TRANSFORMING OUTLIERS

OVERVIEW

- outliers = extreme values that tend to exert undue influence on result of analysis
- Know your options for dealing with outliers (so can get results that mean what you think they mean)

SUMMARY

- Log linear transformation brings it closer to the normal distribution - which is the assumption behind so many statistical procedures

PSEUDOCODE

INSTALL AND LOAD PACKAGES

LOAD AND PREPARE DATA

Check existence of outliers - with histogram:

Best way to check for outliers is with boxplot: (bc it marks outliers)

LOOK AT SOME OPTIONS FOR LEADING WITH OUTLIERS

PART1: **REMOVE OUTLIERS**

See which ones are outliers:

Filter out continents

Create histogram & boxplot PART2: BRING IN OUTLIERS

Sort observations in descending order:

IF value is greater than 840 THEN change it to 840:

Graph results:

PART3: CREATE NEW GROUPS

Sort in descending order:

Create new variable - called "landmass" > IF value is < 1000 THEN call it an island:

Boxplot of area of continents:

Boxplot of islands:

PART4: TRANSFORMING DATA

Strong positive skew:

Log is natural logarithm with base e (base 10 is log10) > brings in extreme positive values:

INSTALL AND LOAD PACKAGES

pacman::p_load(datasets, pacman, tidyverse)

LOAD AND PREPARE DATA

from **datasets package** - islands dataset - has <u>strong positive skew</u>

?islands

- area of world's major land masses
- areas on 1000s of square mile of landmasses that exceed 10,000 sq miles
- named vector with 48 observations

islands

- <u>results</u>:

-alphabetical order - with area (from Africa with 11506, down to end of list with Victoria with 82 (thousands of square miles)

> islands			
Africa	Antarctica	Asia	Australia
11506	5500	16988	2968
Axel Heiberg	Baffin	Banks	Borneo
16	184	23	280
Britain	Celebes	Celon	Cuba
84	73	25	43
Devon	Ellesmere	Europe	Greenland
21	82	3745	840
Hainan	Hispaniola	Hokkaido	Honshu
13	30	30	89
Iceland	Ireland	Java	Kyushu
40	33	49	14
Luzon	Madagascar	Melville	Mindanao
42	227	16	36
Moluccas	New Britain	New Guinea	New Zealand (N)
29	15	306	44
New Zealand (S)	Newfoundland	North America	Novaya Zemlya
58	43	9390	32
Prince of Wales	Sakhalin	South America	Southampton
13	29	6795	16
Spitsbergen	Sumatra	Taiwan	Tasmania
15	183	14	26
Tierra del Fuego	Timor	Vancouver	Victoria
19	13	12	82

Check existence of outliers - with histogram:

islands %>% hist(main = NULL)

result: -most in smallest size bin - and few way out past rest of plot >> NOT normal distribution & big outliers (throws off analysis) 20 5000 10000 15000

Best way to check for outliers is with boxplot: (bc it marks outliers)

islands %>% boxplot(horizontal = T)

result:

-range of 50% scores is super compressed and at low end -even the highest non-outlying data point is compressed -8 outliers - one extreme (asia) 0 0 5000 10000 15000

LOOK AT SOME OPTIONS FOR LEADING WITH OUTLIERS

there are sophisticated algorithms that deal with outliers:

- when using the non-parametric approach
 - decision trees dn get thrown off by outliers
 - neural networks are more flexible wrt outliers

IF standard analysis (scatterplots, means) THEN want to deal with outliers:

PART1: REMOVE OUTLIERS

- draconian cut off outliers (throw then away)
- appropriate as long as
 - 1)only care about non-outlier scores
 - 2)are specific, clear that you did that (and that focusing only on the major ones)

See which ones are outliers:

- Sort observation in descending value:

```
islands2 <- islands %>%
  enframe() %>%  # convert vector to tibble
arrange(desc(value)) %>%  # sort by descending values
print()
```

