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This study examines how macro- and micro-scale built environment characteristics 

influence robotaxi crash frequency in San Francisco. Using California Department of Motor 
Vehicles (DMV)-reported AV collision data (2019–2025), we integrate spatial, streetscape, 
and socio-demographic variables at the Census Block Group (CBG) level. A Random Forest 
model with SHAP interpretation identifies key predictors of crash risk. Results show that 
while density metrics (e.g., population, building) are positively associated with crash 
frequency, their effects are non-linear. Visual enclosure emerges as the most influential 
streetscape factor, indicating that perceptual constraints may challenge AV sensor 
performance. Land use diversity and pedestrian infrastructure are associated with reduced 
crash risk, whereas socio-demographic variables such as homelessness and felony rates 
exhibit complex spatial patterns. These findings suggest that built environment interventions 
could complement existing AV safety frameworks, including Vision Zero and complete 
streets initiatives, and support more context-sensitive, equitable planning for autonomous 
mobility. 
 
1. Background 
 

As autonomous vehicle (AV) technology continues to evolve, particularly with the rise of 
autonomous ride-hailing or robotaxi, transportation planners are closely watching its potential 
to reshape urban mobility. In recent years, advanced robotaxi services with human safety 
operators have gained traction worldwide in cities like Phoenix, San Francisco, Guangzhou, 
and Wuhan (Carlson, 2022; Dai et al., 2023; Magramo, 2024). Notably, Cruise and Waymo 
have begun testing and commercializing fully autonomous (safety-operator-free) robotaxis 
(Carlson, 2022; Dai et al., 2023). By 2035, experts project that the share of passenger miles 
traveled (PMT) in robotaxi and autonomous shuttles will increase from 1 percent today to 8 
percent, while PMT in private cars will drop by about 15%. It will also impact transit 
demand, road use, and infrastructure priorities (McKinsey & Company, 2023).  

 
2. Literature Review 

 
While previous studies have extensively investigated the impact of built environment 

variables on conventional transportation safety (Zhang et al., 2024), few studies have 
explored how these parameters affect the crash frequency of robot cabs. This literature 
analysis combines previous research on macro and micro built environment elements and 
their impact on self-driving car and pedestrian crashes to provide a foundation for analyzing 
robot cab safety in San Francisco. 

 
2.1 Macro-Level Built Environment Factors and Crash Frequency 
 

2.1.1 Urban Density and Land Use 
 

Existing research suggests that urban density and land-use diversity have a major 
impact on traffic safety. Higher population, building, and work density tend to 
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increase traffic exposure, resulting in increased collision risk (Dong et al., 2023). 
Mixed-use areas, which include residential, business, and recreational zones, are 
related with lower vehicle speeds and improved pedestrian safety due to heightened 
driver caution and walkability incentives (Wang & Vermeulen, 2021). Research on 
pedestrian safety backs up these findings, demonstrating that higher commercial 
land-use density correlates with more pedestrian crashes, whereas residential areas 
had lower crash risks. However, the impact of land use on AV safety is questionable. 
Given that AVs must strictly obey traffic laws and may encounter human driver 
unpredictability in mixed-use areas, it is critical to research whether robotaxis have 
more or fewer crashes in high-density commercial zones than conventional cars. 

 
2.1.2 Street Design and Road Infrastructure 
 

According to research, street network layout such as intersection density, street 
width, and roadway class directly affects the occurrence of crashes (Dai et al., 2024). 
An increase in intersection density increases crash risk due to frequent stops, turns, 
and pedestrian crossings. On the other hand, a well-designed grid-like roadway 
network with controlled intersections reduces the severity of crashes (Dong et al., 
2023). Additionally, distance from transportation hubs can affect collision frequency. 
Pedestrian traffic and self-driving car-human interactions often increase in areas near 
public transportation stops, which may pose additional safety concerns for robotic 
cabs. Studies have shown that pedestrian-related crashes occur more frequently in 
high-traffic areas, meaning that robotic cabs deployed in these areas may require 
additional pedestrian recognition and avoidance mechanisms. 

 
2.2 Micro-Level Built Environment Factors and Street Safety 
 

2.2.1 Streetscape Design and Pedestrian Safety 
 

Micro-scale urban design features such as sidewalk widths, crosswalks, and 
intersection geometries have an impact on both pedestrian safety and robot cab crash 
risk. Zhang et al. (2024) found that small sidewalks and poor pedestrian infrastructure 
resulted in higher pedestrian injury rates in school zones. These findings suggest that 
poorer pedestrian infrastructure may raise similar safety concerns at self-driving 
vehicle deployment sites. In addition, green infrastructure and street trees have been 
shown to reduce vehicle speeds while improving pedestrian safety (Dong et al., 2023). 
However, from the perspective of self-driving cars, too much greenery may obscure 
sensor visibility, making target identification difficult and increasing the likelihood of 
near-collisions or emergency stops in heavily vegetated locations (Chen et al., 2024). 

