
 HW1: The Room (100pts + 10 EC pts)
By Nathaniel Myren, Shantanu Tulshibagwale, Elmeri Uotila, Paula Alavesa and Alessandro
Nardi
Updated 10th of Jan 2024

Instructions​ 2
Create a Project​ 3
Part 1. Setting Up the Room and Learning Unity UI Basics (50pts)​ 5

1.1 The Room​ 5
1.2 Player Controller in VR​ 7
1.3 Create the first build​ 10
1.4 Lighting​ 10
1.5 Planet and Moon​ 11
1.6 Text​ 11
1.7 Material​ 13
1.8 Adding Skybox​ 16

Part 2. Scripting, C# (50pts)​ 16
2.1 Basic Scripting​ 16
2.2 Quit Key​ 17
2.3 Light Switch​ 18
2.4 Orbiting Moon​ 19

2.4.1 Break Out​ 19
Part 3. A More Interesting Room (10pts Extra Credit)​ 20

Additional resources that may be helpful​ 20
Contents of the Assignment and Grading​ 21
Submission Instructions​ 22

Step 1: Create a Unity Package File​ 22
Step1​ 22
Step 2: Create a Standalone Build​ 22
Step 3: Zip the Files and Submit Through Classroom Stream​ 22
DO NOT SUBMIT YOUR ENTIRE PROJECT FOLDER!​ 23

Instructions
If you are working in the TS 135 lab, then all of the equipment will be provided to you. If you
work from home or some other place, you need to make sure you have Unity3D Engine
installed. If you don’t have it already installed, download it from here Download Unity Hub. Note
that there are many versions available. The latest LTS (Long Term Support) version should be a
safe bet for maximum compatibility, but the latest stable release should also work. Unity Hub
can be used to manage Unity installations, and is the recommended way to go about installing
Unity.

As you go on completing your homework assignment, you are allowed to add extra features,
make it more complex than required, or use the work here as a basis for your other future
assignments. The following instructions are written so that you should be able to work
independently and you can return your assignment early. If you are unfamiliar with
programming, you can check out this C# tutorial before the exercises. If you are not using the
headsets provided by us, you might need to somewhat adapt the instructions below.

Some materials for this homework are provided.

Now, proceed with the following step-by-step instructions to complete your assignment.

These instructions try to be as complete as possible but in order to keep the length
approachable not everything is described in this document. When learning how to use Unity a
good approach is using Youtube. Here is a list of channels that we find very useful, always pay
attention to the fact that the solutions that they propose might be outdated or not best practice:
https://www.youtube.com/@ValemTutorials
https://www.youtube.com/@Brackeys

Add project on GitHub
GitHub, a web-based platform for version control and collaboration, is pivotal for Unity
VR projects. It facilitates efficient code management and asset sharing, which is
essential for structured VR development. We will now see how to Add your project to a
git hub repository. If you don’t already have it you have to create an account on their
website.
For this course, we will use GitHub desktop but very often git commands are done through the
command line interface.

Once you have an account proceed to create a new repository. Give it a name and make it
public as you will have to share it with us. Tick the add README file option and choose the
unity gitignore template (More information on what a gitignore file does here).

https://unity3d.com/get-unity/download
https://www.tutorialspoint.com/csharp/
https://drive.google.com/file/d/1IokvnLBKST9gNYfs9tQBGSHWSs38LIWs/view?usp=sharing
https://www.youtube.com/@ValemTutorials
https://www.youtube.com/@Brackeys
https://github.com/
https://desktop.github.com/
https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files

Once you have created a repository you can open GitHub desktop. Click on file -> clone
repository choose the repository that you have previously created and choose a local path then
press clone.

Now you have a local version of your git repo. Once you do any changes you will se on the right
a list of the modified files.

Every time that you complete some changes and you want to create a point where you can
restore the project if needed, write a title and a description of the changes and press on commit
to main. Remeber that if you commit to main you have committed to the local copy of the
repository and it doesen’t mean that your changes are on the online repository. If you want to
modify the online repo press “push origin”.

