

TITLE

Beer's Law Lab for Remote Learning

This lab uses the **Beer's Law Lab** simulation from PhET Interactive Simulations at University of Colorado Boulder, under the CC-BY 4.0 license.

https://phet.colorado.edu/sims/html/beers-law-lab/latest/beers-law-lab en.html

AUTHORS

Susan Hendrickson (University of Colorado Boulder)
Julia Chamberlain (University of Colorado Boulder)

LEARNING GOALS

Students will be able to:

- Describe the relationship between solution concentration and the intensity of light that is absorbed/transmitted.
- Explain how wavelength, solution color, and absorbance are related by comparing different solutions.
- Use a sketch of an absorption spectrum to describe the concept of maximum absorbance wavelength

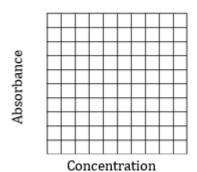
COPYRIGHT

This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>.

This license allows users to share and adapt the materials, as long as appropriate attribution is given (with a link to the original), an indication if changes have been made, and an indication of the original licensing.

BFFR'S LAW LAB

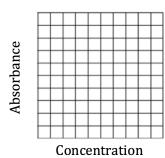
Introduction


- 1. **Explore** the <u>Beer's Law</u> screen for a few minutes. Try to figure out what all of the controls show and do.
- 2. How does Concentration affect how much light is **absorbed** and **transmitted** through the solution? Include screen captures from the simulation to support your ideas.

INVESTIGATING ABSORPTION AND CONCENTRATION

Predict what a graph of absorbance versus concentration would look like. Sketch your prediction.

Prediction



2. Choose a solution from the simulation and **measure** the Absorbance for different concentrations on the preset wavelength setting.

Data from the Simulation

Concentration M	Abs

- 3. How does your second graph compare to your prediction
- 4. Based on Beer's Law (A = ϵ lC, A = absorbance, ϵ = molar absorptivity, l = pathlength and C = concentration), do you expect using different wavelengths of light would change the way your previous graph looks? Why or why not?

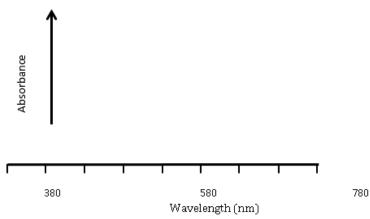
Investigating Absorption and Wavelength

1. a. Compare three solutions of different colors with the same pathlength (width of container).

		Preset Wavelength: Simulation default setting			Variable Wavelength: Set to same color as solution		
Solution	Solution Color	Beam Color	Value (nm)	Abs	Beam Color	Value (nm)	Abs

b. What combinations give the most absorbance? Why?

c. How are beam color, solution color, and absorbance related?



2. a. Choose a solution and **keep concentration and pathlength constant** as you graph the absorbance for different wavelengths.

- b. What is the value for the "preset" wavelength for your solution? Mark this point on your graph.
- c. Why do you think the "preset" wavelength is the best wavelength to use for this solution?
- 3. Compare your absorbance spectrum sketch with a group that chose a different solution. (Or repeat your experiment with a different solution) Would you use the same wavelength of light to do spectroscopy experiments

with different colored solutions? Why or why not?

30iuti0ii		
wavelength (nm)	Abs	

- 4. In a lab experiment monitoring the change in concentration of a reddish-brown substance, FeNCS²⁺, a wavelength of 455 nm is used.
 - a. Does this wavelength agree with your conclusions about beam color, solution color, and absorbance above? Why or why not?
 - b. What other wavelengths might you consider using for FeNCS²⁺ spectroscopy?