 
2.2.2 Street View Imageability and Road Perception 
 

Recent research has highlighted the importance of perceived urban aesthetics, 
openness and closure in shaping driver behavior. Highly figurative streets defined by 
salient features, visual coherence, and clear lane markings are associated with lower 
crash rates (Li et al., 2018). However, visually cluttered urban environments, such as 
locations with complex signage, numerous billboards, or an overabundance of street 
furniture, may confuse the audiovisual perceptual system, leading to misinterpretation 
and delayed responses in real-time navigation (Dai et al., 2024). In addition, lighting 
conditions and nighttime visibility are important variables that affect audiovisual 
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safety. According to research, poorly illuminated roads increase the probability of 
pedestrian accidents because motorists' vision is restricted. Given that self-driving car 
sensors use both camera-based vision and LiDAR for navigation, further research is 
needed to assess whether low-illumination environments disproportionately affect the 
perceived accuracy and crash rates of self-driving cars. 

 
2.3 Spatial and Socioeconomic Influences on Crash Frequency 
 

2.3.1 Spatial Heterogeneity in Built Environment and AV Safety 
 

According to studies using spatially weighted regression models, the impact of the 
built environment on crash risk varies by city. Geographically weighted regression 
(GWR) models indicate that the impact of road network density and land use diversity 
on safety varies by neighborhood characteristics. This implies that spatial modeling 
approaches should be used to analyze macro- and micro-level built environment 
variables to explain local variations in crash incidence (Chen et al., 2024). 

 
2.3.2 Socioeconomic Factors and Traffic Safety 
 

In addition to physical infrastructure, socioeconomic factors also influence 
differences in automobile crash risk. Low-income neighborhoods tend to have higher 
pedestrian crash rates due to inadequate infrastructure improvements and limited 
pedestrian-friendly streetscapes (Zhang et al., 2024). Additionally, property values 
and median household income may be associated with roadway safety, as wealthier 
communities benefit from better-maintained infrastructure and traffic calming 
measures (Li et al., 2018). For robotaxi deployment, this means that robotic axles 
operating in low-income neighborhoods may face additional road risks due to poor 
street conditions, fewer crosswalks, and increased jaywalking. Understanding these 
socioeconomic disparities is critical to developing AV legislation and safety actions 
that promote equitable access to safe autonomous transportation. 

 
 
3. Research Question 

 
How Built Environments Shape Robotaxi Crashes in San Francisco? 
 

4. Data and Methodology 
 
4.1 Study Area 

 
   This study focuses on robotaxi crash data in San Francisco County, California. Its 
status as an early and extensive adopter of robotaxi services, combined with its 
diverse and complex urban fabric, makes it an ideal location for investigating the 
interplay between AVs and the built environment. The unit of analysis is the Census 
Block Group (CBG). 
 

4.2 Data Collection 
 
4.2.1 Dependent Variable: Robotaxi crash density 
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Robotaxi crash count was derived from collision reports (as PDF format) involving 
AVs submitted by manufacturers to the California DMV, as mandated. Data covered 
the period from January 2019 to January 2025. Geocoded crash locations (parsing.py) 
were aggregated to the CBG level to calculate crash density (df_final_Sci3.geojson).​
 

      
Figure 1. Crash density in San Francisco per each CBG (count/km2) 
Figure 2. Report of traffic collision involving an AV (CADMV) 
 

4.2.2 Independent Variables: Built Environment and Socio-Demographics 
 

A comprehensive set of independent variables was compiled, categorized as 
follows: (Refer to Appendix A for detailed variable descriptions) 

 
1.​ Macro-scale built environment features (5D): Capturing broader urban form 

and function based on the "5D" framework. 
■​ Density: Population density, building density, intersection density, road 

network density, traffic signal density, etc. 
■​ Diversity: Land use mix (e.g., proportions of Commercial, Industrial, 

Residential land uses; Gini_Simpson index), commercial POI density. 
■​ Design: Tree density, open space area proportion, mean street slope, mean 

elevation. 
■​ Destination accessibility: (Partially captured through POI densities). 
■​ Distance to transit: Bus stop density, bus line density, metro/subway 

station density, parking meter density. 
 

2.​ Micro-scale streetscape quality features (Street View Index, SVI): Quantifying 
perceptual attributes of the street environment using Street View Indices 
derived from street-level imagery. 
■​ Openness/enclosure: Sky view index, enclosure index. 
■​ Greenness: Green view index / vegetation percentage. 
■​ Walkability: Spatial walkability / sidewalk percentage. 
■​ Other: Street furniture percentage, street obstacles percentage. 

 
3.​ Socio-demographic features:  

■​ Economic: Median household income, median property value, median 
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rent, unemployment rate. 
■​ Demographic: Population density, proportions of White, Black, Asian 

populations, ethnic diversity. 
■​ Social: Homeless density, crime densities. 

