PDM: Chapter 3; Section 8: Graphs, Translations, and Solutions

Consider the following general equations:

$$y_1 = f(x)$$

$$y_2 = a \cdot f(bx - h) + k$$

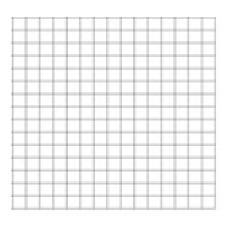
 y_2 is the image of y_1 after some combination of translations (slides/shifts) $T_{x,y}$ and scale changes (stretch/shrink) $S_{a,b}$.

<u>Vertical Scale Change</u>: a <u>Vertical Shift</u>: k

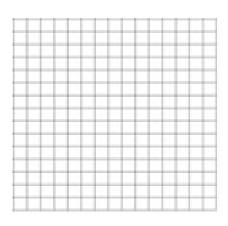
<u>Horizontal Scale Change</u>: $\frac{1}{b}$ <u>Horizontal Shift</u>: Solve bx - h = 0 for x

Describe the transformation made to the function f in order to get the function g.

$$1. \ f(x) = \sin(x)$$

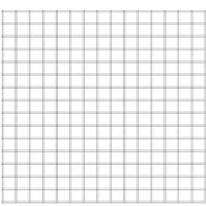

$$g(x) = \frac{3}{4} sin(2x - \frac{\pi}{2})$$

$$2. f(x) = x^4$$


$$g(x) = 8(4x + 3)^4 - 3$$

Sketch the graphs of each of the following using known parent functions.

3.
$$f(x) = (x - 2)^2 - 6$$



4.
$$f(x) = 2|x - 5| + 2$$

5. Given that $x^2 + y^2 = r^2$ represents the graph of a circle centered at the origin with a radius of r, sketch the following graph.

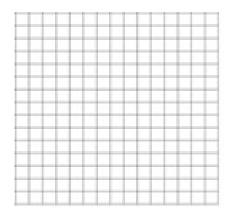
$$\left(\frac{x-2}{4}\right)^2 + \left(\frac{y+6}{5}\right)^2 = 1$$

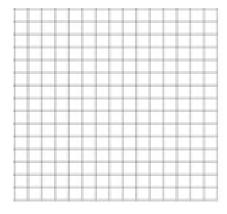
1. Describe the transformation made to the function f in order to get the function g.

a)
$$f(x) = |x|$$
 $g(x) = 2|x - 3| - 1$

$$b) f(x) = x^3$$

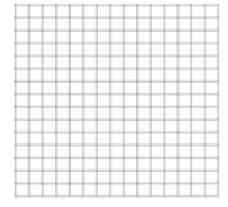
b)
$$f(x) = x^3$$
 $g(x) = (3x + 6)^3 + 1$

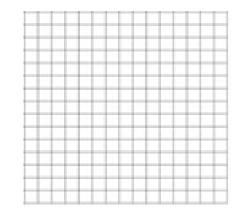

$$c) f(x) = sin(x)$$


c)
$$f(x) = sin(x)$$
 $g(x) = \frac{1}{2}sin(\pi x - \frac{\pi}{2})$ d) $f(x) = 2^x$ $g(x) = 5 + 3 \cdot 2^{2x+8}$

$$d) f(x) = 2^x$$

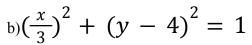
$$g(x) = 5 + 3 \cdot 2^{2x+8}$$


2. Sketch the graphs of each of the following, using known parent functions.

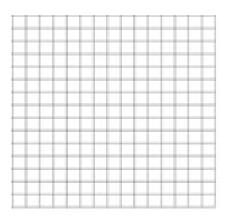


a)
$$y = (x - 2)^2 - 3$$

$$b) y = \frac{1}{2}x^2 - 1$$

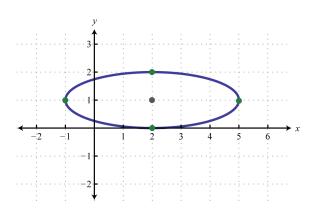


c)
$$y = |2x + 6| - 1$$


d)
$$y = -3 + 2\sqrt{x+1}$$

3. Given that $x^2 + y^2 = r^2$ represents the graph of a circle centered at the origin with a radius of r, sketch the following graphs

a)
$$\left(\frac{x-1}{2}\right)^2 + \left(\frac{y+2}{3}\right)^2 = 1$$



4. Give an equation for the circle with center (50, 30) and radius 25

5. Explain how the graph of the ellipse $\frac{x^2}{9} + \frac{y^2}{16} = 1$ is related to the graph of the unit circle

6. Give the equation of the function graphed using your knowledge of transformations of circles. Assume that the circle has a radius of 1.

