
Data Structures and Algorithms
Assignment 4 (Linked List)

Deadline: 23: 55 Hrs, April 9, 2017 ​ Marks: 100​ Roll Number: ​
__
__

Implement a class named LinkedList which has the following functionalities.

Q1. IsEmpty(); Return true if FRONT/TAIL is pointing to NULL otherwise false. (5 points)

Q2. InsertAtFront (val); Creates a new node with data = val and next = front and sets front
of the list to the newly created node and checks if tail is pointing to NULL then sets it to
front. (5 points)

Q3. InsertAtTail(val); Creates a new node with data = val and next = NULL checks if list is
empty. If it is then it sets front = tail = newly created node else tail->next = newly created
node. (10 points)

Q4. It has two parts: Let’s say you have the following LinkedList (7.5+ 7.5 points)

1 => 5 => 6 => 9 => -50 => 75

●​ InsertAfter(val, key): It should enter the new Dabba with value key, after the value
val. e.g for the above linked list if InsertAtAfter(9, 35) is a called then the new list
should become:

1 => 5 => 6 => 9 => 35 => -50 => 75

●​ InsertBefore(val, key): It should enter the new Dabba with value key, before the
value val. e.g for the above linked list if InsertAtAfter (9, 35) is a called then the new
list should become:

1 => 5 => 6 => 35 => 9 => -50 => 75

Q5. T GetFront(); returns the value pointed by FRONT. (5 points)

Note: This function must be used only if the IsEmpty() returns false.

Q6. T GetTail(); returns the value pointed by TAIL.

Note: This function must be used only if the IsEmpty() returns false. (5 points)

Q7. Dabba* Search(key); returns the pointer to the element key if the list contains it. Note: if
the key is not found it should return NULL.

Q8.

●​ RemoveFront(); Stores front of the list in a temp variable, point FRONT of list to the
next element in the list and deletes temp.

○​ Also make sure if the list is about to become empty it MUST reset FRONT and
TAIL to NULL.

○​ Make sure you put the Check if the list is already empty then it shouldn't
delete anything (rather return immediately).

●​ RemoveTail(): Move Tail to the 2nd last element of the array. And delete the last
element in the list. Make sure you put the checks of list being empty(as stated in the
above cases).

Q9. Now implement stack using LinkedList data structure.

template<class T>

Class Stack{

LinkedList<T> S;

// no other memory then this.

Stack();

void Push(T V);

T Pop();

bool IsEmpty();

};

Q10. Implement Queue using LinkedList data structure.

template<class T>

class Queue{

LinkedList<T> S;

// no other memory then this.

Queue();

void Enqueue(T V);

T Dequeue();

bool IsEmpty();

};

Note: Now with the help of first 8 questions you can easily implement stack & queue.

	Data Structures and Algorithms
	Assignment 4 (Linked List)