 
4.3 Analytical Framework 

 
The analysis proceeded through the following stages: 
 
4.3.1 Variable Filtering 

 
To address potential multicollinearity among independent variables, Variance 

Inflation Factor (VIF) scores were calculated. Variables exhibiting high VIF values 
(e.g., > 10) were systematically removed to ensure model stability and interpretability. 

 
4.3.2 Model Development 

 
1.​ Ordinary Least Squares (OLS) Regression: An OLS model was initially fitted 

to serve as a baseline, examining linear relationships between the filtered 
independent variables and robotaxi crash density. 

 
2.​ Random Forest (RF) Regression: Recognizing the potential for non-linear 

relationships and complex interactions, a RF model was employed as the 
primary analytical tool. RF, an ensemble method, is robust to outliers and 
capable of capturing intricate patterns while providing measures of feature 
importance. 

 
4.3.3 Model Evaluation and Interpretation 

 
1.​ Model Performance: Models were evaluated using standard metrics including 

R-squared (R2), Mean Squared Error (MSE), and Mean Absolute Error 
(MAE). 

 
2.​ Feature Importance: RF provides an inherent measure of feature importance 

based on contribution to model accuracy. 
 
3.​ SHAP (SHapley Additive exPlanations): To interpret the RF model's 

predictions, the SHAP framework was utilized. SHAP values quantify the 
marginal contribution of each feature to individual predictions, enabling both 
global interpretation (e.g., overall feature importance, summary plots) and 
local interpretation (e.g., dependence plots showing how changes in a feature's 
value impact predictions). 

 
5. Result  

 
5.1 Independent Variable Filtering 

 
Following VIF analysis, 24 independent variables were retained for modeling. The 

descriptive statistics and final VIF values for these variables are presented below, 
indicating that multicollinearity was adequately addressed (all VIF < 7.5). 
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           Table 1: Descriptive Table for final 24 independent variables 
 
 

5.2 Evaluation of Model Performance 
 

5.2.1 OLS Model 
 
The baseline OLS regression model achieved an R-squared of 0.718 and an 

adjusted R-squared of 0.706. The F-statistic was highly significant (p < 0.001), 
indicating that the selected variables collectively explain a substantial portion of the 
variance in robotaxi crash density. 
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 Variables Mean std VIF 
Socio-Demographic    
 Population Density 13543.798 12361.668 2.7 
 Whites % 43.756 21.528 7.6 
 Black % 4.765 8.043 1.8 
 Asian % 33.992 21.328 5.8 
 Ethnic Diversity 0.577 0.138 2.1 
 Median Household Income 150413.627 61399.407 1.9 
 Felony Density 650.637 1358.800 2.1 
 Homeless Density 479.902 1205.658 1.6 
Macro-scale Built Environment    
 Building Density 0.360 0.109 4.9 
 POI Density 4978.382 6126.947 2.8 
 Parking Meter Density 1723.467 2794.020 2.7 
 Gini Simpson Index 0.285 0.200 1.6 
 Intersection Density 507.100 317.792 1.7 
 Open Space Density 6.750 16.282 1.2 
 Elevation 57.309 39.255 2.1 
 Street Slope 5.903 3.315 2.4 
 Avg. Speed Limit 21.324 10.436 1.8 
 Transit Stop Density 120.611 113.759 1.4 
Micro-scale Streetscape    
 Visual Enclosure 0.277 0.155 6.2 
 Visual Walkability 0.055 0.013 2.2 
 Visual Motorization 0.426 0.014 2.5 
 Visual Vegetation 0.068 0.036 1.7 
 Visual Obstacle 0.004 0.004 1.9 
 Visual Furniture 0.004 0.001 2.1 



 

Although the OLS model shows a high R-squared, it's potentially less suitable for 
this analysis. OLS assumes linear relationships, likely oversimplifying the complex, 
non-linear effects of the built environment on crashes which RF can better capture. 
Furthermore, the table indicates Covariance Type: nonrobust, meaning the model's 
significance tests (p-values) could be unreliable if the underlying assumption of 
constant error variance is violated. 

 
Figure 3. OLS Regression Results 

 
5.2.2 RF Model 

 
The RF model demonstrated comparable explanatory power, achieving an 

R-squared of approximately 0.701 on standardized data, with an MSE of 0.123 and 
MAE of 0.268. Given its ability to handle non-linearities, subsequent interpretation 
focuses primarily on the RF model. 

 
5.3 Feature Importance 
 

The feature importance scores derived from the RF model (Figure 4) highlight the 
relative influence of different variables. SVI Enclosure (SVI_Enclos) emerged as the 
most influential predictor, followed by Population density (Population) and Building 
density (Building_d). Other variables with notable importance include tree density 
(tree_densi), felony density (Felony_den), commercial POI density (commerci_1), 
intersection density (intersecti), and sidewalk percentage (SVI_sidewa). 

