

The Operating system

U
N
I
T
1

I
n
t
r
o
d
u
c
t
i
o
n

An operating system is an software that manages computer hardware and provides a

convenient and safe environment for running programs. It acts as an interface between

programs and hardware resources that these programs access. It is loaded into memory when

a computer is booted and remains active as long as machine is on.

Key features of an operating system :

●​ Operating system allocates memory for the programs and loads the program to the

allocated memory.

●​ Operating system loads the CPU registers with control information related to the

program.

●​ The instructions provided in the program are executed by the CPU. The operating

system keeps track of the instruction that was last executed. This enables it to resume

a program if it had to be taken out of the CPU before it completed execution.

●​ If program need to access the hardware, it makes a call to the operating system rather

attempt to do the job itself.

Eg:-If program needs to read a file on disk, the operating system directs the

disk controller to open the file and make the data available to the program.

●​ After the program has completed execution the operating system cleans up the

memory and registers and makes them available for the next program.

Modern operating system are MULTI-PROGRAMMING. They allow multiple programs to

be in memory. On computers with single CPU only one program can run at any instant, rather

than allow a single program to run to completion without interruption, an operating system

allows a program to run for a small instant of time, save its current state and then load the

next program in the queue. The operating system creates a process for each program and then

control the switching of these processes.

Eg for operating system:- DOS,WINDOWS, UNIX etc.

​​The UNIX operating system:

Unix (trademarked as UNIX) is a family of multitasking, multiuser

computer operating systems that derive from the original AT&TUnix, developed in the

1970s at the Bell Labs research center by Ken Thompson, Dennis Ritchie, and others.Unix is

a operating system.

It has practical everything an operating system should have and several features

which other operating system never had. Unix provides many features, but still many people

still prefer stay away from unix, because It requires different type of commitments to

understand the subject even when the user is an experienced computer professional.It

introduces certain concepts not known to computing community before.

We can interact with unix system through a command interpreter called shell.It

achieves unusual tasks with a few keystrokes.unix operating system doesn’t tell whether user

is right or wrong and doesn’t warn the consequences of their actions.

​​ History of Unix

Unix is actually a very old operating system ,until unix came on the scene,operating systems

were designed with a particular machine in mind.They were written in low leval

language.Programs designed for one system simply wouldn’t run on another .so two persons

named Ken Thompson and Dennis Ritchie, of AT & T ,in 1969,started to build a flexible

operating system that would run on any hardware. they designed and built a elegant file

system, command interpreter(shell) and a set of utilities. But this system was once again

hardware dependent.

In 1973,Dennis Ritchie rewrote the entire system in C –a high level language and it

was portable. This was the first version of unix.

The University of California Berkley(UCB),created a unix of its own. They called it

BSD UNIX.(Berkley software distribution).These versions became quite popular world

wide.BSD Unix had a standard editor of the unix system(vi) and a popular shell(c

shell).Berkley also created a better file system, a more versatile mail feature and a better

method of linking files. Later they also offered with their standard distribution a networking

protocol software(TCP/IP) that made the internet possible.

Sun used the BSD unix as a foundation for developing their own brand of unix called

SunOS. Today their version of UNIX is known as solaries. Others had their own brands such

as IBM had AIX,HP offered HP-UX.

As each vendor modified and enhanced Unix to create their own versions ,the original

unix lost its identity as a separate product. There was no Standard version of unix. Hence AT

& T Released SVR$(system V Release 4), a standard unix.

Even before the advent of SVR4, big things were happening in the U.s Defense

Department .They created the first communication network called ARPANET and it used

TCP/IP protocol and they tried to implement TCP/IP on BSD Unix. The incorporation of

TCP/IP into unix and its use as the basis of development were two key factors in the rapid

growth of the internet.

In the mean time ,Microsoft released a new operating system called Windows, which

used GUI(Graphical user interface) that uses mouse rather than complex commands to

execute a job. Windows was a big threat to UNIX, because it was a windowed system. So

Unix badly needed a windowed type interface for its survival hence the Massachusetts

Institute of Technology(MIT) introduced X Window-the first windowing system for unix.

Linus Torvalds-Father of Linux developed Linux. Linux is distributed free under

general public licence, which makes it mandatory for developers and sellers to make the

source code public. Linux is particularly strong in networking and internet features.

The most popular Linux flavors include Red Hat, Caldera, Mandrake, Fedora etc.

​​ Unix Arcitecture /components

The UNIX architecture and command usage

Division of labor: Kernel and shell

The main concept in the unix architecture is the division of labor between two agencies

the KERNEL and SHELL. The kernel interacts with hardware and shell interacts with user.

The kernel is the core of the operating system- a collection of routines mostly written in

C. It is loaded into memory when the system is booted and communicates directly with the

hardware. User applications (programs) that need to access the hardware, uses the services of

kernel. These programs access the kernel through a set of function called system calls.

Apart from providing support to user programs, the kernel also performs other tasks like

managing system’s memory, scheduling processes, decides their priorities etc. So the kernel is

often called the operating system- a program’s gateway to the computer’s resource.

The shell is the command interpreter, it translates command into action. It is the interface

between user and kernel. System contains only one kernel, but there may be several shells.

When user enters a command through the keyboard the shell thoroughly examines

keyboard input for special characters, if it finds any, it rebuilds simplified command line and

finally communicates with kernel to see that the command is executed.For eg,consider a echo

command which has lots of spaces between the arguments:

Eg: $echo Sun solaris

In the above example shell first rebuilds the command line i.e. it will compress all extra

spaces, then it will produces output.

