
Documentation​
RPGInventorySystem(MVVM)

Feature
1.​ Using UMG View Model (MVVM) framework
2.​ Network replication using Iris
3.​ Use Feature to process the information and logic of item assets, which is highly scalable.

The Demo uses GAS skill system and CommonUI. You can also expand your own skill
system through Feature subclasses.

Summary

 RPGInventorySystem uses MVVM ViewModel as the item instance and binds it with the UMG
view by introducing ViewModel.

1.​ InventoryManager

1.3 InventoryItemViewModel,InventoryViewModel

2.​ EquipmentManager

2.3 EquipViewModel

2.5 GameFramework

3.​ Featrue
3.1 FR_Info
3.2 FR_InventoryGrid
3.3 FR_Consume
3.4 FR_Equip,Weapon
3.5 FR_GrantAbilities

4.​ UI

4.1 Inventory
4.2 Equipment
4.3 Grid
4.4 QuickSlot
4.5 QuickSlotWeapon

InventoryManager

InventoryManagerIt is a component mounted on PlayerController and can be mounted

directly or added through GameFeature.

Modify the ModelClass and ModelItemClass on the InventoryManager to use the ViewModel

subclass derived from the blueprint to extend more functions.

●​ RPGInventoryItem

 This is a DataAsset type. Each RPGInventoryItem represents an item and information can be

added by adding Feature.

●​ InventoryItemViewModel

InventoryItemViewmodel is a derived class of MVVMViewModel. It is an instance of an item. Its

member variables include Item, Count (quantity), and Index (the position of the item in the grid

in the Inventory). It can be bound to UMG through the MVVMViewModel feature.

CheckAddCondition andConsume will traverseItemThe Feature on executes the corresponding
method.

InventoryViewModelIt is also a derived class of MVVMViewModel and is a collection of

InventoryItemViewmodel.

Function description:

AddItem(URRPGInventoryItem* Item, int32 Count = 1): Add or subtract items. When Count>0, it

is added. If the item does not exist in the Inventory itself or the current item ItemInstance

cannot be added (exceeds the maximum number), a new item ItemInstance will be created.

Count<0 means consumption. If the quantity after consumption is <=0, the ItemInstance of the

item will be removed.

AddItemInstance

Add an ItemInstance instance

RemoveItemInstance(UInventoryItemViewModel* ItemInstance)

Remove an ItemInstance instance

CanAddItem

Calling this method will traverse all ItemInstances in the Inventory, then traverse the Feature

array of RPGInventoryItem in the ItemInstance, and call the CheckAddCondition in the Feature

(implemented in the blueprint). If the CheckAddCondition of a Feature returns false, the

addition will fail.

If the traversal is unsuccessful and Count>0 (for addition, not consumption),

CheckAddNewCondition in Feature will be called to check whether a new ItemInstance can

be added.

GetAllItems()

Get all items in the Inventory

 Consume(UInventoryItemViewModel* ItemInstance,FInventoryEventData Payload)：
 Use items.When this method is called, thisin ItemInstancein RPGInventoryItemDefinition
Feature array, calling Consume in all Features (implemented in blueprints).

Can be downloaded: https://github.com/GEF797/InventorySystem

In Content/Demo/Blueprint

BC_InventoryGrid

Extended multiple functions to implement network synchronization and grid Inventory, the

data model uses VMInventory (a subclass of InventoryViewModel) and VMItem (a subclass of

InventoryItemModel)

VMInventory

Added Total and GridFilled variables, added Fill functionTo realize plaid Inventory

VMItem

Added Index member variable to implement grid Inventory

EquipmentManager

EquipmentManagerIt is a component that is mounted in PlayerState or Pawn (in my

project, the monster's Controller does not need PlayerState, so EquipmentManager is

directly added to Pawn). It can be mounted directly or added through GameFeature.

EquipmentManager logic is different from InventoryManager. InventoryManager adds new

instances when acquiring items.andEquipmentManager will call the AddSlot() method to

add an Instance during initialization. It will only be modified and not added when it is

equipped.

Modify the ModelClass on EquipmentManager to use the ViewModel subclass derived from

the blueprint to extend more functions.

Function description:

EquipToSlot()

Equip the InventoryItemDef to this EquipmentInstance (Slot). When calling this method, all

Features on the InventoryItemDef will be traversed and the CheckEquipCondition of the

Feature will be called. As long as one CheckEquipCondition returns true, the equipment is

successful. OnEquip() will be called when the equipment is successful. If the

EquipmentInstance is ActivateSlot, OnActivate() will be called, and the post-equipment logic

can be implemented in the blueprint.

UnEquip

Unequip this EquipmentInstance and call OnUnEquip() of all Features.

ActivateSlot()

Switch the currently used weapon

GetEquipmentList()

Get all equipment instances

●​ EquipmentViewModel

EquipmentViewmodel is a derived class of MVVMViewModel and is an instance of an

equipment slot. The member variables include EquipmentDefinition, Activated (whether it is

activated), SlotType (the label of the slot, which is a GameplayTag), and AvailableTypes (the

types of items that can be equipped to this slot, is a FGameplayTagContainer) that can be

bound to UMG through the MVVMViewModel attribute.

Feature

RPGInventoryItemFeature

Using the combination of Feature and RPGInventoryItem, this Inventory system can be

adapted to most project needs.

Use Feature to add information to items:

You can create a Feature subclass according to your project needs, declare the required

member variables, and add it to the item’s data assets.

FindFeature

CheckAddCondition is triggered when ItemInstance calls AddItem to check whether

ItemInstance meets the conditions for adding this quantity. The default is true.

CheckAddNewCondition will be triggered when Inventory calls AddItem to check whether

the conditions for adding a new ItemInstance to the Inventory are met. The default is true.

In Plugins, there is FR-InventoryGrid, which declares MaxCount and XY, and implements

the item attributes of the grid Inventory in conjunction with the conditional restrictions of

CheckAddCondition and CheckAddNewCondition

Consume When calling the Consume method of InventoryManager, it willimplementAll of

this ItemFeature The Consume event can be extended in Blueprints.

●​ URPGEquipFeature yes RPGInventoryItemFeature A subclass of , the following events are

added:

OnEquip

UnEquip

CheckEquipCondition returns false by default

OnActivate

The above is the usage in the case. You can also customize your own Feature according to

your own project needs. Feature cannot store data, but you can save the data in the instance

that calls Feature. Available for download:https://github.com/GEF797/InventorySystem

In Content/Demo/Blueprint,

VM_Equip

VMEquip has created multiple functions for Feature to call to add skills, increase values,

generate equipment, change animations, etc. Since the skill system used by each project is

different, you can create a subclass of EquipmentViewModel and extend the required

functions in the blueprint. logic.

UI

Can be downloaded: https://github.com/GEF797/InventorySystem

There are examples of RPGUI in Plugins

https://github.com/GEF797/InventorySystem

You can customize various UI styles according to your own needs. Just use the features of the

MVVM View Model to bind data to the UI and display the required information.

Official documentation:

https://dev.epicgames.com/documentation/en-us/unreal-engine/umg-viewmodel

	Documentation​RPGInventorySystem(MVVM)
	Feature
	InventoryManager
	EquipmentManager
	Feature
	UI