 
Figure 4. RF Feature Importance 

 
5.4 SHAP Analysis: Interpreting Built Environment Impacts 
 

SHAP analysis provided deeper insights into how each feature influences the RF 
model's predictions of robotaxi crash density. 
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5.4.1 SHAP Summary Plot  
 

Figure 5 presents the SHAP summary plot, illustrating the global importance and 
impact direction of each feature on the RF model's prediction of crash density. 
Features are ranked vertically by importance (mean absolute SHAP value), with 
Visual Enclosure clearly being the most influential predictor. Each point represents an 
observation (CBG), where the horizontal position indicates the SHAP value (impact 
on prediction) and the color signifies the feature's value (red for high, blue for low). 
High values of Visual Enclosure (red dots) predominantly correspond to large positive 
SHAP values, indicating a strong positive association with increased predicted crash 
risk. Following Visual Enclosure, Population Density, Building Density, POI Density, 
and Visual Motorization are also highly ranked, generally showing that higher values 
(red dots) tend to increase the predicted crash risk (positive SHAP values). 
Conversely, features like Gini Simpson Index (Land Use Diversity) and Asian % 
show that higher values (red dots) tend to decrease the predicted risk (negative SHAP 
values), while others like Visual Obstacle and Ethnic Diversity exhibit weaker overall 
impacts hovering around zero. 

 
Figure 5. Results of SHAP feature importance analysis 
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5.4.2 Non-linear Relationships (from SHAP Dependence Plots): Examining SHAP 
dependence plots reveals specific patterns 
 

1.​ Macro-scale Built Environment (5D) Impacts (Figure 6) 
 

■​ Density 
 
The density-related built environment variables (X1: Building Density, 

X2: POI Density, X3: Parking Meter Density) all exhibit non-linear 
relationships with the predicted crash density, rather than simple linear 
associations. Specifically, Building Density (X1) and POI Density (X2) 
generally show a positive correlation where higher density relates to higher 
predicted risk, however, this effect is not constant, as the rate of risk increase 
slows considerably at higher density levels, indicating diminishing marginal 
risk effects. The relationship for Parking Meter Density (X3) is more complex, 
showing minimal impact at lower densities but transitioning to a significant 
positive association with predicted crash risk only after exceeding a certain 
threshold (around 4000-6000). 

 
■​ Diversity 

 
The Gini-Simpson Index (X4), which measures built environment 

diversity (how mixed land uses are), shows a non-linear negative relationship 
with predicted crash density. As the index increases (meaning more land use 
mix), the SHAP value decreases, indicating that higher diversity is linked to 
lower predicted crash risk. This downward trend is fairly consistent across the 
range, suggesting a continuous safety benefit as diversity increases. 

 
■​ Design 

 
Intersection Density (X5) shows a strong positive association, where 

predicted risk increases sharply at lower densities and continues to rise, albeit 
more slowly, at higher densities. Open Space (X6) exhibits a slightly positive, 
near-linear trend, suggesting marginally higher predicted risk with more open 
space, which might be counter-intuitive and warrants further investigation. 
Elevation (X7) displays a distinct non-linear pattern, with predicted risk being 
lowest at very low and very high elevations, peaking at moderate elevation 
levels (around 50-100 units). Lastly, Street Slope (X8) demonstrates a 
relationship that is relatively flat but shows a slight overall positive trend, 
suggesting that steeper slopes are associated with a marginally higher 
predicted crash density. 

 
■​ Accessibility/ Distance to Transit:  

 
Average Speed Limit (X9) exhibits a relationship that is mostly flat, 

indicating small impact on predicted crash density within this model for 
speeds above approximately 25 mph. However, there is a noticeable non-linear 
trend where very low speed limits (below ~20 mph) are associated with 
negative SHAP values (lower predicted risk); this suggests that very low speed 
limits might indeed reduce crash probability. Transit Stop Density (X10) 
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displays a clear non-linear positive association: at low densities, the impact is 
negligible or slightly negative, but beyond a threshold of approximately 150 
stops/area unit, higher density is consistently linked to an increasing predicted 
crash risk, likely reflecting greater pedestrian activity and complex traffic 
interactions near transit hubs. 

 
Figure 6. Non-linear relationships between crash density and macro-scale built environment 
variables. 
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2.​ Micro-scale Streetscape Quality (SVI) Impacts (Figure 7) 
 

■​ Enclosure/Constraint 
 

Visual Enclosure (X11), identified as a strongly predictive variable 
contributing significantly to feature importance (~40%), exhibits a distinct 
positive sigmoidal relationship. At low enclosure levels (below ~0.2), its 
impact on predicted risk is minimal; however, there is a sharp and substantial 
increase in predicted risk as enclosure rises between approximately 0.2 and 
0.4, after which the impact plateaus at a high positive level. This indicates a 
critical threshold beyond which increased visual enclosure drastically elevates 
predicted crash risk. Visual Motorization (X13) presents another complex 
non-linear pattern: predicted risk slightly decreases at lower motorization 
levels, then rises sharply within a specific intermediate range (~0.42 to 0.44), 
before leveling off again at higher values, suggesting a particular band of 
visible vehicle presence is most strongly associated with increased risk. 