Sun solaris

The file and process:

Two simple entities supports the unix system is the file and process.

A file is just an array of bytes and can contain virtually anything. It is also related to

another file by being part of a single hierarchical structure. So it is necessary to locate a file

within reference to a pre-determined place. Unix considers even directories and devices as

files.Files will be arranged in a hierarchical structure in unix system.

A process is the name given to a file when it is executed as program. So the process is

an time image of executable file. Process are treated as living organism which have parents,

children and grand-children and are born and die.Like files ,processes also belong to a

hierarchical tree structure.

The system calls:

Unix system’s kernel, shell and applications are written in C. There are several

commands in the unix system, they uses system call functions to communicate with kernel.

Eg: Unix command writes into the file using write system call.Open system call can

be used to open the file.

​​ Features of UNIX:

Multi-user system:

Unix is a multi-user system i.e. multiple user can use the system at a time,

resources are shared between all users. In unix systems, computer breaks up a unit of

time into several segments. So at any point in time, the machine will be doing the job

of a single user. The moment the allocated time expires, the previous job will be

preempted and next user’s job is taken up. This process goes on until clock has turned

full circle and the first user’s job is taken up once again.Unix is a multi-programming

system, it permits multiple programs to run. This can happen in two ways:

​​ Multiple user can run separate jobs.

​​ A single user can also run multiple jobs.

Multi-tasking system:

A single user can run multiple tasks concurrently, in multitasking environment

a user sees one job running in the foreground, the rest running in the background. It is

possible to switch the job between background and foreground, suspend or even

terminate them.

Building block approach:

Unix contains several commands each performs one simple job. It is possible

to connect different with the pipe (|) to get different jobs done. The commands that

can be connected in this way are called filters, because they filter or manipulate data

in different way.for ex: ls command lists all files.wc command counts the number of

words .They can be combined using pipes(|) to find the total number of files in the

directory.

Unix tool kit:

Unix contains set of tools like general purpose tools, text manipulation utilities

(called filters), compilers, interpreters, networked application and system

administration tools.

Pattern matching:

Unix contains pattern matching features, using this features it is possible

to match the different strings.

Eg: ‘*’

$ls chap*

Here ‘*’ is the special character, which matches the filename, which starts

with ‘chap’.

Programming facility:

Unix shell is also a programming language. It has control structures, variables,

loops that establish it as a powerful programming language. This features can be used

to design a shell scripts.

Documentation:

Unix contains ‘man’ pages for each command, it contains references for

commands and their configuration files.Apart from man page, we can even get the

command information in internet.there are several newsgroups on unix where we can

fire our queries to get the solution to a problem.

​​ Unix Environments

Unix can be used in 3 different environments:

1)​ Personal Environment

2)​ Time sharing environment

3)​ Client-server environment

Personal environment : Even though unix is a multi user operating system ,it can be

installed in personal computers. This is called as personal environment.

Time sharing environment :

 The time sharing environment

Employees in large companies often work in so called time sharing environment.In a time

sharing environment many users are connected to one or more computers.Their terminals are

often nonprogrammable.also in a time sharing environment the output devices and storage

devices are shared by all users .A typical time sharing environment has been shown shown in

above figure.

In time sharing environment,all of the computing must be done by the central

computer.centeral computer has many duties.It must control the shared resources .I t must

manage the shared data and printing and it must also do the printing. All the workload will be

given to central computer.Hence the system becomes slow.

Client-server Environment

server

clients

The client –server environment

A client server computing environment splits the computing function between a central

computer called server and users computers.In client –server environment users

microcomputers or workstations are called as clients.The client is a one which requests for

service. The central computer which is a powerful microcomputer,minicomputer or

supercomputer is called a server.Server is a one serves the request of a client.The users are

given personal computers or workstations so that some of the computations can be moved off

to clients.Here workload will be shared between server and clients and hence the system

becomes fast.

Unix Structure:

Note: For Diagram refer the Unix Architecture.

The main components of the Unix structure are:

1.​ Kernel.

2.​ Shell.

3.​ Application.

1.​ Kernel:

The kernel provides a bridge between the hardware and the user. It is a software
application that is central to the operating system. The kernel handles the files,
memory, devices, processes and the network for the operating system. It is the
responsibility of the kernel to make sure all the system and user tasks are performed
correctly.

2.​ Shell:

The program between the user and the kernel is known as the shell. It translates the
many commands that are typed into the terminal session. These commands are known
as the shell script. There are two major types of shells in Unix. These are Bourne shell
and C Shell. The Bourne shell is the default shell for version 7 Unix.

The character $ is the default prompt for the Bourne shell. The C shell is a command
processor that is run in a text window. The character % is the default prompt for the C
shell.

3.​ Application:

The applications and utility layer in Unix includes the word processors, graphics
programs, database management programs, commands etc. The application programs
provide an application to the end users.

For example, a web browser is used to find information while gaming software is
used to play games. The requests for service and application communication systems
used in an application by a programmer is known as an application program interface
(API).

​​ POSIX and single unix specification:

POSIX- Portable Operating System standard for Computer Environment (specially

for UNIX) is the group of standards developed by IEEE for operating system.

Two standards from Posix family are POSIX.1 and POSIX.2

POSIX.1 deals with C application program interface.

POSIX.2 deals with shell and utilities.

​​ X/OPEN (open group) developed standard for UNIX i.e. X/OPEN portability guide

(XPG).