Create a Project
Open Unity hub.To create a new project, click the New Project button on the top right. You
should save the project inside the local repo folder. Pay attention to the fact that if you are
working on a university computer all saves on PCs are deleted when they are rebooted. This
means that before shutting down the computer you have to commit and push your project. We
will use a 3D template, pay attention because different versions are available. We suggest to
use the “3D(URP)” template. The different templates use different rendering pipelines we are

gonna use the “Universal rendering pipeline”. If you want to know more about the topic you
can refer to the Unity documentation

Get acquainted with Unity’s basic features and the interface:
​ Interface Tutorial

Part 1. Setting Up the Room and Learning Unity UI
Basics (50pts)

1.1 The Room
Build a cubic room out of six planes. Make sure to orient these planes so the visible sides face
inwards, and ensure that the player cannot walk through any of them. The room should be
15x15x15 Unity units (aka meters).

Create a plane (GameObject → 3D Object → Plane).

Unity’s default plane size is 10×10(X×Z) units. In order to make your room 15 units wide, you
have to scale the plane. On the right side (in the default editor layout) you will find the Inspector
window. This window provides details about the currently selected object. Select the plane in the
Scene view, and the Inspector will fill with information and settings for said plane. Find the
“Scale” option, and set the X and Z values to 1.5 to make your plane 15 units wide and long.
Build the rest of the walls by adding new planes or duplicating the existing and adjusting scale,

https://docs.unity3d.com/Manual/render-pipelines.html
https://docs.unity3d.com/Manual/UsingTheEditor.html

position and rotation. The plane has no thickness, so the value in Y can be any positive integer
and remember your plane is now 15 units/meters wide.

Note: The plane also rotated its axes, when you adjust rotation so the local axis changes. Make
sure to account for that when rotating and moving objects!

Note: By default, your scene has a directional light in it, which illuminates your entire scene from
a specified angle, from very far away, much like the sun. You’ll notice that your planes do not
block this light. That’s because planes only block light (and render) from one side. Make sure
that in your room, all six planes face inwards, and bear this in mind when creating objects in
Unity in the future! For now, just delete the directional light. You will add more lights in later.

1.2 Player Controller in VR
Note: If you do not yet have access to an HMD, you should still be able to follow these steps,
you will just be unable to test the results properly.

To get started with setting up VR for your project, open Package Manager (right next to Asset
Store as seen in the screenshot above). In Package Manager, look for packages from Unity
Registry (top left in the window), search for OpenXR and XR interaction toolkit and install
them. See screenshot below for how to navigate the Package Manager window. In addition,
import the controller sample, which will appear in the window after installation. That will allow
you to test your controllers, see how they work and also use it as an example.

You may then see a warning about an interaction profile. Next, we should navigate to Edit ->
Project Settings -> XR Plug-in Management and select OpenXR. Although you probably have
an Oculus device, OpenXR is a more universal solution, allowing your project to run on other
devices as well, so we will use that.

After that, select OpenXR below XR Plug-in Management and add an interaction profile. For
most of you, Oculus Touch is the correct profile, so add that. If you have different controllers,
choose a suitable option. Note that even when a specific profile is selected, many actions are
shared between different controllers, so it will work with different controllers too.

After that, you should be ready to start working on your project. You should be able to see the
hierarchy tab on the left side of the screen. Inside it there should be an object called Main
Camera which you should delete as we will use an XR Rig instead.
Click on the plus button at the top of the hierarchy and then go to XR -> Device based -> XR
origin (VR). This will spawn an XR origin in your scene. This is a complex object composed of
multiple game objects. By expanding it, you should see a hierarchy as in the picture.

If you do not see the controllers, it might be because Unity 6 changes some things. In that case,
try getting the starter assets for XR Interaction Toolkit and grab the XR Origin (XR Rig) prefab
from Assets/Samples/XR Interaction Toolkit/{version number}/Starter Assets/Prefabs and place
it in your scene instead of any other XR Rigs or cameras.

You can now press play and put on the headset. If you did not use this prefab, the controllers
may not be visible when playing. In that case, press the + button and 3D object -> Cube and
drag it under “Left Controller” and do the same for “Right Controller”. Make sure that the position
is (0,0,0) so the position is always at the tracked position of the controller and scale it down so it
isn’t too big (0.1 is appropriate). As long as you have any 3D model tracking the position of the
controllers in-game, feel free to proceed.

If you have 2022 version of Unity and there are issues with getting the controllers or tracking to
work, you may also want to get the XR Interaction Toolkit sample as shown above, but it will be
an older version, and the XR Rig prefab may be found in Assets/Samples/XR Interaction
Toolkit/2.6.3/Starter Assets/Prefabs/XR Interaction Setup. You can try placing that in your scene
instead of any other camera or XR Rig.

1.3 Create the first build

When creating a project in unity it is very useful to test it in preview but before shipping is
necessary to build the project in order to create a version that doesn’t require Unity. A smart
approach to this is to make an incremental this allows to keep the build time contained and
simplifies catching errors. Always remember if it runs in preview mode it doesn't mean that it will
build successfully, do not wait the last day to build a project for the first time. A build of a
large project can take up to several hours to be completed and if it fails at 10 minutes from the
end you might not have the time to understand what went wrong.

To build a project simply go to File -> build settings check that you ticked all the scenes that you
want to build and then press build and run. Select a folder to contain the build and press ok.
Then wait until completion.

This will create an executable (.exe) for running the build, a folder containing your scene data, a
“Mono” folder, and UnityPlayer.dll.

This is a very basic build but depending on you project and platform some of you might have to
make some changes to the build setting for more information check the Unity documentation.

1.4 Lighting

Create a point light (GameObject → Light → Point Light), and place it at (0,15,0). The inspector
tab should have a Light component like below:

Of primary importance are the range (the radius of your light), color, and intensity values. Set
the shadow type to “soft shadows”, and the mode to “Realtime”. Set your range and intensity so
that your room is brightly lit.

https://docs.unity3d.com/Manual/BuildSettings.html

We recommend reading the Unity manuals for general lighting, shadows, and lighting modes. In
later homework, and your course project, these settings can impact performance significantly.

1.5 Planet and Moon

Create two spheres (GameObject → 3D → Sphere). Scale the first sphere to 2 in all directions,
and place it in the center of your room. In the Hierarchy view, drag the second sphere onto the
first. The result should look like this:

Now, the second sphere is a child of the first sphere. When you change the position, rotation, or
size of the parent sphere, its child will also undergo the same movement, rotation, or scaling.
The (0,0,0) origin position of the child is now its parent’s position, not the global (0,0,0) origin.
That is, the child’s position is an offset from the parent’s position. Finally, if the parent rotates,
then the child will rotate about its parent’s axes, not its own axes (this will make more sense
later). See the Unity hierarchy manual for more information.

Set the position of the child sphere to be (2,0,0), which is four units from the parent sphere on
the X-axis. For why this is, think about the scaling of the parent sphere.

1.6 Text

Check out the Unity tutorial on Creating Worldspace UIs. Create a canvas (GameObject → UI
→ Canvas) and then create a text object under it (GameObject → UI → Text). If you create a
text object directly, it will be parented under an existing canvas, which may not be desired since
our PlayerRig prefab uses its own canvases. The canvas should look like this in the inspector
tab:

https://docs.unity3d.com/Manual/Lighting.html
https://docs.unity3d.com/Manual/Shadows.html
https://docs.unity3d.com/Manual/LightModes.html
https://docs.unity3d.com/Manual/Hierarchy.html
https://docs.unity3d.com/Manual/HOWTO-UIWorldSpace.html

First, change the Render mode from Screen Space - Overlay, to World Space. This changes the
canvas from a UI element glued to the camera, to an object that is stationary in the world.
Traditional UIs do not work well in VR, and we strongly discourage sticking any UI elements to
the camera in your future MPs and Projects. Always attach UI elements to something in the
world (see this).

Now that the canvas is a world space object, we can make it a more reasonable size. However,
since the “Rect Transform”’s width and height are in units of pixels, not world units, we must first
set the resolution of the canvas. Set the width and height to 1000 (that is 1000×1000 pixels).
Now, shrink the canvas by setting the scale. Multiplying the canvas width and height by the
scale factors gives the actual size of the canvas in world space. For example, since we set the
canvas to be of size 1000×1000 pixels, using scaling factors of 0.01 would make the canvas
1000∗0.01=10 units large in world space. Adjust your text’s Rect Transform (position and
with/height) to be the same as on the parent canvas, but leave the scale as it is, 1. Now, you
can place your canvas against one of the walls.

https://developer.oculus.com/learn/bp-vision/

Offset it a small amount (like, 0.001) off of the wall it is against to avoid Z-fighting, which
happens when two objects have the same depth, and Unity can’t figure out which one to render.
Below is an example of Z-fighting:

Now, you can set your text color, size, font, width, whether it wraps or overflows, etc. You can
check how your project looks in VR by just clicking play on top of your scene view.

Later when we start scripting, make sure your text has the controls for your game. Make sure
the text is big enough for us to read. If the text appears blurry or jagged, then increase the width
and height of the canvas and text (to increase the resolution), and scale them down further.

1.7 Material

To easily understand how to complete the next section consider the walls in the room as
numbered in this way:

Read the Unity materials, shaders and textures manual, focusing mainly on the Materials, for
now. A base texture (tile.png), and a normal map (the weird purplish image tile-normal.png) can
be found from the provided materials. To create a material, go to Assets → Create → Material.

This will generate a default material, which should show up in the inspector tab like so:

https://docs.unity3d.com/Manual/Shaders.html
https://drive.google.com/file/d/1IokvnLBKST9gNYfs9tQBGSHWSs38LIWs/view?usp=sharing

Rename it WallMaterial1.

Drag the tile.png image to the box labeled “Albedo”. Now, drag this material from the assets
folder onto the wall 1in the Scene view. It probably doesn’t look too good. Don’t worry, it’ll get
better. Drag the tile-normal.png image to the box labeled “Normal Map”. Notice how it changes
the perceived material. A normal map is a trick used to give the illusion of depth on a flat
surface, by telling the engine to reflect light as if there were these little bumps and pits in the
material. Apply this material to a wall by dragging it onto a wall.

Create a new material, called WallMaterial2, apply the same albedo and normal maps as you
did WallMaterial1, and apply it to the wall number 2. Right above the “Secondary Maps”
subheading is the “Tiling” option, which has an option for x and y. Tiling causes a material to
repeat itself on the same object, rather than covering the whole thing. So, changing tiling x to 2,
means that the material will repeat once, and show up twice, in the x direction on the wall. Play
with the tiling until you like the look of it. Below is an example of non tiled and tiled walls side by
side.

In the inspector tab, right below the albedo option, there are metallic and smoothness sliders.
Play around with these, and see how they affect the material. The metallic slider adjusts the
reflections, and smoothness helps to enhance or subdue the normal map. Modify the metallicity
and smoothness of the two wall materials so that they are clearly visually different.

Finally, create a material that has no albedo or normal map, call it WallMaterial3. Next to the
albedo option is a small color box. Since this material has no albedo, the material will be this flat
reflection color. Try and see what happens when you change the color of a material with an
albedo. Apply this flat color onto the third wall in the room.

1.8 Adding Skybox
Follow the instructions in the Unity skybox manual to set up the skybox. Since the room is
currently enclosed, you won’t be able to see the skybox from the room. We will remedy that in
the scripting section.

The skybox is from mgsvevo.

Part 2. Scripting, C# (50pts)

2.1 Basic Scripting

Unity scripts use the C# language. If you are unfamiliar with programming, you can check out
this C# tutorial. You’ll only need the basics of objects, classes, and variables for now.

We recommend reading the Unity scripts manual and the script object API.

https://docs.unity3d.com/Manual/skyboxes-using.html
https://cs498vr.cs.illinois.edu/assignments/mp1.html#break-out
https://www.assetstore.unity3d.com/en/#!/search/page=1/sortby=popularity/query=publisher:9104
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/
https://www.tutorialspoint.com/csharp/
https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

Unity’s Scripting API Reference is a useful source of information for when you are scripting new
objects. For the first script, we will detail the functions that we recommend, but for the others, we
expect that you will refer to the API reference if needed.

If you have access to VR HMD and controllers, use those controllers as the input device. You
may test the following scripts with keyboard inputs until you get access to VR hardware.
However, the returned assignment should function with the motion controllers of a VR device.

For testing without VR hardware, you may also find it useful to use the scene view. When you
run the scene in the Unity editor, the view defaults to “Game”, but it can be switched to “Scene”
right after, allowing you to move the rig, simulating movement, or otherwise manipulate the
scene. You can also monitor the whole scene this way and ensure everything is functioning as
intended.

Some documentation about input systems is linked below. However, you may find it sufficient to
simply take example from the controller sample scene.

●​ XR Input, Unity New Input System Documentation
●​ Unity Legacy Input

2.2 Quit Key
Create a new script using the Assets menu (Create → C# script). To attach the script to an
object, select the object, then drag the script from the assets tab to the inspector tab.
(Alternatively, you can create and attach a script in one step using Add Component → New
Script.) For this script, the exact object attached is unimportant.

When a Unity script is attached to a GameObject, that script will run when the game is started.
Furthermore, the “this” reference in the script will refer to the object to which the script is
attached.

By mimicking the input code in the controller sample scene, we can make it something like this.

https://docs.unity3d.com/ScriptReference/
https://docs.unity3d.com/Manual/xr_input.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.4/manual/index.html
https://docs.unity3d.com/Manual/ConventionalGameInput.html

In addition, remember to set the desired action in the Unity editor. The controller sample should
come with all the necessary actions to use all the input options of your controllers, and you can
find and select these by pressing the circle icon on the right, but if you want to add other actions
or edit them in some way, you can find the input actions file by clicking on the text after selecting
an action, or you could just right click on the project assets window, Create -> Input Actions.

This documentation may also help you understand what action corresponds to what button.

Application.Quit() quits a Unity application, but it will not stop a game running in the editor. Thus,
we use an #if and a Unity-specific preprocessor directive that adjusts its behavior depending on
whether the project is within the editor, or a standalone executable.

2.3 Light Switch

Make a script and attach it to the point light. Our first step is to get the Light component of our
point light GameObject. Read the Controlling GameObjects using Components tutorial, then
add these lines to your script:

https://docs.unity3d.com/Packages/com.unity.xr.openxr@1.4/manual/features/oculustouchcontrollerprofile.html
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-if
https://docs.unity3d.com/Manual/PlatformDependentCompilation.html
https://docs.unity3d.com/ScriptReference/Light.html
https://docs.unity3d.com/ScriptReference/GameObject.html
https://docs.unity3d.com/2019.3/Documentation/Manual/ControllingGameObjectsComponents.html

The Start function runs as the game initially starts. This saves a reference to the Light
component for later use.

Alternatively, you can declare public GameObject variables. Save your script, then navigate to
the script in the inspector pane. The variable will show up in the inspector pane, and you can
assign GameObjects to it by dragging them from the hierarchy tab into the variable slot! This
works similarly for other variable types. You can read more about this in the Variables and the
Inspector tutorial.

To change the light, write something similar to the following, but remember to do it according to
the input system you are using rather than just copying the code below.

For the actual light color, you can either create a new color using the new Color(red, green,
blue) constructor, or one of the predefined colors. How you change the light is up to you, but
pressing the controller button you designate must visibly change the light color.

2.4 Orbiting Moon
Make the moon orbit the planet. The easiest way to do this is to have the planet object
constantly rotate. Since the moon object is a child of the planet object, it will also rotate around
the planet. You can control the rotation and position of a GameObject with the transform object
variable, an instance of the aptly named Transform class. Use the functions of this class to
rotate the planet system around the Y-axis. Keep in mind that the Update function runs every
frame, but frames often vary in real time length. Thus, using static rotation amounts with the
Transform class will make the apparent rotation amount depend on framerate. This is generally
not desirable. To use real time frame times instead, use the Time.deltaTime variable.

2.4.1 Break Out
Set up a button on the controllers to switch the player’s position between an external viewing
point and the room.

https://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html
https://docs.unity3d.com/Manual/VariablesAndTheInspector.html
https://docs.unity3d.com/Manual/VariablesAndTheInspector.html
https://docs.unity3d.com/ScriptReference/Color-ctor.html
https://docs.unity3d.com/ScriptReference/Color-ctor.html
https://docs.unity3d.com/ScriptReference/Color.html
https://docs.unity3d.com/ScriptReference/Transform.html
https://docs.unity3d.com/ScriptReference/Time-deltaTime.html

Like all GameObjects, the player object has a Transform. With that in mind, make a script that
switches the player between a room and a new external viewing point, e.g. a small new plane a
moderate distance from the room. The player should still start within the room. Pressing the
button for the first time must move the player to the external viewing point. After that, pressing
the button must alternate between the two locations.

You can control the rotation and position of a GameObject with the transform object variable, an
instance of the aptly named Transform class. Use the functions of this class to rotate the planet
system around the Y-axis.

Part 3. A More Interesting Room (10pts Extra Credit)
Instead of the cube room we laid out above, use a modeling tool to create more complicated
room geometry, like a curved roof, slanted windows, multiple levels, et cetera. Please write
down what you created. Your creation still needs to have the other features of the room we
described above.

Blender is a free and powerful 3D modeling software, but you may also use something else if
you prefer.

The default Unity modeling tools are extremely limited, so we highly recommend you familiarize
yourself with another tool. It will assist greatly in your final project. You can use the room as a
basis of your course project.