 
■​ Openness/Pedestrian Environment 

 
Visual Walkability (X12) displays a slightly negative trend, suggesting that 

while more visible walking space might reduce predicted risk. Both Visual 
Obstacle (X15) and Visual Furniture (X16) exhibit very weak, mostly flat 
relationships hovering close to zero impact across their observed ranges, 
indicating they have minimal influence on predicted crash density within this 
model's framework. 

 
■​ Greenness 

 
Visual Vegetation (X14) shows a generally positive association, where 

predicted risk tends to increase as vegetation becomes more prominent, 
particularly up to a level of around 0.125, after which the effect seems to 
stabilize. 

11 



 

 
Figure 7. Non-linear relationships between crash density and streetscape variables 

 
3.​ Socio-Demographic Impacts (Figure 8) 

 
■​ Demographic 

 
Socio-demographic variables show varied non-linear impacts. Population 

Density (X17) has a strong positive association with predicted risk, rising 
sharply initially then more slowly at higher densities, suggesting diminishing 
marginal risk. Ethnic composition relationships are weaker and complex: 
Whites % (X18) is mostly flat with minor dips and rises; Black % (X19) 
shows minimal negative impact; Asian % (X20) has a more consistent 
negative association that may level off; and Ethnic Diversity (X21) appears 
largely unrelated to predicted risk in this model. These demographic links 
should be interpreted cautiously, likely reflecting correlations with 
unmeasured factors. 

 
■​ Economic/Social 

 
Homeless Density (X24) shows a positive non-linear trend, where 

predicted risk increases as density rises from zero but the rate of increase 
slows considerably at higher densities (above ~2000-4000), eventually 
flattening out. These patterns suggest that while higher levels of crime and 
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homelessness density are associated with increased predicted crash risk, the 
marginal impact is not constant and may lessen or change direction at very 
high levels. Similarly, Felony Density (X23) shows a strong positive link, 
peaking at moderate densities before diminishing slightly. In contrast, Median 
Household Income (X22) exhibits a very weak, mostly flat relationship with 
predicted crash density. The SHAP values remain close to zero across the 
income spectrum, suggesting that, within this model, income level has 
minimal direct influence on the predicted risk after accounting for other 
factors. 

 
 

 
Figure 8. Non-linear relationships between crash density and socio-demographic variables. 
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5.5 Web Application 
 

Using the results of this study, the web application is developed to provide 
information to the public sector, particularly in the planning and safety department, 
considering robotaxi incidents in their work. Unlike traditional PDF format incident 
reports, this application allows users not only to understand the spatial distribution of 
robotaxi crashes but also to manage and predict these incidents alongside other urban 
variables considered in this study. The home screen displays 600 points representing 
robotaxi incidents from CADMV and 676 polygons representing CBGs in San Francisco, 
as shown in Figure 9.   

The search box in the top left enables users to find crashes at specific locations. They 
can search for an address, and the app allows them to zoom into the map. The incident list 
below the search box automatically filters to show only crashes within the current view. 
In the Incident List, users can edit, delete, or add a new incident by clicking any location 
on the map. Any newly created, edited, or deleted incident will reflect on the map and in 
real-time on Firebase.   

Moving on to modeling, toggle switches in the layer list allow users to view the 
spatial distribution of each independent variable. Additionally, there are three crash 
density prediction scenarios based on a RF model: i) Predicted crash density if the Gini 
Simpson Index increases by 10%, ii) Predicted crash density if the SVI Walkability 
decreases by 10% (count/km²), and iii) Predicted crash density if the SVI Visual Furniture 
increases by 10% (count/km²). These scenarios enable planners to consider the impact of 
robotaxi incidents as they modify planning elements within each block group. In the top 
right corner, the radar chart illustrates how each block group scores on the Top-4 
SHAP-contributing variables: SVI Enclosures, Population, Building Density, and 
Commercial POI Density. A larger radar area indicates a higher predicted crash risk for 
that area.   

Finally, the "Download Data” button next to it allows users to filter crash data by 
robotaxi brand and vehicle year, which can then be downloaded in JSON format. 

 

 
Figure 9. Web application screenshot 
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6. Discussion   
 
This study investigated the influence of built environment factors on robotaxi crash 

frequency in San Francisco using DMV collision data and a range of environmental and 
socio-demographic variables. By employing RF modeling and SHAP interpretation, we 
identified key attributes associated with predicted crash risk. 