​​ In 2001, X/OPEN and IEEE unified these two standards and called it as SUSV3-

Single Unix

​​ Specification Version 3. This is based on “write once, adopt anywhere” approach, i.e.

once software has been developed on any POSIX compliant UNIX system, it can be

easily ported to another POSIX compliant UNIX system with minimum modification.

​​The General features of unix commands/command structure

Command structure:

The syntax of command is

$command​ [options]​ [arguments]

For ex:

$ ls –x chap*

In the above example ls is the command, –x is a option and chap* is a argument. The

command with its arguments and options is known as command line.

The first word in the command line is called as command, all subsequent words are actually

called as arguments. options are also arguments but given a special name because their list is

predetermined. There should be atleast one space to separate command and arguments.

multiple spaces are also allowed but shell compresses them to form a simplified command

line.

Options:

There is a special type of argument, that is mostly used with a ‘-‘ sign. Such a

arguments are called options.

Eg:​ $ls –l

-l​ :​ long listing showing seven attributes of a file.

-l is an option to ls command. Options are also arguments but their list is

predetermined. Options can normally be combined with single ‘-‘ sign instead of

using

$ls –l –a –t

i.e.

$ls –lat

File name arguments:

Many unix commands use a filename as argument, so the command can take input

from the file. It is even possible to give multiple filename as argument.

Eg:

$ls –l chap1 chap2

The command with its arguments and options is known as command line.

Exceptions:

There is exceptions to the general syntax of commands. There are commands (pwd)

that don’t accept any arguments. Some commands (EX: who) may or may not take

arguments. Some commands like

‘ls’ can run without arguments(ls), with only options (ls -l), with only filenames (ls chap1

chap2) or can be run with options and filenames (ls –l chap1 chap2).

​​Understanding some basic commands echo:

Displaying a message:

echo command can be used to

​​ To display a message (like echo “cseise”)

​​ To evaluate shell variables (echo $PAGER)

Originally echo was an external command, but now all shells have echo as built in command.

We can see escape sequence with echo, but we should use –e option.

Some escape sequences are:

\a Bell

\b Backspace

\c No newline

\f Form feed

\n New line

\r Carriage return

\t Tab

\v Vertical tab

\\ Backslash

\0n ASCII character represented octal value n

echo interprets number octal when it is preceded by \0.

Eg: ASCII value of (ctrl-g) is 7, which results in sounding of a beep, we can use this

value as an argument to echo but only after preceding it with \0

$echo ‘\07’

--beep heard- -

printf : An alternative to echo:

printf can be used as alternative command to echo. The difference is echo command by

default inserts ‘\n’ character at the end, but printf does not insert newline at the end.

Eg:​ $printf cseise

Output:​ cseise $​ //prompt will be in the sameline.

Printf also accept all escape sequence used by echo. We can use format specifiers with printf

it acts as place holder for variable.

Some format specifiers are:

%30s String printed in a space 30 character wide

%s String

%d Decimal integer

%6d Integer printed in a space 6 characters wide

%o Octal integer

%x Hexadecimal integer

%f Floating point number

Eg:

$printf “Value of 255 is %o in octal and %x in hexadecimal\n” 255 255

Output: Value of 255 is 377 in octal and ff in hexadecimal.

Date : to display date and time

The Unix system maintains an internal clock meant to run perpetually. When the system is
shut down a battery backup keeps the clock ticking. Date command is used to display
both and time as follows:

$date

Tue Aug 28 1:58:03 IST 2018

Date displays 6 fields of output:

1. day 2.Month name 3. Date​ 4.time 5.time zone​ 6.year

To extract individual fields we can use following options with date

Options with date:

+%a – day

+%h – Month name

+%d – date

+%T –time

+%Z- Time Zone

+%Y-year

+%H-Hour

+%M- Minute

+%S - Second

Ex:

$ date​ +%h

Aug

$date +”%h %d “
Aug 28
ls: listing files:

It is possible to list the names of the files in the directory using ls command.
Eg:​ $ls

READM
E
Chap01
Chap02
Chap03

We can use special shorthand notation * with ls command.

Eg:​ $ls chap*

Chap01
Chap02
Chap03

i.e. it will displays the filename starts with ‘chap’.
ls command can also be used to search for an command

$ ls a.txt
The above command searches for file a.txt and if it is present it displays it otherwise displays
the message “file not found”.
Options used with ls

-a​ : Displays all files including hidden files,current directory(.) and parent
directory(..)
-d dirname : Searches for directory with name dirname,if found displays it,otherwise
produces a

message directory not found.
-i​ : displays file with inode number
-l​ : displays all files with seven attributes such as permissions,links,owner name
,group

name,size in bytes,date and time ,file name.
-r​ : displays files in reverse alphabetical order
-R​ : Displays recursive list of files
-t​ : Sorts file based on last modified time
-u​ : sorts files based on last access time
-x​ : multi columnar output

Directing output to a file:

Unix has special symbols called meta-characters for creating and storing information in files.
‘>’ symbol can be used to save the information in the file.

Eg:​ $ls > list

Stores the output of ls command in the file ‘list’.

wc: counting number of lines in a file :
we can use ‘wc’ command to count number of lines, words and characters in a file.

Eg:​ $wc list.txt

6​ 6​ 42​ list.txt

Output shows that the file ‘list’ contains 6lines, 6words and 42 characters.

Feeding output of one command to another:

It is possible to give output of one command as the input to the another command ‘|’

(pipe) it connects two commands to create pipeline.

