Unit 1. Continuity - Limits

Limits of Polynomial and Rational Functions

Ex. 1 Find
$$\lim_{x \to -2} 2x^2 + 5x - 7$$

In general,

$$\lim_{x \to -3} \frac{x-3}{x^2-4x+3}$$
 Ex. 2 Find $\frac{x-3}{x^2-4x+3}$

In general,

$$\lim_{x\to -2}\frac{x^2+x-2}{x^2-4} \text{ or show it does not exist.}$$

$$\lim_{x\to -2}\frac{x-1}{x+2}$$
 Ex. 4 Consider $\frac{x-1}{x+2}$

Challenge

- a. A function g(x) is the ratio of two quadratic polynomials. The numerator is $x^2 1$ and it is known that the graph y = g(x) has a vertical asymptote at x = 2. It is also known that g has a removable discontinuity at x = 1, and that $\lim_{x \to 1} g(x) = -2$
 - i. Construct an equation for the function g(x) and evaluate $\lim_{x \to a} g(x)$
 - ii. Sketch the graph of y = g(x)
- b. Given the function $f(x) = \frac{x^3 + ax^2 + bx + 5}{x^3 + 2x^2 x 2}$, determine whether there are numbers a and b such that both $\lim_{x \to 1} f(x)$ exists, and $\lim_{x \to -1} f(x)$, if so, evaluate both limits.