 
6.1 Summary of Key Findings 
 

6.1.1 Density Metrics Consistently Increase Predicted Risk, but Non-Linearly 
 

Various density measures (Population, Building, Intersection, Transit Stop 
densities) are positively associated with higher predicted crash risk, aligning with the 
expectation that denser areas foster more interactions and potential conflicts. 
However, the SHAP analysis reveals these relationships are distinctly non-linear, 
often exhibiting diminishing marginal risk increases at very high densities, indicating 
density's impact isn't uniformly proportional across its range. 

 
6.1.2 Visual Enclosure is the Primary Micro-Scale Risk Factor, Linked to 
Macro-Density 
 

The micro-scale streetscape feature 'Visual Enclosure' emerged as the single most 
important predictor in the model (accounting for ~40% of feature importance). It 
exhibits a positive sigmoidal relationship with predicted risk: beyond a threshold 
(~0.2-0.4), predicted crash risk increases sharply and substantially. This high visual 
enclosure (often implying a high building-to-road-space ratio) is itself closely 
correlated with the macro-scale high-density features mentioned in the first key 
finding (like building and population density), commonly found in urban core areas. 
Therefore, high enclosure signifies not only more concentrated population and travel 
activity (increasing baseline exposure to potential collisions), but we also speculate 
that this 'street canyon' environment poses direct challenges to AV sensors (e.g., 
limited sightlines, signal interference), further elevating the predicted crash risk. This 
finding underscores the need for urban planners designing AV-friendly environments 
to address and mitigate excessive visual enclosure, potentially by enhancing street 
openness and visibility. 

 
6.1.3 Built Environment Diversity and Walkability Show Protective Associations 
 

Contrary to density metrics, higher built environment diversity (measured by the 
Gini-Simpson Index, X4) consistently correlates with lower predicted crash risk 
across its range, suggesting potential safety benefits inherent in mixed-use 
environments. Furthermore, prioritizing pedestrian infrastructure also appears 
beneficial for reducing predicted risk. Greater 'Visual Walkability' (X12), representing 
the percentage of sidewalk space, shows a negative association with predicted crash 
frequency, although this effect is less pronounced than that of diversity. This finding 
underscores the importance of robust pedestrian infrastructure – specifically providing 
ample and well-defined walking space like wider sidewalks – in creating street 
environments where predicted robotaxi crashes are less likely. The 'Visual Furniture' 
(X16) shows the same trend, indicating comprehensive pedestrian infrastructure 
contributes to overall street safety and predictability. 
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6.1.4 Socio-Demographic Factors Exhibit Complex and Varied Associations  
 

Beyond Population Density (a positive predictor), other socio-demographic 
variables show intricate patterns. Higher Felony and Homelessness densities are 
linked to increased predicted risk, but non-linearly (peaking or flattening). 
Conversely, Median Household Income shows minimal direct impact in this model. 
Ethnic composition variables display complex and weaker associations requiring 
cautious interpretation. 

 
6.2 Policy and Practical Implications 
 

6.2.1 Supporting Vision Zero and Complete Streets through AV Risk Insights 
 

Our findings suggest that built environment factors—particularly population and 
building density—are associated with increased predicted robotaxi crash risk, though 
in non-linear patterns. While these results are exploratory and context-specific, they 
may offer additional perspectives to help inform ongoing policy refinement such as 
San Francisco’s existing Vision Zero and Complete Streets initiatives. This could 
potentially complement existing tools used by planners when identifying high-risk 
areas. If integrated thoughtfully, these data-driven insights may support more targeted 
deployment of established measures—such as traffic calming infrastructure, 20-mph 
zones, or AV speed caps—in dense urban corridors.  

 
6.2.2 Highlighting Built Form Features That May Warrant Further Attention 
 

This model suggests that certain urban design elements—most notably visual 
enclosure, vegetation density, and curbside activity—may be associated with 
increased crash risk for robotaxis. While these findings require further validation, they 
highlight features that could be worth examining more closely in the context of AV 
deployment and street design. 

For instance, visual enclosure demonstrated a non-linear relationship with crash 
risk in this model, which may reflect challenges for sensor-based navigation in 
visually constrained environments. Similarly, vegetation and curbside dynamics may 
influence AV sensor performance, depending on configuration and traffic conditions. 
These results suggest that planners and engineers might consider integrating visibility 
standards or clear sightline principles—already common in pedestrian safety 
guidelines—into future AV readiness discussions.  

 
6.2.3 Reinforcing the Relevance of Micro-Scale Design in AV Planning 
 

Our findings add to the growing recognition that micro-scale urban design 
elements, such as sidewalk presence, vegetation, and street openness, may influence 
AV navigation and safety performance. They align with broader planning concepts 
such as “AV Urbanism” (NACTO, 2024), which emphasize the need to consider built 
form in the transition to autonomous mobility. 

In this regard, this study may contribute additional evidence in support of 
discussions around how streetscape features affect AV operation. While macro-level 
planning remains essential, incorporating fine-grained design attributes into AV 
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readiness frameworks—particularly in high-deployment areas—could further refine 
existing policy responses.  