Eg:​ $ls | wc

6​ 6​ 42​ //no file name
who: Who are the users?:

Unix maintains an account of all users, who are logged on to the system. ‘who’ command
displays listing
of these users.

$who
abc pts/1 Jan 1 20:25 (:0)

xyz

pts/10

Jan

1

14:49

(heavens.c
o m)

First column shows the username, second shows device name of user’s terminal, third,
fourth, fifth shows
date and time of logging in. User can login remotely to a unix system. Last column shows the
machine name from where user logged in. (:0) indicates user logged in from his own
terminal.

We can use options with who command.

-H

:
To display the
header.

-u : detailed list

 Eg: $who –Hu

 NAM
E LINE TIME IDLE PID

COMMENT
S

 abc pts/1 Jan 13 07:51 0:48 11040 (:0)
 xyz pts/2 Jan 13 07:56. 11052 heavens.com

First column shows name of the user, second shows terminal name, 3rd,4th,5th shows date and
time. 6th column shows system’s IDLE timing, i.e. from how long system is idle. A ‘.’
Against xyz shows that activity has occurred in the last minute before the command was
invoked.

‘abc’ seems to idling for the last 48minutes. The PID is the process ID, a number that
uniquely identifies a process. We can use the argument ‘am’’i’ with who to know who logged
in the system.

Eg: $who am i

 abc pts/1 Jan 13 07:51 (:0)
passwd: changing password:

We can use passwd command to change the password.
Eg:​ $passwd

Passwd: changing password for xyz
Enter login password: ******
New password: ***********
Re-enter new password: ***********
Passwd (SYSTEM) :passwd successfully changed for xyz

When user enters a password, the string is encrypted by the system. Encryption generates
string of random characters and stores in the file /etc/shadow

Password framing rules:

Some of the rules which should be followed while framing password:

Don’t choose a password similar to old one.

Don’t use commonly used names like names of friends, relatives, pets,
etc.
Use mix of alphabetic or numeric characters.
Don’t write password in a easily accessible document.

Change password regularly.

cal: The calendar-

Using cal command it is possible to see the calendar of specific month.

Syntax:
$cal [[month] year]

Arguments are optional here. So ‘cal’ can be used without arguments.

//displays the calendar of current

$cal month

January 2013
Su​ Mo Tu We​ ThFr​ Sa

 1 2 3 4 5
6 7 8 9 10 11 12

13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

We can use cal with pager more or
less.
Eg:
$ (cal 2003; cal 2006; cal 2007) | more
We can use cal command with arguments.
Eg:
$cal 03 2006
Displays calendar of march 2006.
When ‘cal’ is used with arguments month is optional but year is mandatory. A single
argument to cal is interpreted as year.

Eg:​ $cal 2003
Displays the calendar of 2003

Combining commands:

Unix allows to specify more than one command in the command line. Each command
has to be separated from the other by a ; (semi-colon).

Eg:​ $wc note ; ls –l note
Output will be line, word and character count of the file note and long listing of attributes of
file note.

Eg:​ $ (wc note; ls –l note) > list
Output of ‘wc note’ and ‘ls –l’ will be redirected to the file list.

​​ Meaning of Internal and External commands

Internal and external commands:

External commands will have independent existence in one of the directories
specified in the PATH variable.

Eg:​ $ls
ls is /bin/ls

‘ls’ command having an independent existence in the /bin directory (or /usr/bin). So

‘ls’ is a external command.

Internal commands doesn’t have independent existence, they are shell built-ins.

Eg:​ $type echo
echo is a built-in.

Shell is an external command with difference, i.e. shell possesses its own set of
internal commands. If a command exists both as an internal command of the shell as well as
an external one, the shell will give top priority to its internal command.

Eg: echo command, which is also found in /bin directory but rarely ever executed,
because the shell makes sure that the internal echo command takes precedence over the
external.

Command arguments can take the form of an expression (in grep), a set of

instructions (in sed), or a program (in awk and perl).

1.​10 The type command: knowing the type of a command and locating it.
The type command is used to describe how its argument would be translated if used as commands.
It is also used to find out whether it is built-in or external binary file.
Synatx:

type [options] command names

Type command options:

-a: This option is used to find out whether it is an alias, keyword or function and it also
displays the path ofan executable. If available.

Ex: type –a pwd

-t: This option will display a single word as an output. alias – if command is a shell alias
1.​keyword – if command is a shell reserved word
2.​builtin – if command is a shell builtin
3.​function – if command is a shell function
4.​file – if command is a disk file

Ex:​ type -t pwd
type -t cp
type -t ls
type -t
while

1.11 The root login
The unix system provides a special login name for the exclusive use of the administrator. It
is called root.This account doesn’t need to be separately created but comes with every
system. Its password is generally set at the time of installation of the system and has to be
used on logging in:

Login : root
Password : ******[Enter}
:

The prompt of root is #,unlike the $ or % used by nonprivileged users.Once you login as root,
you are placed in roots home directory.Depending on the system this directory could be / or
/root.roots PATH list is also different from the one used by other users:

/sbin : /bin : /usr/sbin : /usr/bin /usr/dt/bin

su: Becoming the superuser

Any user can acquire superuser status with the su command if he/she knows the root
password. For example ,the user Juliet becomes a superuser in this way :

$ su
Password: *********
pwd
/home/Juliet

Though the current directory doesn’t change ,the # prompt indicates that Juliet now has
powers of a superuser.To be in root’s home directory on superuser login use su –l.

