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This note describes Hypermind’s novel adaptation of the “Surprisingly Popular” 
algorithm of Prelec, Seung, & McCoy (2017) to crowd-forecasting of variables 
along a continuous range. 
  
Prelec, Seung, & McCoy (2017) asked subjects to vote for the correct answer among several in a 
discrete set, and also to predict how others would vote. They prove that the “surprisingly 
popular” (SP) answer in a set of discrete answers is also the most likely correct answer. They 
compute a “prediction-normalized vote” (V) for each discrete answer and show that the correct 
answer has the highest V.1  
 
In the context of experimental data, they propose several approximations to compute V for each 
answer i: 

V(i)  = ​ ​ ​ ​ (1) 𝑝𝑒𝑟𝑠𝑜(𝑖) ×
𝑗≠𝑖

𝑗

∑ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑗|𝑖)
𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑖|𝑗)

Where: 
●​ perso(i) is the percentage of participants who voted for answer i; 
●​ predict(i|j) is the proportion of predictions for answer i among those who voted for 

answer j. 
●​ approximate 0/0  0 ≡

 
Extension to range variables 
 
In our case the answers are not discrete. Instead, both the answers and the predictions are 
expressed as probability distributions over a range of values. Additionally, we ask subjects not to 

1 Prelec, Seung, McCoy (2017) A solution to the single question crowd wisdom problem: Supplementary 
Information. Nature, 541. 



vote for a correct answer, but to forecast the future value of a continuous target variable. Figure 
1 shows how the platform elicits a user’s input. 
 

 
FIGURE 1 - How Hypermind’s Prescience platform elicits from each user both a personal forecast for a continuous 
variable (x-axis) and a meta forecast, i.e. a prediction of the crowd’s forecast. The user can control the mode, the 
standard deviation and the skew of her distributions, either by entering specific numbers, or by adjusting a couple 
cursors.  

 
To adapt the discrete case described by Prelect et al (2017) to our case of continuous 
forecasting, we first divide the target variable’s range (x-axis in Figure 1) into a sequence of 
hundreds of contiguous bins. A user’s forecast and meta-forecast are then translated into 
vectors of probabilities over all bins.  
 
Then we compute the aggregated “crowd” forecast and meta-forecast as normalized vectors of 
summed user probabilities in each bin:2  
 

●​ fcst = the vector over all bins of the personal probabilities in each bin, normalized; 
●​ meta = the vector over all bins of the meta probabilities in each bin, normalized; 

 
Now we compute the prediction-normalized forecast in each bin, using the Prelec et al (2017) 
formula (1) above:  

V(i)  =                                    (2) 𝑓𝑐𝑠𝑡(𝑖) ×
𝑗≠𝑖

𝑗

∑ 𝑚𝑒𝑡𝑎(𝑗|𝑖)
𝑚𝑒𝑡𝑎(𝑖|𝑗)

Where: 
●​ fcst(i) = probability for bin i in the fcst vector (e.g., 0.08); 
●​ meta(i|j) = the average meta probability in bin i considering only the users who have a 

non-zero personal probability in bin j. 
●​ approximate 0/0  0 ≡

 

2 If user weights are available, perhaps based on past forecasting success, then the aggregations could also be 
computed as weighted averages. 



The vector V of prediction-normalized probabilities over all bins is our version of the 
“surprisingly popular” forecast distribution over the target variable’s range. If we need a point 
forecast, we just report the mean of that distribution: 
 

Surprisingly popular point forecast  =                (3) 
1

𝑖
∑𝑉(𝑖)

 ×  
𝑖

∑(𝑡𝑎𝑟𝑔𝑒𝑡(𝑖) × 𝑉(𝑖))

 
where target(i) = the target variable’s value in the ith bin (e.g., 15% growth, or 1,200 EFLOPS); 
 
Figure 2 shows an actual example of the results of our computations, taken from a recent 
Hypermind forecasting contest on artificial intelligence progress at the 2030 horizon. The blue 
curve (“actual crowd”) aggregates the personal forecasts, while the orange curve aggregates the 
meta predictions (“predicted crowd”). The gray curve (“collective intelligence”) shows the 
prediction-normalized probabilities that result from aggregating the surprisingly popular 
forecasts. The solid vertical line indicates the surprisingly popular point forecast. 
 
 

 
FIGURE 2 - An example of prediction-normalized forecast (i.e.,”collective intelligence” in grey) extracted from the 
aggregation of 59 personal forecasts (“actual crowd” in blue) and 59 meta forecasts (“predicted crowd” in orange) 
for a continuous target variable measured in exaFLOPS-days. Other examples taken from Hypermind’s forecasting 
contest on Artificial Intelligence 2030 are showcased here. 

 
Practical approximations 
 
In practice, when applying this algorithm to experimental data obtained with a relatively small 
number of forecasters - for instance just 59 forecasters in the case presented in Figure 2 -  
several approximations are necessary to produce coherent results. 
 
A first design decision concerns the granularity of the bins along the target variable’s range. This 
immediately impacts the number of bins, which in turn impacts the amount of probability that 

https://prod.hypermind.com/ngdp/en/showcase2/showcase.html?sc=AI2030
https://prod.hypermind.com/ngdp/en/showcase2/showcase.html?sc=AI2030


is allotted in each bin by the forecasters. It’s important to avoid very small probabilities that can 
potentially transform the meta(j|i)/meta(i|j) ratios in equation (2) into huge numbers. We 
decided to set the bin granularity to the minimum standard deviation allowed for input 
distributions (e.g., those in figure 1), which is specific to a target variable range. This would 
typically result in a few hundred bins, which is more than a forecaster could reasonably 
distinguish amongst. This seems to offer some degree of psychological coherence. 
 
A second approximation is the minimum probability required to consider that a forecaster has a 
“non-zero” probability in a particular bin. This goes to the core of equation (2) which computes 
the prediction-normalized forecast based on which participants have a forecast or a meta 
forecast in each bin. After some experimentation, we settled on a rather aggressive threshold of 
.05 probability below which a forecaster is not considered to have forecasted or 
meta-forecasted that particular bin. 
 
A third and perhaps less critical approximation is also related to the issue of avoiding very small 
meta probabilities that can potentially transform the meta(j|i)/meta(i|j) ratios in equation (2) 
into huge numbers. This in turn tends to extremize the prediction-normalized forecast density 
into very high peaks and very low valleys, which can result in apparent “holes” in the density 
function where probabilities are almost zeroed-out. Avoiding those “holes”simply requires that 
the meta(i|j) denominator be no less than a minimum value, typically .001. The values of this 
parameter have very little impact on the surprisingly-popular point forecast, but relatively high 
values such as .001 (vs .0001 for instance) do help fill up the density function properly. 
 
 