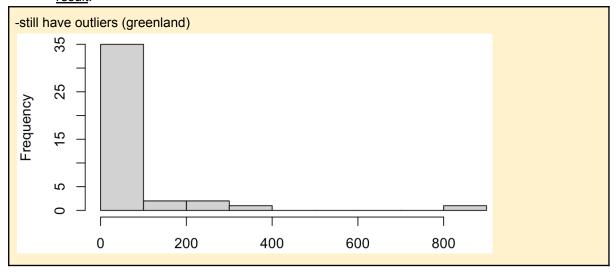
result:

```
-Asia 16K Africa 11K .. (top masses are continents - of course they are going to be huge)
> islands2 <- islands %>%
     enframe() %>%
                                 # Convert vector to tibble
     arrange(desc(value)) %>% # Sort by descending values
     print()
# A tibble: 48 \times 2
    name value
                   <db1>
    <chr>
                 <u>16</u>988
 1 Asia
                 <u>11</u>506
 2 Africa
 3 North America 9390
 4 South America <u>6</u>795
 5 Antarctica <u>5</u>500
                  <u>3</u>745
 6 Europe
 7 Australia <u>2</u>968
8 Greenland 840
                   840
306
 9 New Guinea
                    280
10 Borneo
# i 38 more rows
# i Use `print(n = ...)` to see more rows
 Data
 islands2
                          48 obs. of 2 variables
```

 → can say - we don't want to focus on continents > want to focus on islands (a way of
defining your sample, that helps you deal with some of theses outliers)

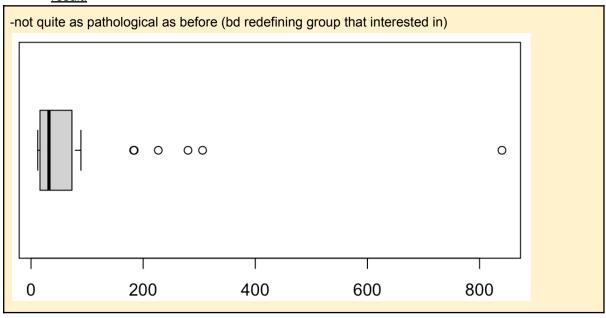
Filter out continents

```
islands2 %>%
filter(value < 1000) %>%
print()
```


- result:

Create histogram & boxplot

- pull() creates a VECTOR (like islands\$value)
- select() create a DATAFRAME
- (dift functions need dift data formats)


```
islands2 %>% pull(value) %>% histogram(main = NULL)
```

- result:

islands2 %>% select(value) %>% boxplot(horizontal = T)

- result:

PART2: BRING IN OUTLIERS

- winsorizing option that is not used very often
 - ex: times on races / time to graduation /financial data
- take extreme values -> change them to highest non-outlier value
 - ex: time to graduation we are going up to 8 years, and anything after 8 we are going to code as 8

Sort observations in descending order:

```
islands3 <- islands %>%
    enframe() %>%  # convert vector to tibble
    arrange(desc(value)) %>%  # sort by descending values
    print()
```

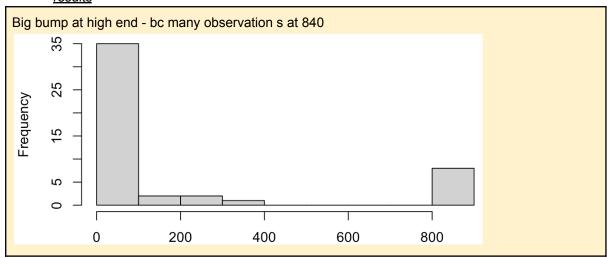
<u>results</u>:

```
The largest non-continent is Greenland, with an area of about 840,000 square miles (coded as 840
in the dataset)
> islands3 <- islands %>%
+ enframe() %>%
                                  # Convert vector to tibble
   arrange(desc(value)) %>% # Sort by descending values
+ print()
# A tibble: 48 × 2
    name value
    <chr>
                   <db1>
 Asia <u>16</u>988
2 Africa <u>11</u>506
3 North Amoria
 3 North America <u>9</u>390
 4 South America <u>6</u>795
5 Antarctica 5500
6 Europe 3745
7 Australia 2968
8 Greenland 840
9 New Guinea 306
10 Borneo
                     280
# i 38 more rows
# i Use `print(n = ...)` to see more rows

○ islands3

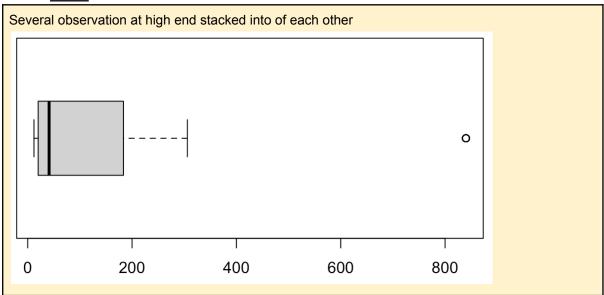
                                    48 obs. of 2 variables
```