Creating user’s environment :
Users often rush to the administrator with the complaint that a program has stopped
running.The administrator first tries running it in a simulated environment .Su ,when used
with a -,recreates the users environment without taking the login-password route:

Su – henry

This sequence executes henry’s profile and temporarily creates henry’s environment.This
mode can be terminated by hitting [ctrl-d] or using exit.

UNIX FILES
Introduction:
Files are the building blocks of any operating system. When you execute a command in
UNIX, the UNIX kernel fetches the corresponding executable file from a file system, loads its
instruction text to memory, and creates a process to execute the command on your behalf. In
the course of execution, a process may read from or write to files. All these operations involve
files. Thus, the design of an operating system always begins with an efficient file management
system.

Naming Files:
A filename can consists of upto 255 characters. Files may or may not have extensions, and
can cosists of practically any ASCII character except the / and the NULL character(ASCII
value 0). We are permitted to use control characters or other unprintable characters in a
filename. The following are the valid filenames in UNIX:

●​ .last_time
●​ list.
●​ ^V^B^D-++bcd
●​ -{}[]
●​ @#$%*abcd
●​ a.b.c.d.e

The third filename contains three control characters. These characters shoud be definitely be
avoided in framing filenames. Moreover, since the UNIX system has a special treatment for
characters like $, `, ?, *, & among others, it is recommended that only the following
characters be used in filenames.

Alphabetic characters and numerals.
The period(.), hyphen(-) and underscore(_).
Unix imposes no rules for framing filename extensions.
DOS/Windows users must also keep these two points in mind:

●​ A file can have as many dots embedded in its name; a.b.c.d.e is a perfectly valid
filename. A filename can also begin with a dot or end with one.

●​ UNIX is case sensitive to case; Chap01, chap01. And CHAP01 are three different
filenames, and it’s possible for them to coexist in the same directory.

Basic file types/categories:

1.​ Ordinary (Regular) File.
2.​ Directory File.
3.​ Device File.

1.​Ordinary (Regular) File:

An ordinary file or regular file is the most common file type. All programs you write
belong to is ppe. An ordinary file itself can be divided into two types:

1.​ Text File.
2.​ Binary File.
1.​Text File:

A Text file contains only printable characters, and you can often view the
contents and make sense out of them. All C and Java program sources, shell and perl scripts
are text files. A text file contains lines of characters where every line is terminated with the
newline character, also known as line feed (LF). When you press (Enter) while inserting text,
the LF character is appended to every line. You won't see this character normally, but there is
a command (od) which can make it visible

2.​Binary File:

A binary file, on the other hand, contains both printable and unprintable
characters that cover the entire ASCII range (0 to 255). Most UNIX commands are binary
files, and the object code and executables that you produce by compiling C programs are also
binary files. Picture, sound and video files are binary files as well. Displaying such files with
a simple cat command produces unreadable output and may even disturb your terminal's
settings.

2.​Directory File:

A directory contains no data, but keeps some details of the files and subdirectories
that it contains The UNIX file system is organized with a number of directories and
subdirectories, and you can also create them as and when you need. You often need to do that

to group a set of files pertaining to a specific application. This allows two or more files in
separate directories to have the same filename.

A directory file contains an entry for every file and subdirectory that it houses. If you have 20
files in a directory, there will be 20 entries in the directory Each entry has two components: .

●​ The filename
●​ A unique identification number for the file or directory (called the inode number),

If a directory bar contains an entry for a file foo, we commonly (and loosely) say that the
directory bar contains the file foo Though we'll often be using the phrase "contains the file
rather than "contains the filename, you must not interpret the statement literally A directory
contains the filename and not the file's contents.

3.​Device File:

You'll also be printing files, installing software from CD-ROMs or backing up files to
tape. All of these activities are performed by reading or writing the file representing the
device. For instance, when you restore files from tape you read the file associated with the
tape drive. It is advantageous to treat devices as files as some of the commands used to access
an ordinary file also work with device files.

Device file names are generally found inside a single directory structure, /dev. A device file is
indeed special, it's not really a stream of characters. In fact, it doesn't contain anything at all.

Organization of files & Standard Directories:

Unix file system is a logical method of organizing and storing large amounts of
information in a way that makes it easy to manage. A file is a smallest unit in which the
information is stored. Unix file system has several important features. All data in Unix is
organized into files. All files are organized into directories. These directories are organized
into a tree-like structure called the file system.

Files in Unix System are organized into multi-level hierarchy structure known as a
directory tree. At the very top of the file system is a directory called “root” which is
represented by a “/”. All other files are “descendants” of root.

Directories or Files and their description:
●​ / : The slash / character alone denotes the root of the filesystem tree.
●​ /bin : Stands for “binaries” and contains certain fundamental utilities, such as ls or cp,

which are generally needed by all users.
●​ /boot : Contains all the files that are required for successful booting process.
●​ /dev : Stands for “devices”. Contains file representations of peripheral devices and

pseudo-devices.
●​ /etc : Contains system-wide configuration files and system databases. Originally also

contained “dangerous maintenance utilities” such as init,but these have typically been
moved to /sbin or elsewhere.

●​ /home : Contains the home directories for the users.
●​ /lib : Contains system libraries, and some critical files such as kernel modules or device

drivers.
●​ /media : Default mount point for removable devices, such as USB sticks, media

players, etc.
●​ /mnt : Stands for “mount”. Contains filesystem mount points. These are used, for

example, if the system uses multiple hard disks or hard disk partitions. It is also often
used for remote (network) filesystems, CD-ROM/DVD drives, and so on.

