Documentation

RPGInventorySystem(MVVM)

Feature

1. Using UMG View Model (MVVM) framework

2. Network replication using Iris

3. Use Feature to process the information and logic of item assets, which is highly scalable.
The Demo uses GAS skill system and CommonUI. You can also expand your own skill
system through Feature subclasses.

Summary

RPGInventorySystem uses MVVM ViewModel as the item instance and binds it with the UMG
view by introducing ViewModel.

Item Features(Array)
— InventoryManager fe-

RPGInventorySystem

§ X EquipmentViewModel< Array> Item Features(Array)
EquipmentManager |-

1. InventoryManager

1.3 InventoryltemViewModel,InventoryViewModel

2. EquipmentManager
2.3 EquipViewModel

2.5 GameFramework

3. Featrue
3.1 FR_Info
3.2 FR_InventoryGrid
3.3 FR_Consume
3.4 FR_Equip,Weapon
3.5 FR_GrantAbilities

4. ul
4.1 Inventory
4.2 Equipment
4.3 Grid
4.4 QuickSlot
4.5 QuickSlotWeapon

InventoryManager

InventoryManagerlt is a component mounted on PlayerController and can be mounted
directly or added through GameFeature.

Modify the ModelClass and ModelltemClass on the InventoryManager to use the ViewModel
subclass derived from the blueprint to extend more functions.

Component Tick

Start with Tick Enabled

Tick Interval [

None
€k

Inventory

Model Class VMinventory v (€ BB B X
Mode! ltem Class witem v @ BB ® X

Tags

Component Tags 0 Array element

e RPGinventoryltem

This is a DataAsset type. Each RPGInventoryltem represents an item and information can be
added by adding Feature.

e InventoryltemViewModel

InventoryltemViewmodel is a derived class of MVVMViewModel. It is an instance of an item. Its
member variables include Item, Count (quantity), and Index (the position of the item in the grid
in the Inventory). It can be bound to UMG through the MVVMViewModel feature.
CheckAddCondition andConsume will traverseltemThe Feature on executes the corresponding
method.

InventoryViewModellt is also a derived class of MVVMViewModel and is a collection of
InventoryltemViewmodel.

Function description:

Additem(URRPGInventoryltem* Item, int32 Count = 1): Add or subtract items. When Count>0, it
is added. If the item does not exist in the Inventory itself or the current item Iteminstance
cannot be added (exceeds the maximum number), a new item lteminstance will be created.

Count<0 means consumption. If the quantity after consumption is <=0, the Iteminstance of the
item will be removed.

'q
< AddItemServer F Add ltem

i Target | self | Return Value
Item Def
Item Def
Count @ ——02>L
—— @ Count

AddIltemlnstance

Add an Iteminstance instance

+ Cast To VMItem

Removelteminstance(UlnventoryltemViewModel* teminstance)

Remove an ltemlnstance instance

Potion

1 F Remove ltem
[Remove ++ Cast To RPGInventoryManagerComponent

Object Target Return Value

F Get Outer Object
Item Instance
Object Return Value

ltem View Model

CanAddItem

Calling this method will traverse all lteminstances in the Inventory, then traverse the Feature
array of RPGInventoryltem in the lteminstance, and call the CheckAddCondition in the Feature
(implemented in the blueprint). If the CheckAddCondition of a Feature returns false, the
addition will fail.

If the traversal is unsuccessful and Count>0 (for addition, not consumption),
CheckAddNewCondition in Feature will be called to check whether a new Iteminstance can
be added.

GetAllltems()

Get all items in the Inventory

Consume(UlnventoryltemViewModel* ItemInstance,FInventoryEventData Payload):
Use items.When this method is called, thisin ltemlnstancein RPGInventoryltemDefinition

Feature array, calling Consume in all Features (implemented in blueprints).

Can be downloaded: https://github.com/GEF797/InventorySystem
In Content/Demo/Blueprint
BC_InventoryGrid

Extended multiple functions to implement network synchronization and grid Inventory, the
data model uses VMInventory (a subclass of InventoryViewModel) and VMItem (a subclass of

InventoryltemModel)

VMinventory

Added Total and GridFilled variables, added Fill functionTo realize plaid Inventory
VMitem

Added Index member variable to implement grid Inventory

EquipmentManager

EquipmentManagerlt is a component that is mounted in PlayerState or Pawn (in my
project, the monster's Controller does not need PlayerState, so EquipmentManager is
directly added to Pawn). It can be mounted directly or added through GameFeature.
EquipmentManager logic is different from InventoryManager. InventoryManager adds new
instances when acquiring items.andEquipmentManager will call the AddSlot() method to
add an Instance during initialization. It will only be modified and not added when it is
equipped.

DemoSaveData
= Compile U H e gs c f : No debug obj

8. 1y Blueprint ora # et
+add Q

GRAPH:

Right-Click to Create New Nodes.

