CSE 331 Autumn 2021 HW1

General Rules:

For logical operators, you may use words (e.g., “or”) or any standard symbols (e.g., “V”).
Assume that
o all numbers are integers
o integer overflow will never occur
o integer division rounds toward zero (as in Java) (Example: 5/2 = 2)
Simplify but do not weaken your assumptions.
Due October 11, 5:00PM on Gradescope.

Forward reasoning with assignment statements. Find the strongest postcondition by
writing an assertion in each blank space indicating what's known about the program
state, given the precondition and the previously executed statements. The first assertion
in part (a) is supplied as an example. Additionally, you should rewrite your assertions to
only refer to the current state of variables (i.e., do not use subscripts).

a. {1
a=1;
{a=1}
b=a+2;
{{ 1
c=b/2
{{ 1
a=c-b;
{{ 1
d=a*b;
{{ 1

b. {[t|>1}
t=-t;
{{ 1}
r=4-t;
{{ 1
k=r-3;
{{ 1

https://www.gradescope.com/courses/320741/assignments/1549076

2. Backward reasoning with assignment statements. Find the weakest precondition for
each sequence using backward reasoning, writing the appropriate assertion in each
blank space.

a. {{ 1
a=a+10;
{{ 1
b=a/2;
{{ 1
b=b-5;
{{b>-1}}

b. { 1
t=1-2*w;
{{ 1
r=w+2%r,
{{ 1
Ss=w+7;

{{r>sands>=1t}}

c. {f 1
q=q-1;
{{ 1
r=q*q;
{{ 1
z=r-q

{{z>aq}}

3. Forward reasoning with if/else statements. Find the strongest postcondition for the
following conditional statement using forward reasoning, inserting the appropriate
assertion in each blank.

{x!=1}}
if(x >=1) {
{{ 1
y=1-x;
{ 1
} else {
{ 1
y=1+x;
{{ 1
}

4. Backward reasoning with if/else statements. Find the weakest precondition for the
following conditional statement using backward reasoning, inserting the appropriate
assertion in each blank.

{{ 1
if(x < 0){
{ 1
y=-X
{{ 1
} else {
{ 1
y=3+Xx
{ 1
}
{{y<3}

5. Weakest conditions. For each of the following subproblems, compare all three
assertions. If one assertion is weakest, circle it (or otherwise mark it). Otherwise, if some
of the conditions are incomparable (neither weaker nor stronger than each other), circle
both of them and demonstrate that they are incomparable by giving two example
states that each satisfy one assertion but not the other.

a. {{x<1} {{x<2}} {{x!=2}
b. {{[b[>6}} {b>7} {{b<-6}
c. {Ilyl>1} {{ifty<=1,theny<-13} {(y-1)*(y+1)>=0}

d. {a>0andb<=0} {{ifa>0,thenb<=0}} {{a>0orb<=0}

6. Hoare triples. State whether each Hoare triple is valid. If it is invalid, give an initial
program state as a counterexample.

a. {{h>3}
j=1-2*h;
{{i<-6}

b. {{a<-4}}
b=a/c;
{{b*c<-4}}

c. {1
if(x > 2) {

y=x/2;
} else {
z=4-x;
y=2z/3;
}
{{y>0}}

d. {z<0}}

if(x == -z){
X=X*z
z=z-1;

} else {
x=z+1;
z=x/2;

}

{{x<=z}}

7. Verifying correctness. Fill in the intermediate assertions. Indicate with an arrow or by
typing next to the line of code, whether you are reasoning forward or backward. Finally,
state whether the code is correct, i.e., whether the Hoare triples are all valid.

a. {{y<=3x}}
y=y-3;
{{ 1
Xx=3%x;
{{ 1
X=X-3;
{y<=x}
b. {}}
if(x <=1 && -2 <= x) {
{{ 1
X=x-1;
{{ 1
X=X*X;
{{ 1
} else {
{{ 1
X=X*X;
{{ 1
Xx=17 -Xx;
{{ 1
}

{{x<9}}