●​ /proc : procfs virtual filesystem showing information about processes as files.
●​ /root : The home directory for the superuser “root” – that is, the system administrator.

This account’s home directory is usually on the initial filesystem, and hence not in
/home (which may be a mount point for another filesystem) in case specific
maintenance needs to be performed, during which other filesystems are not available.
Such a case could occur, for example, if a hard disk drive suffers physical failures and
cannot be properly mounted.

●​ /tmp : A place for temporary files. Many systems clear this directory upon startup; it
might have tmpfs mounted atop it, in which case its contents do not survive a reboot, or
it might be explicitly cleared by a startup script at boot time.

●​ /usr : Originally the directory holding user home directories,its use has changed. It now
holds executables, libraries, and shared resources that are not system critical, like the X
Window System, KDE, Perl, etc. However, on some Unix systems, some user accounts
may still have a home directory that is a direct subdirectory of /usr, such as the default
as in Minix. (on modern systems, these user accounts are often related to server or
system use, and not directly used by a person).

●​ /usr/bin : This directory stores all binary programs distributed with the operating
system not residing in /bin, /sbin or (rarely) /etc.

●​ /usr/include : Stores the development headers used throughout the system. Header files
are mostly used by the #include directive in C/C++ programming language.

●​ /usr/lib : Stores the required libraries and data files for programs stored within /usr or
elsewhere.

●​ /var : A short for “variable.” A place for files that may change often – especially in
size, for example e-mail sent to users on the system, or process-ID lock files.

●​ /var/log : Contains system log files.

●​ /var/mail : The place where all the incoming mails are stored. Users (other than root)
can access their own mail only. Often, this directory is a symbolic link to
/var/spool/mail.

●​ /var/spool : Spool directory. Contains print jobs, mail spools and other queued tasks.
●​ /var/tmp : A place for temporary files which should be preserved between system

reboots.
Hidden Files:

To show all the hidden files in the directory, use ‘-a option’. Hidden files in Unix
starts with ‘.’ in its file name.It will show all the files including the ‘.’ (current directory) and
‘..’ (parent directory).

ls –a

​​ All files in unix are related to one another.

​​ The file system is organized in a hierarchical structure.

​​ The implicit feature of unix file system is that there is a top directory which is

called as root which serves as the reference point for all files.

​​ Top is represented by a /(front slash).

​​ Root directory(/) has several sub directories under it.

​​ These subdirectories in turn have more sub directories and other files under them.
o​ Ex: bin and usr are two directories directly under /, while cp and pwd are

subdirectories under bin.

​​ Every file must have a parent and it should be possible to trace the ultimate parentage

of a file to root.

​​ Thus, the home directory in the above figure is the parent for mthomas, while / is

the parent of home and the grand parent of mthomas.

​​ In the parent-child relationship, the parent is always a directory.
o​ Ex: login.sql is an ordinary file, it cannot have a directory under it.

The Home Variable and The Home Directory:

​​ When we log on to the system, UNIX automatically places you in a directory

called the home directory. It is called by the system when a user account is opened.

​​ If you log in using the login name Kumar, you will land up in a directory that could

have the pathname /home/kumar.

​​ Home directory can be changed by the user.

​​ The shell variable HOME knows your home directory.
o​ E: $echo $HOME

▪​ /home/Kumar

​​ The above output is an absolute pathname.

​​ The slashes act as a delimiter to the file and directory names except the first /(root).

Directory Commands:
1.​ pwd: Checking your current directory

●​ User can move around from one directory to another, but at any point of time, if
user wants to find out in which directory he is present then user can use Print
Working Directory(pwd) command.

Ex: pwd
/home/kumar/SantoshReddyP

pwd also displays the absolute pathname.

2.​ cd: Changing the current directory:

●​ User can move around the UNIX file system using cd (change
directory) command.

●​ When used with the argument, it changes the current directory to the
directory specified as argument, progs:

$ pwd
/home/kumar
$cd progs

$ pwd
/home/kumar/progs

●​ Here we are using the relative pathname of progs directory. The same can be done
with the absolute pathname also.

$cd /home/kumar/progs
$ pwd
/home/kumar/progs
$cd /bin
$ pwd
/bin

●​ cd can also be used without arguments:
$ pwd
/home/kumar/progs
$cd
$ pwd
/home/kumar

●​ cd without argument changes the working directory to home directory.
$cd /home/sharma
$ pwd
/home/sharma
$cd
/home/kumar

3.​ mkdir: Making Directory

●​ Directories are created with mkdir (make directory) command. The command is
followed by names of the directories to be created. A directory patch is created
under current directory like this:

$mkdir patch
●​ You can create a number of subdirectories with one mkdir command:

$mkdir patch dba doc
●​ For instance the following command creates a directory tree:

$mkdir progs progs/cprogs progs/javaprogs
●​ This creates three subdirectories – progs, cprogs and javaprogs under progs.
●​ The order of specifying arguments is important. You cannot create subdirectories

before creation of parent directory.
●​ For instance following command doesn‘t work

$mkdir progs/cprogs progs/javaprogs progs
mkdir: Failed to make directory “progs/cprogs”; No such directory
mkdir: Failed to make directory “progs/javaprogs”; No such directory

●​ System refuses to create a directory due to fallowing reasons:

o​ The directory is already exists.
o​ There may be ordinary file by that name in the current directory.
o​ User doesn‘t have permission to create directory.

