 465
built Proportion of land
envir Public use designated as 10.192 16.886
onme proportion green area Public 676 5 6
nt Commercial Proportion of land
(BE) land use use designated as Commerci 17.515
proportion commercial area  al 676 4.7189 1
Proportion of land
Industrial land use designated as
use proportion  industrial area Industrial 676 1.7151 8.9932
Proportion of land
Residential land use designated as 64.153 33.755
use proportion residential area  Residentia 676 8 9
Proportion of land
Mixed Use land use designated as 19.219 26917
Diver Use proportion  Mixed Use Mixed.Use 676 7 7
sity
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Appendix B. Choropleth Maps of Variations in Each Independent Variable
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VMI by Census Tract (5 Quantile Classes)
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(Quantiles)

0.00, 0.00
® 0.00, 17.20
17.20, 400.71
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Bus.Line.D by Census Tract (5 Quantile Classes)

Bus.Stop.D by Census Tract (5 Quantile Classes)

us.Line.D
(Quantiles)
0.00, 7.20
7.20, 1411
14.11, 22.94
22.94, 38,65
38.65, 437.09

(Quantiles)
0.00, 37.50
37.50, 66.18
66.18, 96.42
96.42,160.17
160.17, 673.15

parking_me by Census Tract (5 Quantile Classes)

arking_ me
(Quantifes)

0.00, 0.00
000, 746.75
746.75, 3582.03
3582.03, 22610.56

ic_:

(Quantiles)
0.00, 0.00
0.00, 15.68

45.05, 96.94
96.94, 507.28

road_densi by Census Tract (5 Quantile Classes)

ad_der
(Quantiles)

6.13,24.22
24.22,28.97
28.97,32.98
32.98,39.36
39.36, 83.16

intersecti
(Quantiles)

0.00, 265.61

265.61, 396.84
396.84, 507.78
507.78, 686.16
686.16, 2353.34
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open_space by Census Tract (5 Quantile Classes)

tree_densi by Census Tract (5 Quantile Classes)
open_space tree_densi
(Quantiles) (Quantiles)
@ 0.0, 0.00 ’ e 0.00, 3243.70
® 000, 1177

3243.70, 4703.45
11.77,169.93 4703.45, 6588.73
6588.73, 9089.75
9089.75, 17872.98

Mixed.Use by Census Tract (5 Quantile Classes)
commerci_1 Mixed.
(Quantiles) (Quantiles)
0.00, 1208.52 ® 000, 0.00
1208.52, 2241.71 ® 000, 3.56
2241.71, 3939.45 ® 356, 1235
3939.45, 7838.18 ® 1235 3466
7838.18, 75267.72

34.66, 100.00

Residentia by Census Tract (5 Quantile Classes)

Industrial by Census Tract (5 Quantile Classes)
Residentia Industrial
(Quantiles)

(Quantiles)
0.00, 29.99 @ 0.00, 0.00
29.99, 67.12 0.00, 100.00
67.12, 8341
® 8341, 9397

93.97.

. 100.00
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Commercial by Census Tract (5 Quantile Classes) Public by Census Tract (5 Quantile Classes)

Commercial Public
(Quantiles) {Quantiles)
® 000, 0.00 ® 000, 0.00
0.00, 100.00 ® 000, 0.14
® 014, 664
© 664,1631
16.31, 99.88
Unemployme by Census Tract (5 Quantile Classes) Homeless_d by Census Tract (5 Quantile Classes)
Unemployme Homeless_d
(Quantiles) (Quantiles)
@ 0.00, 020 [ ] 043, 17.02
020, 275 17.02, 57.25
® 275 505 ® 57.25 132.90
® 505 882 ® 13290, 504.07
8.82,55.44 504.07, 12327.18
O Missing/nvalid Data
Violation. by Census Tract (5 Quantile Classes) Misdemeano by Census Tract (5 Quantile Classes)
Violation. Misdemeano
(Quantiles) (Quantiles)
[ ] 151, 64.12 [ ] 151, 15339
o 64.12, 110.76 [ ] 153.39, 261.55
110.76, 205.07 261.55, 485.87
205.07, 479.62 ® 485.87, 1188.22
479.62, 33629.36 1188.22, 38200.34




Felony_den by Census Tract (5 Quantile Classes)

Building_d by Census Tract (5 Quantile Classes)

Felony_den
(Quantiles)
0.86. 108.66
108.66, 212.88
212.88. 369.25
369.25, 778.43
778.43,19981.72

O eoeoe

Building_d
(Quantiles)
0.01,0.28
0.28,034
0.34,0.38
0.38,0.45
0.45,0.65
Missing/Invalid Data

Population by Census Tract (5 Quantile Classes)

Population

(Quantiles)

0.00, 6396.87
6396.87, 9119.05
9119.05, 11802.74
11802.74, 17070.28
17070.28, 111074.83

dHVal
(Quantiles)
115600.00, 1094980.00
1094980.00, 1295740.00
1295740.00, 1525960.00
1525960.00, 1853740.00,

1853740.00, 2000001.00
Missing/Invalid Data /

vaY E
,:/

(Quantiles)
275.00, 1734.80
1734.80, 2208.80
2208.80, 2628.00
2628.00, 3133.00
3133.00, 3501.00
Missing/Invalid Data
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Ethics_div
(Quaniiles)
0.00,0.47
047,056
056,063
063,069
0.69, 0.89
Missing/Invalid Data
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Native_Ame by Census Tract (5 Quantile Classes)

Asian by Census Tract (5 Quantile Classes)

Native_Ame
(Quantiles)
@ 0.00, 0.00
® 000, 012
0.12,29.99
O Missing/invalid Data

Asian
(Quantiles)

0.00, 13.42
13.42, 24.37
2437, 37.90
37.90, 54.73
54.73,100.00
Missing/invalid Data

Black by Census Tract (5 Quantile Classes)

Black
(Quantiles)

0.00, 0.00

0.00, 0.88

.88, 3.17

3.17, 6.99

6.99, 60.15
Missing/Invalid Data

O eoee0
o
®
8

O eee0

Whites
(Quantiles)

0.00, 23.46

23.46, 36.89

36.89, 50.66

50.66, 64.41

64.41,98.20

Missing/Invalid Data

MedHHInc by Census Tract (5 Quantile Classes)

Area_kmz2 by Census Tract (5 Quantile Classes)

MedHHInc
(Quantiles)

@ 12169.00, 96233.60
® 96233.60, 135031.20
@ 135031.20, 166210.40
© 166210.40, 208813.00
208813.00, 250001.00

O Missing/invalid Data

%

)
-

Area_km2
(Quantiles)

0.00, 0.07
0.07,0.10
0.10,0.13
0.13,018
0.18, 4.92
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crash_coun by Census Tract (5 Quantile Classes)

crash_coun
(Quantiles)
1.00, 1.00
1.00, 22.00
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