 
7. Limitations 

 
This study contributes to a growing body of research examining the relationship between 

built environment features and AV safety. Nonetheless, several limitations must be 
acknowledged to contextualize the findings and inform future inquiry. 

 
7.1 Limited AV Crash Data 

 
The analysis relies on AV crash data submitted by manufacturers in compliance with 

California DMV regulations. While this dataset provides rare empirical access to 
real-world AV incidents, it is constrained in several ways. First, it includes only officially 
reported events, excluding minor collisions, near-misses, or edge-case sensor failures that 
did not trigger formal reporting. Dynamic and situational variables such as real-time 
traffic volumes, pedestrian flows, weather conditions, road condition (e.g., road pit), and 
vehicle-specific AV configurations (e.g., sensor placements, operational design domains) 
were excluded. The absence of such variables may result in unobserved heterogeneity or 
residual confounding, thus limiting the explanatory completeness of the model. 

 
7.2 Spatial Aggregation and the Modifiable Areal Unit Problem (MAUP) 

 
The use of CBGs as the spatial unit represents a compromise between geographic 

granularity and data availability. However, this choice introduces the Modifiable Areal 
Unit Problem (Openshaw, 1984), wherein observed spatial patterns may vary with the 
level of aggregation. Critical micro-scale characteristics—such as intersection design, 
pedestrian infrastructure, or visibility constraints—may be masked or diluted when 
averaged at the CBG level. While the integration of Street View Indices (SVIs) attempts 
to incorporate finer-scale perceptual features, these are still aggregated metrics and cannot 
fully resolve localized effects relevant to AV navigation and risk. 

 
7.3 Residual Multicollinearity Among Key Predictors 

 
Despite applying Variance Inflation Factor (VIF) filtering to reduce multicollinearity, 

some degree of conceptual and empirical overlap persists among certain predictors, 
particularly between population density, building density, and visual enclosure. This 
residual correlation complicates the interpretation of SHAP values, which assume feature 
independence. In dense urban environments, where these variables tend to co-occur, 
disentangling their individual effects on crash risk remains analytically challenging. 

 
7.4 Absence of Spatially Explicit Modeling 

 
While spatial heterogeneity is discussed in the results, the RF model used in this study 

does not explicitly incorporate spatial autocorrelation or local spatial effects. This 
omission limits the model’s ability to account for geographically clustered risks or spatial 
dependence structures in crash data. Incorporating spatially explicit methods, such as 
Geographically Weighted Random Forest (GW-RF) or hybrid approaches combining 
GWR and machine learning, could enhance sensitivity to neighborhood-specific 
dynamics, albeit with increased methodological complexity and computational demand. 
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8. Conclusion 

 
This study analyzed how built environment and socio-demographic factors influence 

robotaxi crash risk in San Francisco using RF model, and developed a web application which 
allows users to understand the spatial distribution of robotaxi crashes as well as to manage 
and predict these incidents alongside other urban variables.  

There were key findings including the non-linear impact of density, the predictive role of 
visual enclosure, and the protective effects of walkability and land use diversity. Policy 
implications may emphasize AV-friendly street design, micro-scale planning, and improved 
visibility standards.  

This study is quite timely, as robotaxis are expected to become more prevalent, with 
Waymo launching its service in D.C. within the year. This study utilized CADMV’s 
consistent accident dataset, but it would be much more meaningful and applicable if future 
research could gather accident datasets from various cities across the U.S. or around the globe 
and conduct the same analysis.  
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Appendix A. Data Collection List and Result of Exploratory Analysis 

Categ
ory 1 

Cate
gory 
2 Variables Description 

Name in 
CSV 

Data 
Source count mean std 

Socio
demo
graph
ics 
(SD) 

 

Median 
household 
income 

The total income 
of households MedHHInc  620 

150413
.6274 

61399.
4068 

 

White 
Americans 
proportion  Whites  675 

43.755
9 

21.527
9 

 

African 
Americans 
proportion  Black  675 4.7649 8.0432 

 

Asian 
Americans 
proportion  Asian  675 

33.992
1 

21.327
7 

 

Native 
American 
proportion  

Native_A
me  675 0.5649 2.0972 

 Ethnic diversity 

Simpson’s 
diversity index of 
races Ethics_div  675 0.5772 0.1381 

 Median Rent 
Median house 
rent per unit MedRent  598 

2368.3
88 

789.36
19 

 
Population 
density 

residential 
population / total 
area Population  676 

13543.
7982 

12361.
6683 

 Property value 

The property 
value was at the 
CT level MedHVal  563 

143433
4.441 

377868
.0486 

 
Homeless 
density 

Total homeless 
incidents divided 
by total area 

Homeless_
d  676 

479.90
15 

1205.6
58 

 Felony density 

Total felony 
incidents divided 
by total area 

Felony_de
n  676 

650.63
72 

1358.7
998 

 
Misdemeanor 
density 

Total 
misdemeanor 
incidents divided 

Misdemea
no  676 

1043.1
205 

2711.4
294 
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by total area 

 
Violation 
density 

Total violation 
incidents divided 
by total area Violation.  676 

481.16
7 

1635.7
148 

 
Homeless 
density 

Total homeless 
incidents divided 
by total area 

Homeless_
d  676 

479.90
15 

1205.6
58 

 
Unemployment 
rate 

Rate of 
unemployed 
people 

Unemploy
me  672 5.4139 6.1345 

Macr
o-sca
le 
built 
envir
onme
nt 
(BE) 