4.​ rmdir: Removing a Directory
●​ rmdir command removes the directory.
●​ The directory must be empty before using rmdir with the directory name.

o​ Ex: rmdir pis
●​ Multiple directories can be removed.

o​ Ex: $rmdir pis/data pis/progs pis

​​ Here first subdirectories are removed and at last pis is removed.

​​ A subdirectory cannot be removed unless the user is placed in a directory which

is hierarchically above that directory.
o​ Ex:$pwd

/home/kumar/pis/progs
$cd /home/kumar/pis

/home/kumar/pis
$pwd

/home/kumar/pis
$rmdir progs

​​ rmdir : Things to remember
o​ You can‘t remove a directory which is not empty
o​ You can‘t remove a directory which doesn‘t exist in system.
o​ You can‘t remove a directory if you don‘t have permission to do so.

Using . and .. in Relative Pathname:

​​ User can move from working directory /home/kumar/progs/cprogs to home directory
/home/kumar using cd command like

$pwd
/home/kumar/progs/cprogs
$cd /home/kumar
$pwd
/home/kumar

​​ Navigation becomes easy by using common ancestor.

​​ . (a single dot) - This represents the current directory

​​ .. (two dots) - This represents the parent directory

​​ Assume user is currently placed in /home/kumar/progs/cprogs
$pwd
/home/kumar/progs/cprogs
$cd ..
$pwd
/home/kumar/progs

​​ This method is compact and easy when ascending the directory hierarchy. The

command cd .. Translates to this ―change your current directory to parent of
current directory‖.

​​ The relative paths can also be used as:
$pwd

/home/kumar/progs
$cd ../..
$pwd
/home

​​ The following command copies the file prog1.java present in javaprogs, which

is present is parent of current directory to current directory.
$pwd
/home/kumar/progs/cprogs
$cp ../javaprogs/prog1.java .

​​ Now prog1.java is copied to cprogs under progs directory.

File Related Commands:

1.​ cat: Displaying and creating files:
o​ cat command is used to display the contents of a small file on the terminal.

$ cat cprogram.c
include <stdioh>
void main ()
{
Print(“hello:);
}

o​ As like other files cat accepts more than one filename as arguments
$ cat ch1 ch2

It contains the contents of chapter1
It contains the contents of chapter2

o​ In this the contents of the second files are shown immediately after the first
file without any header information. So cat concatenates two files- hence its
name.

cat options:

o​ Displaying Nonprinting Characters (-v)
cat without any option it will display text files. Nonprinting ASCII

characters can be displayed with –v option.
o​ Numbering Lines (-n)

-n option numbers lines. This numbering option helps programmer in
debugging programs.

Using cat to create a file

o​ cat is also useful for creating a file. Enter the command cat, followed by
> character and the filename.

$ cat > new
This is a new file which contains some text, just to
Add some contents to the file new
[ctrl-d]

$_
o​ When the command line is terminated with [Enter], the prompt vanishes. Cat

now waits to take input from the user. Enter few lines; press [ctrl-d] to signify
the end of input to the system To display the file contents of new use file name
with cat command.

$ cat new
This is a new file which contains some text, just to
Add some contents to the file new

2.​ cp: Copying a file
o​ The cp command copies a file or a group of files. It creates an exact image of

the file on the disk with a different name. The syntax takes two filename to be
specified in the command line.

o​ When both are ordinary files, first file is copied to second.
$ cp csa csb

o​ If the destination file (csb) doesn‘t exist, it will first be created before
copying takes place. If not it will simply be overwritten without any warning
from the system.
o​ Example to show two ways of copying files to the cs directory:

$ cp ch1 cs/module1 ch1 copied to module1 under cs
$ cp ch1 cs ch1 retains its name under cs

o​ cp can also be used with the shorthand notation, .(dot), to signify the
current directory as the destination. To copy a file „new‟ from /home/user1
to your current directory, use the following command:

$cp /home/user1/new new destination is a file
$cp /home/user1/new . destination is the current directory

o​ cp command can be used to copy more than one file with a single invocation of
the command. In this case the last filename must be a directory.

Ex: To copy the file ch1,chh2,ch3 to the module , use cp as
$ cp ch1 ch2 ch3 module

o​ The files will have the same name in module. If the files are already resident in
module, they will be overwritten. In the above diagram module directory should
already exist and cp doesn‘t able create a directory.

o​ UNIX system uses * as a shorthand for
multiple filenames. Ex:

$ cp ch* usp Copies all the files beginning with ch
cp options
o​ Interactive Copying(-i) : The –i option warns the user before overwriting

the destination file, If unit 1 exists, cp prompts for response
$ cp -i ch1 unit1
$ cp: overwrite unit1 (yes/no)? Y

o​ A y at this prompt overwrites the file, any other response leaves it uncopied.

Copying directory structure (-R) :
o​ It performs recursive behavior command can descend a directory and

examine all files in its subdirectories.

o​ -R : behaves recursively to copy an entire directory structure

$ cp -R usp newusp $ cp -R class newclass

o​ If the newclass/newusp doesn‘t exist, cp creates it along with the
associated subdirectories.

3.​rm: Deleting Files:

​​ The rm command deletes one or more files.

x: Following command deletes three files:
$ rm mod1 mod2 mod3

​​ Can remove two chapters from usp directory without having to cd

Ex:
$rm usp/marks ds/marks

​​ To remove all file in a directory use *
$ rm *

​​ Removes all files from that directory

rm options

​​ Interactive Deletion (-i) : Ask the user confirmation before removing each file:
$ rm -i ch1 ch2 rm: remove ch1 (yes/no)? ? y rm: remove ch1 (yes/no)? ? n

[Enter]

​​ A ‗y‘ removes the file (ch1) any other response like n or any other key leave the

file undeleted.

​​ Recursive deletion (-r or -R): It performs a recursive search for all directories and

files within these subdirectories. At each stage it deletes everything it finds.
$ rm -r *​ #Works as rmdir

​​ It deletes all files in the current directory and all its subdirectories.

​​ Forcing Removal (-f): rm prompts for removal if a file is write-protected. The -f

option overrides this minor protection and forces removal.
rm -rf*​ #Deletes everything in the current directory and below

4.​mv: Renaming the files:
The mv command renames (moves) files. The main two functions are:

​​ It renames a file(or directory)

​​ It moves a group of files to different directory

​​ It doesn't create a copy of the file; it merely renames it. No additional space

is consumed on disk during renaming.
Ex: To rename the file csb as csa we can use the following command
$ mv csb csa

​​ If the destination file doesn‘t exist in the current directory, it will be created. Or else

it will just rename the specified file in mv command.

​​ A group of files can be moved to a directory.

Ex: Moves three files ch1,ch2,ch3 to the directory module

$ mv ch1 ch2 ch3 module
●​ Can also used to rename directory

$ mv rename newname
●​ mv replaces the filename in the existing directory entry with the new name.

It doesn't create a copy of the file; it renames it
●​ Group of files can be moved to a directory
●​ mv chp1 chap2 chap3 unix

5.​wc: Counting Lines, words, and Characters:

●​ wc command performs Word counting including counting of lines and characters

in a specified file. It takes one or more filename as arguments and displays a
four columnar output.

$ wc ofile 4 20 97 ofile

●​ Line: Any group of characters not containing a newline
●​ Word: group of characters not containing a space, tab or newline

●​ Character: smallest unit of information, and includes a space, tab and newline
●​ wc offers 3 options to make a specific count. –l option counts only number of

lines, - w and –c options count words and characters, respectively.
$ wc -l ofile 4 ofile $ wc -w ofile 20 ofile

●​ Multiple filenames, wc produces a line for each file, as well as a total count.
$ wc -c ofile file 97 ofile 15 file 112 total

6.​od: Displaying Data in Octal

●​ od command displays the contents of executable files in a ASCII octal value.

$ more ofile this file is an example for od command ^d used as an
interrupt key

●​ -b option displays this value for each character separately.

●​ Each line displays 16 bytes of data in octal, preceded by the offset in the file of the

first byte in the line.

$ od –b file
0000000 164 150 151 163 040 146 151 154 145 040 151 163 040 141 156 040 0000020 145
170 141 155 160 154 145 040 146 157 162 040 157 144 040 143 0000040 157 155 155 141
156 144 012 136 144 040 165 163 145 144 040 141 0000060 163 040 141 156 040 151 156
164 145 162 162 165 160 164 040 153 0000100 145 171

-c character option

​​ Now it shows the printable characters and its corresponding ASCII

octal representation
$ od –bc file

​​ Some of the representation:
o​ The tab character, [ctrl-i], is shown as \t and the octal vlaue 011

o​ The bell character , [ctrl-g] is shown as 007, some system show it as \a
o​ The form feed character,[ctrl-l], is shown as \f and 014

o​ The LF character, [ctrl-j], is shown as \n and 012

o​ Od makes the newline character visible too.

	The Operating system
	Introduction
	Key features of an operating system :
	​​The UNIX operating system:
	​​History of Unix
	​​Unix Arcitecture /components
	Division of labor: Kernel and shell
	The file and process:
	The system calls:
	​​Features of UNIX:
	Multi-tasking system:
	Building block approach:
	Unix tool kit:
	Pattern matching:
	Programming facility:
	Documentation:
	​​Unix Environments
	Time sharing environment :
	Client-server Environment
	clients
	Unix Structure:
	1.​Kernel:
	2.​Shell:
	3.​Application:
	​​POSIX and single unix specification:
	​​The General features of unix commands/command structure Command structure:
	Options:
	File name arguments:
	Exceptions:
	​​Understanding some basic commands echo: Displaying a message:
	printf : An alternative to echo:
	Date : to display date and time
	ls: listing files:
	Options used with ls
	Directing output to a file:
	wc: counting number of lines in a file :
	Feeding output of one command to another:
	who: Who are the users?:
	passwd: changing password:
	Password framing rules:
	cal: The calendar-
	Syntax:
	Combining commands:
	​​Meaning of Internal and External commands
	1.​10 The type command: knowing the type of a command and locating it.
	Type command options:
	1.11 The root login
	su: Becoming the superuser
	UNIX FILES
	Naming Files:
	Basic file types/categories:
	1.​Ordinary (Regular) File:
	1.​Text File:
	3.​Device File:
	Organization of files & Standard Directories:
	Directories or Files and their description:
	Hidden Files:
	The Home Variable and The Home Directory:
	Directory Commands:
	2.​cd: Changing the current directory:
	3.​mkdir: Making Directory
	4.​rmdir: Removing a Directory
	Using . and .. in Relative Pathname:
	File Related Commands:
	cat options:
	2.​cp: Copying a file
	3.​rm: Deleting Files:
	rm options
	4.​mv: Renaming the files:
	5.​wc: Counting Lines, words, and Characters:
	6.​od: Displaying Data in Octal
	-c character option

