1) Given the vectors $\mathbf{M} = -10\mathbf{a}x + 4\mathbf{a}y - 8\mathbf{a}z$ and $\mathbf{N} = 8\mathbf{a}x + 7\mathbf{a}y - 2\mathbf{a}z$, find:

a) a unit vector in the direction of $-\mathbf{M} + 2\mathbf{N}$.

$$-M+2N = 10ax - 4ay + 8az + 16ax + 14ay - 4az = (26, 10, 4)$$

Thus $\mathbf{a} = (26, 10, 4)|(26, 10, 4)| = (0.92, 0.36, 0.14)$

b) the magnitude of 5ax + N - 3M:

(5, 0, 0) + (8, 7, -2) - (-30, 12, -24) = (43, -5, 22), and |(43, -5, 22)| = 48.6.

c) |M||2N|(M+N):

$$|(-10, 4, -8)||(16, 14, -4)|(-2, 11, -10) = (13.4)(21.6)(-2, 11, -10)$$

= (-580.5, 3193, -2902)

2) The vector from the origin to the point A is given as (6,-2,-4), and the unit vector directed from

the origin toward point B is (2,-2,1)/3. If points A and B are ten units apart, find the coordinates of point B.

With $\mathbf{A} = (6, -2, -4)$ and $\mathbf{B} = 0.33$ B(2, -2, 1), we use the fact that $|\mathbf{B} - \mathbf{A}| = 10$, or |(6 - 0.666) B) $\mathbf{a} \times \mathbf{a} = (2 - 0.666)$ 0.666B)**a**_y - (4 + 0.333B)**a**_z | = 10

Expanding, obtain

$$36 - 8B + \frac{4}{9}B^2 + 4 - \frac{8}{3}B + \frac{4}{9}B^2 + 16 + \frac{8}{3}B + \frac{1}{9}B^2 = 100$$

 $36 - 8B + \frac{4}{9}B^2 + 4 - \frac{8}{3}B + \frac{4}{9}B^2 + 16 + \frac{8}{3}B + \frac{1}{9}B^2 = 100$ or $B^2 - 8B - 44 = 0$. Thus $B = \frac{8 \pm \sqrt{64 - 176}}{2} = 11.75$ (taking positive option) and so

$$\mathbf{B} = \frac{2}{3}(11.75)\mathbf{a}_x - \frac{2}{3}(11.75)\mathbf{a}_y + \frac{1}{3}(11.75)\mathbf{a}_z = \underline{7.83}\mathbf{a}_x - 7.83\mathbf{a}_y + 3.92\mathbf{a}_z$$