Dens
ity 

Building 
density 

Building area / 
total area Building_d  674 0.3597 0.1091 

Intersection 
density 

Number of 
intersections / 
total area intersecti  676 

507.09
96 

317.79
23 

Road network 
density 

Length (mi) of 
roads / total area road_densi  676 

32.146
4 

10.463
3 

Traffic signal 
density 

Number traffic 
signal / total area traffic_si  676 

55.313
9 73.521 

Diver
sity 

Commercial 
POI density 

Number of 
commercial-relate
d points of 
interest (POIs) / 
total area 

commerci_
1  676 

4978.3
824 

6126.9
465 

Public 
proportion 

Proportion of land 
use designated as 
green area Public  676 

10.192
5 

16.886
6 

Commercial 
land use 
proportion 

Proportion of land 
use designated as 
commercial area 

Commerci
al  676 4.7189 

17.515
1 

Industrial land 
use proportion 

Proportion of land 
use designated as 
industrial area Industrial  676 1.7151 8.9932 

Residential land 
use proportion 

Proportion of land 
use designated as 
residential area Residentia  676 

64.153
8 

33.755
9 

Mixed Use land 
use proportion 

Proportion of land 
use designated as 
Mixed Use Mixed.Use  676 

19.219
7 

26.917
7 
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Gini_Simpson 
1−HHI 
(Gini-Simpson) 

Gini_Simp
s  676 0.2853 0.1999 

Desi
gn 

Tree density 
Number of tree / 
total area tree_densi  676 

6114.1
665 

3371.0
951 

Open space 
area 

Open space area/ 
total area 

open_spac
e  676 6.7496 

16.282
4 

Street slope 

The average slope 
degree within 
each CT 

mean_slop
e  676 5.9028 3.3147 

Elevation 

The average 
elevation degree 
within each CT 

mean_elev
a  676 

57.308
8 

39.255
3 

Dista
nce 
to 
transi
t & 
Acce
ssibil
ity 

Bus stop 
density 

Number of bus 
stops / total area Bus.Stop.D  676 

103.19
59 

89.899
9 

Bus line density 

Length (mi) of 
bus lines / total 
area Bus.Line.D  676 

27.208
8 

36.863
4 

Metro/subway 
station density 

Number of 
metro/subway 
stops / total area Metro.Stop  676 

17.415
2 

45.295
4 

Metro/subway 
line density 

metro/subway 
lines (mi) / total 
area Metro.Line  676 3.6615 

13.244
4 

Transit stop 
density 

Number of bus 
and metro stops / 
total area TransitSto  676 

120.61
11 

113.75
94 

Parking Meter 
Density 

Number of 
parking meters / 
total area 

parking_m
e  676 

1723.4
671 

2794.0
202 

Eye-l
evel 
street 
envir
onme
nt 
(SE) 

 Sky view index 
The percentage of 
sky in the images SVI_sky 

Google 
SVIs 676 0.3507 0.0561 

 Enclosure index 

The percentage of 
pixels indicating 
walls, fences, 
banister, and rails 
in buildings 

SVI_Enclo
s 

Google 
SVIs 676 0.277 0.1552 
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Green view 
index 

Greenness 
indicates the 
presence of green 
elements within 
the streetscape, 
which is 
measured by the 
proportion of 
vegetation pixels 
in images 

SVI_veget
a 

Google 
SVIs 676 0.0676 0.0359 

 
Spatial 
walkability 

The pixel 
percentage of 
walking space 
(sidewalks, paths, 
stairs, and 
stairway) in 
roadways 

SVI_sidew
a  676 0.023 0.0052 

 Street furniture 

The percentage of 
street furniture 
(such as awnings, 
benches, 
streetlights, traffic 
light, pole, lamp, 
escalator) in the 
images SVI_Furnit 

Google 
SVIs 676 0.0039 0.0012 

 Street obstacles 

The percentage of 
pixels indicating 
walls, fences, 
banister, and rails 
in buildings 

SVI_Obsta
c 

Google 
SVIs 676 0.0044 0.0035 

  

Visual 
motorization 
index  VMI 

Google 
SVIs 676 0.4262 0.0144 
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Appendix B. Choropleth Maps of Variations in Each Independent Variable 
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