

Wilton High School Statistics 2 Course Outline

WHS offers a course in Statistics, focusing on collecting and analyzing data, drawing inferences through formal procedures, and introductory probability concepts. In a given school year, some topics may be expanded upon and others omitted based on the specific needs of students.

Unit/Topics	Students will know:	Students will able to:
Unit 1 - Introduction to Statistics An Overview of Statistics, Data Classification, Experimental Design	 The definition of statistics The difference between a population and sample The difference between a parameter and statistics How to distinguish between descriptive statistics and inferential statistics. There are two general types of data. How to design a statistical study That a well-designed experiment implements randomization, replication, and control. That variables can have a causal or correlated relationship. 	 Identify and/or calculate statistics and parameters Make a generalization based on the results of a study. Classify a set of data as quantitative or qualitative. Collect data by doing an observational study, experiment, simulation, survey, and census. Select a sample from a population using a variety of methods: simple random sample, stratified sampling, cluster sampling, systematic sampling. Identify and revise a biased survey question. Determine whether a study is an experiment or observational study and what type of conclusion can be drawn from the results.
Unit 2 - Descriptive Statistics Frequency Distributions and Their Graphs, More Graphs and Displays, Measures of Central Tendency, Measures of	 That a frequency distribution table an be created for univariate, quantitative data. Histograms, Ogives, Stem-and-Leaf plots, dot plots can be used to display univariate quantitative data. A Pareto chart and a Pie chart can 	 Calculate class limits, class boundaries, midpoints, frequency, relative frequency, cumulative frequency, cumulative relative frequency Create and interpret the following graphs: Histogram, Ogives, Stem-and-Leaf plots, Dot Plot, Pareto

Variation, Measures of Position	 be used to display qualitative data. A Scatter Plot and a Time Series can be used to display bivariate quantitative data. The center of a univariate quantitative data set can be stated using the mean, median, or mode. Identify the shape of a graph. The spread of a univariate quantitative data set can be stated using the standard deviation, variane, or range. A quantitative data set can be divided into quartiles and that a boxplot can display this information. The z-score can measure the position of a value in a data set. 	 Chart, Pie Chart, Scatter Plot, Time Series, and Boxplot. Calculate measures of central tendency. Calculate measures of spread. Compare measures of central tendency and spread by looking at graphs. Calculate z-scores. Make decisions based on the comparison of z-scores. Find the 5 number summary for a given quantitative data set.
Unit 3 - Probability Basic Concepts of Probability and Counting, Conditional Probability and the Multiplication Rule, Additional Topics in Probability and Counting	 A sample space is a list of all possible outcomes of a probability experiment. A tree diagram can be used to visually represent the result of the Fundamental Counting Principle. A simple event is an event that consists of a single outcome. An event and its complement are mutually exclusive and contain all outcomes from the sample space. The probability of an event is on the interval [0,1]. That the probability of independent and dependent events are calculated differently. The Addition Rule is utilized different depending on if events are mutually exclusive or not. Permutations involve an ordering while Combinations are choosing objects from a group without regard to order. 	 Find the probability of the complement of an event. Identify simple events. Create a sample space. Apply the Fundamental Counting Principle to find probabilities. Find the probability of an event given that another event has or has not occurred. Identify scenarios that independent or dependent probabilities. Use the Multiplication Rule to find probabilities. Use the Addition Rule to find probabilities. Find the number of ways a group of objects can be arranged by using the permutation formula or technology. Find the number of ways a group of objects can be selected using the combination formula or technology.
Unit 4 - Discrete Probability	A random variable represents a numerical value associated with	Distinguish between discrete and continuous random variables.

Distributions Probability Distributions, Binomial Distributions, More Discrete Probability Distributions	 each outcome of a probability experiment. A discrete probability distribution satisfies two conditions: each probability is on the interval [0,1] and that the sum of all the probabilities is 1. That there are two types of random variables: discrete and continuous. Random variables have means, variances, and standard deviations. The conditions that qualify a probability experiment to be considered Binomial, Geometric, or Poisson. 	 Construct a discrete probability distribution table and its graph. Verify a given distribution is a discrete probability distribution. Calculate the expected value of a discrete probability distribution. Calculate Binomial, Geometric, and Poisson probabilities using technology, formulas, and a probability table.
Unit 5 - Normal Probability Distributions Introduction to Normal Distributions and the Standard Normal Distributions: Finding Probabilities, Normal Distributions: Finding Values, Sampling Distributions and the Central Limit Theorem	 That the normal distribution is a continuous probability distribution. The normal distribution is used to model many natural phenomena. The properties that make a continuous probability distribution a normal distribution. The standard normal distribution is a normal distribution with a mean of 0 and standard deviation of 1. The sampling distribution of sample means is formed by repeatedly taking samples of size n and calculating the mean for each sample. The properties of the sampling distribution related to its center, spread, and shape. 	 Interpret graphs of normal probability distributions Find areas under the standard normal curve. Find probabilities for normally distributed variables using a table and technology. Find a z-score given the area under the normal curve. Transform a z-score to an x-value. Find a specific data value of a normal distribution given the probability. Apply the Central Limit Theorem to find the probability of a sample mean. Understand the Central Limit Theorem through simulation.

Unit 6 - Confidence Intervals Confidence Intervals for the Mean (Large Samples), Confidence Intervals for the Mean (Small Samples), Confidence Intervals for Population Proportions	 The difference between making a point estimate and an interval estimate. The t-distribution is used for small samples of quantitative data when σ is unknown. The t-distribution is a family of curves based on the degrees of freedom. A confidence interval estimates with quantitative data and qualitative data in a conceptually similar but mechanically different way. What distribution to use to obtain the critical values depending on sample size, information given about population, and the standard deviation given when working with quantitative data. The conditions that need to be met to create an interval estimate from qualitative data. 	 Calculate a point estimate given a set of data. Construct and interpret a confidence interval for a population mean. Determine the minimum sample size required when estimating a population mean. Find critical values of t using a t-distribution table and/or technology. Construct and interpret a confidence interval for a population proportion. Determine the minimum sample size required when estimating a population proportion.
Unit 7 - Hypothesis Testing with One Sample Introduction to Hypothesis Testing, Hypothesis Testing for the Mean (Large Samples), Hypothesis Testing for the Mean (Small Samples), Hypothesis Testing for Proportions	 A sample of data can be used to test a claim about a population parameter. The amount of evidence required when making a decision is related to the level of significance. That there is always the potential to make the wrong decision when using a single sample to test a claim about a population parameter. 	 Write the null and alternate hypotheses for a test of significance utilizing the appropriate notation. Make a decision to reject or fail to reject the null hypothesis based on sample data and the level of significance. Describe the decision made in the context of the problem. Describe which error could have been made, Type I or Type II Describe the error in the context of the problem.