IF value is greater than 840 THEN change it to 840:


- results:

```
Now many 840s (for all the continents)
> islands3 <- islands3 %>%
   mutate(
     value = ifelse(
       value > 840, # Test if value is greater than 840
               # If true, replace value with 840
       value # If false, keep existing value
      )
    ) %>%
+ print()
# A tibble: 48 \times 2
   name
          value
   <chr>
               <db1>
                840
 1 Asia
                 840
 2 Africa
 3 North America 840
 4 South America 840
 5 Antarctica 840
 6 Europe
                 840
 7 Australia 840
8 Greenland 840
 9 New Guinea
                  306
                  280
10 Borneo
# i 38 more rows
# i Use `print(n = ...)` to see more rows
```

Graph results:


islands3 %>% pull(value) %>% hist(main = NULL)

- <u>results</u>

islands3 %>% select(value) %>% boxplot(horizontal = T)

- results

PART3: CREATE NEW GROUPS

Split into 2 groups: continents, islands > will treat then separately

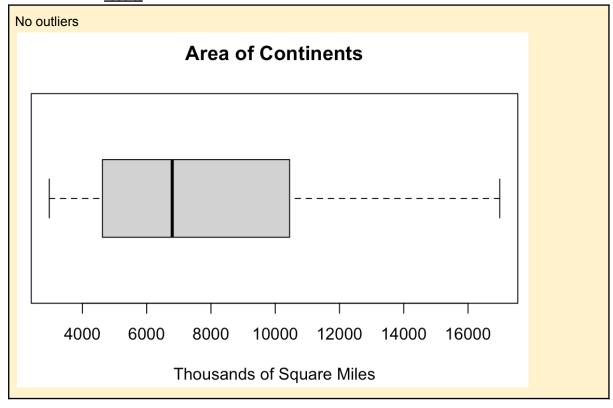
Sort in descending order:

```
islands4 <- islands %>%
    enframe() %>%  # convert vector to tibble
    arrange(desc(value)) %>%  # sort in descending order
    print()
```

- results:

```
> islands4 <- islands %>%
+ enframe() %>%
                                # Convert vector to tibble
   arrange(desc(value)) %>% # Sort by descending values
  print()
# A tibble: 48 × 2
   name value
   <chr>
                <db1>
1 Asia <u>16</u>988
2 Africa <u>11</u>506
 3 North America <u>9</u>390
4 South America <u>6</u>795
5 Antarctica
                  <u>5</u>500
                   <u>3</u>745
 6 Europe
7 Australia <u>2</u>968
8 Greenland 840
9 New Guinea
                  306
10 Borneo
                    280
# i 38 more rows
# i Use `print(n = ...)` to see more rows
islands4
                           48 obs. of 2 variables
```

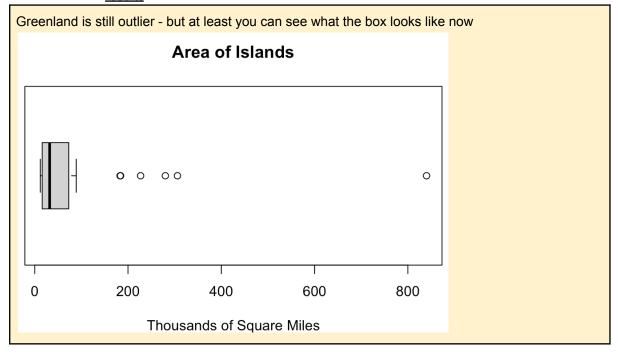
Create new variable - called "landmass" > IF value is < 1000 THEN call it an island:


- <u>results</u>:

```
console: name <chr> / value <dbl> / landmass <chr>
> islands4 %<>%
      mutate(
         landmass = ifelse(
+
            value < 1000, # Test if value is less than 1m sq mi
            "island",  # If true, it's an island
"continent"  # If false, it's a continent
         )
+
      ) %>%
     print()
# A tibble: 48 \times 3
 name value landmass
<chr> <chr> <dbl> <chr> 1 Asia 16988 continent
2 Africa 11506 continent
  3 North America <u>9</u>390 continent
 4 South America <u>6</u>795 continent
 5 Antarctica 5500 continent
6 Europe 3745 continent
7 Australia 2968 continent
8 Greenland 840 island
9 New Guinea 306 island
                        280 island
10 Borneo
# i 38 more rows
# i Use `print(n = ...)` to see more rows
```

Boxplot of area of continents:

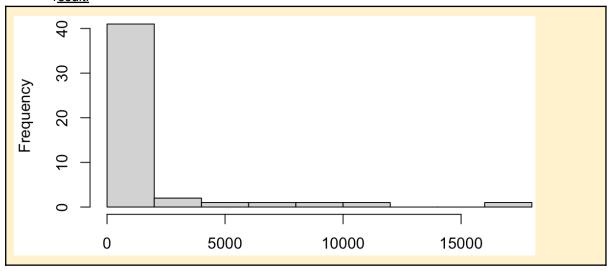
```
islands4 %>%
  filter(landmass == "continent") %>%
  select(value) %>%
  boxplot(
    horizontal = T,
    main = "Area of Continents",
    xlab = "Thousands of Square Miles"
)
```


- <u>results</u>:

Boxplot of islands:

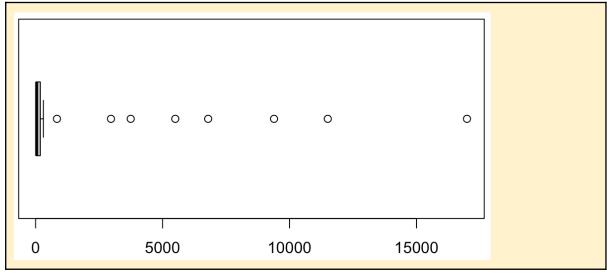
```
islands4 %>%
  filter(landmass == "island") %>%
  select(value) %>%
  boxplot(
    horizontal = T,
    main = "Area of Islands",
    xlab = "Thousands of Square Miles"
)
```

- <u>results</u>:


PART4: TRANSFORMING DATA

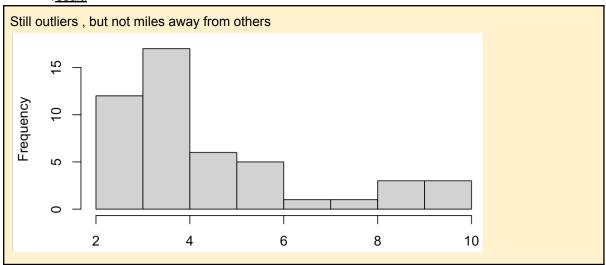
- linear transformation do transformation to all the data
- IF positively skewed data and all values at least 1 THEN logarithm

Strong positive skew:

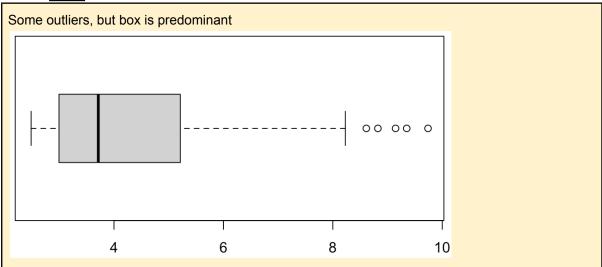

islands %>% histogram(main = NULL)

- result:

islands %>% boxplot(horizontal = T)


result:

Log is natural logarithm with base e (base 10 is log10) > brings in extreme positive values:


islands %>% log() %>% histogram(main = NULL)

result:

islands %>% log() %>% boxplot(horizontal = T)

- result:

