Al Issue Summary Documentation

Thank you for using our application! Al Issue Summary aims to quickly and easily
generate Al-driven summaries of your ticket descriptions.

How to Use the App

1. Open any ticket you want to summarize. Tickets with more lengthy descriptions
work best.

projects / [EJ Plugin Dev / PD-9

[Improve Performance of Product Search API by Implementing Server-Side Caching

+ Add ® Apps

Description
Currently, the /api/products/search endpoint experiences high latency (700-1200ms) under moderate load due to repeated computation of complex query filters and large-scale database access.

This directly impacts user experience on both desktop and mobile when searching for products.

To address this, we propose introducing server-side caching for popular search queries and filters using Redis. which has already been integrated into our stack. Cached results should be stored for

10 minutes per unique query string to prevent overloading the database during high-traffic periods.

This initiative is in line with our Q3 goal of reducing page load times by 30% across critical flows.

Out of Scope:

+ Frontend-level caching or local storage mechanisms.

+ Changes to the database schema.
Technical Notes:

* Use the query-string as the Redis cache key.
« TTL (Time To Live) for each cache entry: 600 seconds.
+ Use existing Redis connection pool via redisClient from cache-utils.js.

» Example cache key: productSearch:query=boots&size=B&color=black

Acceptance Criteria

Implement Redis-based caching mechanism for /apispreducts/search.

Cache is applied per unique query (including filters, keywords, sort, pagination).

Cached results expire after 10 minutes or when explicitly invalidated by a related product change event (e.g., stock update).
Include monitoring (e.g.. Prometheus metrics or logs) for cache hit/miss ratio.

Update unit and integration tests to cover caching logic and fallback behavior.

No significant changes to existing API response format or client-side integration.

Performance benchmark shows at least 40% reduction in average response time under simulated load.

Activity
Show: Al Comments History Work log MNewest first 17
0 Add a comment...

B Looks good! £Y Need help? @ This is blocked... @, Can you clarify...? This is on track

Pro tip: press M to comment

2. At the top of the ticket, click the “Apps” button and select “Al Issue Summary”.
Projects / [l Plugin Dev / PD-9

[Improve Performance of Product Search API by Implementing Server-Side Caching

+ Add ® Apps

Descriptio ‘\ Al lssue Summary
Currently, th |point experiences high latency (700-1200ms) under moderate load due to repeated computation of complex query filters and large-scale database access.

This directly + Add apps »oth desktop and mobile when searching for products.

To address this, we propose introducing server-side caching for popular search queries and filters using Redis, which has already been integrated into our stack. Cached results should be stored for

10 minutes per unique query string to prevent overloading the database during high-traffic periods.

Thi

tive is in line with our Q3 goal of reducing page load times by 30% across critical flows.

‘Out of Scope:

= Frontend-level caching or local storage mechanisms.

» Changes to the database schema.
Technical Notes:

* Use the query-string as the Redis cache key.
= TTL (Time To Live) for each cache entry: 600 seconds.
= Use existing Redis connection pocl via redisClient from cache-utils.js.

= Example cache key: productSearch:query=boots&size=8&color=black

Acceptance Criteria

Implement Redis-based caching mechanism for fapi/preducts/search.

Cache is applied per unique query (including filters, keywords, sort, pagination).

Cached results expire after 10 minutes or when explicitly invalidated by a related product change event (e.g. stock update).
Include monitering (e.g.. Prometheus metrics or logs) for cache hit/miss ratio.

Update unit and integration tests to cover caching logic and fallback behavior.

No significant changes to existing APl response format or client-side integration.

Performance benchmark shows at least 40% reduction in average response time under simulated load.

Activity
Show: All Comments History Worklog Newest first 15
o Add a comment...

Looks good! &) Need help? @ This is blocked... @, Can you dlarify..? This is on track

Pro tip: press M to comment

3. The Al Issue Summary app will appear at the bottom of the ticket. Click the
“Generate Summary” button.

Projects / [Plugin Dev / PD-9

[Improve Performance of Product Search API by Implementing Server-Side Caching

+ Add ® Apps

Description
Currently, the /apifproducts/search endpoint experiences high latency (700-1200ms) under moderate load due to repeated computation of complex query filters and large-scale database access.

This directly impacts user experience on both desktop and mobile when searching for products.

To address this, we propose introducing server-side caching for popular search queries and filters using Redis, which has already been integrated into our stack. Cached results should be stored for

10 minutes per unique query string to prevent overloading the database during high-traffic periods.

This initiative is in line with our Q3 goal of reducing page load times by 30% across critical flows.

Qut of Scope:

= Frontend-level caching or local storage mechanisms.

= Changes to the database schema.
Technical Notes:

* Use the query-string as the Redis cache key.
» TTL (Time To Live) for each cache entry: 600 seconds.
= Use existing Redis connection pool via redisClient from cache-utils.js.

» Example cache key: productSearch:guery=boots&size=8&color=black

Acceptance Criteria

Implement Redis-based caching mechanism for sapi/products/search.

Cache is applied per unique query (including filters, keywords, sort, pagination).

Cached results expire after 10 minutes or when explicitly invalidated by a related product change event (e.g., stock update).
Include menitoring (e.g., Prometheus metrics or logs) for cache hit/miss ratio.

Update unit and integration tests to cover caching logic and fallback behavior.

Mo significant changes to existing APl response format or client-side integration.

Performance benchmark shows at least 40% reduction in average response time under simulated load.

Al Issue Summary Dev @

4. The summary of the ticket’s description will appear in real time on the ticket!

Projects / [Plugin Dev / PD-9
To address this, we propose introducing server-side caching for popular search queries and filters using Redis. which has already been integrated into our stack. Cached results should be stored for
10 minutes per unique query string to prevent overloading the database during high-traffic periods.

This initiative is in line with our Q3 goal of reducing page load times by 30% across critical flows.

Out of Scope:

+ Frontend-level caching or local storage mechanisms.

* Changes to the database schema.
Technical Notes:

s Use the query-string as the Redis cache key.
+ TTL (Time To Live) for each cache entry: 800 seconds.
+ Use existing Redis connection pool via redisClient from cache-utils.js.

* Example cache key: productSearch:query=boots&size=8&color=black

Acceptance Criteria

Implement Redis-based caching mechanism for fapi/products/search.

Cache is applied per unique query (including filters, keywords, sort, pagination).

Cached results expire after 10 minutes or when explicitly invalidated by a related product change event (e.g. stock update).
Include monitoring (e.g.. Prometheus metrics or logs) for cache hit/miss ratio.

Update unit and integration tests to cover caching logic and fallback behavior.

Neo significant changes to existing API response format or client-side integration.

Performance benchmark shows at least 40% reduction in average response time under simulated load.

Al Issue Summary DEv

! This Jira ticket addresses high latency (700-1200ms) on the /api/products/search endpoint caused by repeated complex queries and large database
access. To improve performance, the plan is to implement Redis-based server-side caching for popular queries, with results stored for 10 minutes and
invalidated by product updates. The goal aligns with Q3 objectives to reduce page load times by 30%. Success criteria include caching implementation,
monitoring, testing coverage, minimal API changes, and a 40% reduction in response time under load.

Activity

Show: All Comments History Work log Newaest first 47

	AI Issue Summary Documentation
	How to Use the App