Another way to make a more complex room is to download and use assets from the internet.
Here there are some websites that you can use:

Blender-models.com
Blend Swap
TurboSquid
Thingiverse
Sketchfab
3D Oulu and University Campus assets

https://docs.unity3d.com/ScriptReference/Transform.html
https://www.blender.org/
https://www.blender-models.com/
https://www.blendswap.com/
https://www.turbosquid.com/
https://www.thingiverse.com/
https://sketchfab.com/
https://ubicomp.oulu.fi/infrastructure-virtualoulu/

Contents of the Assignment and Grading
The Room, 5pts 5 Complete and enclosed room

Lighting, 5pts 5 Bright point light in center of room ceiling

Planet and Moon,
5pts

5 Planet and moon in center of room

Text, 5pts 5 Text is sharp, clearly visible in VR and displays controls

Skybox, 5pts 5 A skybox is present from the external vantage point

Material Maps, 5pts 5 Two walls have the provided albedo and normal maps

Material Tiling, 5pts 5 Two walls have distinct tiling settings ​ ​

Material Properties,
5pts

5 Two walls have altered smoothness and/or metallicity

Flat Color Material,
5pts

5 One wall has a flat color material ​ ​

VR Tracking, 5pts 5 VR camera and controller tracking is working correctly

Controller inputs,
10pts

10 VR controller inputs are used

Quit Key, 10pts 10 A controller button exits the game

Light Switch, 10pts
​

10 A controller button changes the light color ​ ​

Orbiting Moon,
10pts

10 The moon orbits the planet at a steady rate

Break Out, 10pts
​ ​

10 A controller button switches the player to and from an external
vantage point ​

More Complex
Room, 10pts

10 Extra credit assignment

Total points 110

Submission Instructions ​
Check the content of the assignment table above to make sure that everything required is in the
delivered homework.

Step1: Record a video of the homework
1.​ Start play in unity (or start the builded project)
2.​ Press windows key + alt + R to record the screen.
3.​ Slowly show all the features required for the homework in this order:

a.​ The cubes that represent the hands
b.​ The light at the centre and the fact that it can change color
c.​ The planet and the moon at the centre
d.​ The text
e.​ The walls in the order specified in the point 1.7
f.​ Switch to the outside point of view and show the sky box.
g.​ Now show any additional work you did to make the room more interesting
h.​ Pres the key to exit and then finish the recording

Step 2: Create a Standalone Build

1.​ Save the project to C:\Users\<your netid>\<project name> temporarily, rather than the
EWS U: drive. Local storage is faster when building.

2.​ Go to File → Build Settings.
3.​ Open the scene with your work.
4.​ Click “Add Open Scenes”. You must have saved the scene to the assets folder for this to

work.
5.​ Click “Build”.
6.​ This will create an executable (.exe) for running the build, a folder containing your scene

data, a “Mono” folder, and UnityPlayer.dll.

Step 3: Zip the Files and Submit Through Classroom Stream
1.​ Create a zip file containing the following items:

○​ The video created at point 1
○​ The .exe, .dll, Mono, AND DATA FOLDER created in Step 2
○​ A README.txt file containing the link to the GitHub repo and any special

instructions or notes you think are relevant for evaluating your assignment (like if
you added anything to make the room more interesting).

2.​ Make sure the executable in your submission folder runs correctly on your VR
system before submitting.

DO NOT SUBMIT YOUR ENTIRE PROJECT FOLDER!

	 HW1: The Room (100pts + 10 EC pts)
	Instructions
	Add project on GitHub
	Create a Project
	Part 1. Setting Up the Room and Learning Unity UI Basics (50pts)
	1.1 The Room
	1.2 Player Controller in VR
	1.3 Create the first build
	1.4 Lighting
	1.5 Planet and Moon
	1.6 Text
	1.7 Material
	1.8 Adding Skybox

	Part 2. Scripting, C# (50pts)
	2.1 Basic Scripting
	2.2 Quit Key
	2.3 Light Switch
	2.4 Orbiting Moon
	2.4.1 Break Out

	Part 3. A More Interesting Room (10pts Extra Credit)
	Contents of the Assignment and Grading
	
	Submission Instructions ​
	Step1: Record a video of the homework
	Step 2: Create a Standalone Build
	Step 3: Zip the Files and Submit Through Classroom Stream
	DO NOT SUBMIT YOUR ENTIRE PROJECT FOLDER!