FUNCTIONS
MACRO

VARIABLES
ik
In

Equipments 4 member:

Slot Type Gameplay EquipmentSiot Weapon Weaponl X

alable Type: Gameplay.Inventory. Equipment Weapon X

ern

Siot Type Gameplay EquipmentSiot Weapon Weapon2 X

Equipment Definition

alable Type: Gameplay Inventory.Equipment Weapon

A
e
er

t Type Gameplay.EquipmentSiot Weapon.Weapond X

Equipment Definition

alable Type: Gameplay Inventory Equipment Weapon 3

4 member:
4 member:
4 member:
4 members

4 member:

W_inventory Grid

AuDio
comMmoN

el Slot)

Alignment
To Content
COMMON UL
COMMON UI PLUGIN
EDITOR i i o Bind
FOUNDATION et
INPUT
Siot Type Gameplay EquipmentSiot Weapon Weapon
Bind Wid i i ! Texture_Equipment_
Defaultlcon
(CH 2
Input
Display in Action Bar
Consume Pointer Input

Priority

o
1 Ulinvenotory
-+ [Spacer]

ELLLEELLLELLELEE

Modify the ModelClass on EquipmentManager to use the ViewModel subclass derived from
the blueprint to extend more functions.

® 1

Function description:

EquipToSiot()

Equip the InventoryltemDef to this Equipmentinstance (Slot). When calling this method, all
Features on the InventoryltemDef will be traversed and the CheckEquipCondition of the
Feature will be called. As long as one CheckEquipCondition returns true, the equipment is
successful. OnEquip() will be called when the equipment is successful. If the
Equipmentinstance is ActivateSlot, OnActivate() will be called, and the post-equipment logic
can be implemented in the blueprint.

UnEquip

Unequip this Equipmentinstance and call OnUnEquip() of all Features.

ActivateSlot()

Switch the currently used weapon

GetEquipmentList()

Get all equipment instances

EquipmentViewModel

EquipmentViewmodel is a derived class of MVVMViewModel and is an instance of an
equipment slot. The member variables include EquipmentDefinition, Activated (whether it is
activated), SlotType (the label of the slot, which is a GameplayTag), and AvailableTypes (the
types of items that can be equipped to this slot, is a FGameplayTagContainer) that can be
bound to UMG through the MVVMViewModel attribute.

Feature

RPGInventoryltemFeature

Using the combination of Feature and RPGInventoryltem, this Inventory system can be

adapted to most project needs.

Use Feature to add information to items:

You can create a Feature subclass according to your project needs, declare the required
member variables, and add it to the item’s data assets.

FindFeature

F Find Fragment by Class JF Set Brush from Soft Texture

» 9)
Target Return Value _ Target
Fragment Class Ullcon == @ Soft Texture

FR Info w -

T 3
Target lcon @ ”’/

Inventory Definition

Return Value

CheckAddCondition is triggered when Iteminstance calls AddIitem to check whether
ltemInstance meets the conditions for adding this quantity. The default is true.

CheckAddNewCondition will be triggered when Inventory calls Addltem to check whether
the conditions for adding a new Iteminstance to the Inventory are met. The default is true.

In Plugins, there is FR-InventoryGrid, which declares MaxCount and XY, and implements
the item attributes of the grid Inventory in conjunction with the conditional restrictions of
CheckAddCondition and CheckAddNewCondition

Consume When calling the Consume method of InventoryManager, it willimplementAll of
this ItemFeature The Consume event can be extended in Blueprints.

URPGEquipFeature yes RPGInventoryltemFeature A subclass of , the following events are
added:

OnEquip

4 Event BP on Equip

tem

UnEquip

<> Event BP Un Equip

E Branch & Reset Anim
» True [
\ .

FF GetActvated

CheckEquipCondition returns false by default

Ul

[® BP Check Equip Condition f Find Fragmentby Class

g [Return Node
Ll g
» _—
Item
Target Retum Value FRetum Value
quip Instance
Fragment Class

OnActivate

The above is the usage in the case. You can also customize your own Feature according to
your own project needs. Feature cannot store data, but you can save the data in the instance
that calls Feature. Available for download:https://github.com/GEF797/InventorySystem

In Content/Demo/Blueprint,
VM_Equip

VMEquip has created multiple functions for Feature to call to add skills, increase values,
generate equipment, change animations, etc. Since the skill system used by each project is
different, you can create a subclass of EquipmentViewModel and extend the required
functions in the blueprint. logic.

Can be downloaded: https://github.com/GEF797/InventorySystem

There are examples of RPGUI in Plugins

https://github.com/GEF797/InventorySystem

You can customize various Ul styles according to your own needs. Just use the features of the
MVVM View Model to bind data to the Ul and display the required information.

Official documentation:

https://dev.epicgames.com/documentation/en-us/unreal-engine/umg-viewmodel

&% View Bindings x ML Viewmodels

Rem

Grid Changed R GetFilled #

W_Griditen

wio
OMMON
1= Anal
(=

=5

¥ Check Box

OMMON Ul
OMMON UI PLUGIN
DITOR

£= Bind Wide

- [0
o

W_Griditem]
1

Ulicon
[UICount] "Text Block™

+ Addwidg

No debug obj

Get Inventory Definition

2z

2 Details

	Documentation​RPGInventorySystem(MVVM)
	Feature
	InventoryManager
	EquipmentManager
	Feature
	UI

