
netPurpose
This document summarizes my findings on different ways to extract features from source
code and find similarity between 2 source codes.

Research papers
1. Document vectorizer: research a method to calculate document vectors by first finding
word vectors. Compare this method with results obtained using paragraph2vec method. The
method should not require expensive inference technique (like paragraph2vec method has).
2. Parse tree kernel method (paper): there are many kernels to compare 2 text documents.
There are several variants of these kernels so that they can also be used to compare 2
program source codes.
3. Checkout stanford Moss.
4. Comparison of various source code similarity methods.
5. Detecting Source Code Similarity Using Code Abstraction.
6. Automatic algorithm recognition based on programming schemas and beacons.
7. Assessing roles of variables using program analysis.
8. A Similarity Ranking of Python Programs
9. Overcode

My findings

Automatic algorithm recognition based on programming
schemas and beacons:

●​ The idea explored in the paper is to identify algorithm from written programs directly.
To perform this analysis they’ve used idea of schemas and beacons.

●​ First they try to identify schemas from program code. Schema is general algorithmic
structure of the program. They have some hand crafted schemas and they compare
the program to find out which schema is most appropriate. If it is not possible to
make such decision then they use raw program otherwise they use the identified
schema for further analysis.

●​ Beacons are some characteristic attribute of program code. It includes numerical
measures such as halstead’s metrics, cyclomatic complexity, number of assignment
statements etc..

●​ Beacons also include roles of variables information. They first identify all variables
used in program and then they identify roles of each variable. Using these beacons
they obtain a feature vector which contains all numerical characteristics and roles of
variables (like how many variables of each role does a program have) information.

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=0ahUKEwiMgO7Q-NLUAhUKPY8KHaVvA8UQFgg9MAU&url=http%3A%2F%2Fdownloads.hindawi.com%2Fjournals%2Fmpe%2F2015%2F429807.pdf&usg=AFQjCNGAFOEQ601SGrCOJovyRDH6aJ1u7g
http://theory.stanford.edu/~aiken/publications/papers/sigmod03.pdf
https://www.cs.utexas.edu/~bbeth/files/AComparisonOfSimilarityTechniquesForDetectingSourceCodePlagiarism.pdf
https://pdfs.semanticscholar.org/759c/5d2afbafbab91d6c419f16dd34c2a922d430.pdf
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiX07z40uLUAhUBLo8KHWfADR4QFggrMAA&url=http%3A%2F%2Flib.tkk.fi%2FDiss%2F2013%2Fisbn9789526049908%2Fisbn9789526049908.pdf&usg=AFQjCNELjVC0PzTvHbQvddz3JEwXHJUuuA
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjL1ufIrtnUAhXLOI8KHcb2COcQFggnMAA&url=http%3A%2F%2Fcore.ac.uk%2Fdownload%2Fpdf%2F64458.pdf&usg=AFQjCNHIhMz-bIFO81VSm3LC2Ew0wcrTsg
https://www.cosc.canterbury.ac.nz/research/reports/HonsReps/2015/hons_1508.pdf
https://www.cs.rochester.edu/hci/pubs/pdfs/overcode.pdf

●​ From these feature vector they try to classify each program using decision tree
classifier to identify their algorithm.

Assessing roles of variables using program analysis:
●​ Main purpose of this research paper is to analyse roles played by different variables

in the program.
●​ They perform statistical analysis of the program. The entire procedure is as below,
●​ First they generate a source code map of the program. The source code map

contains all the statements present in root block. If a statement is a control statement
then it is linked with the body of that control statement. So basically we get a tree like
structure of all statements in program where each node contains all block level
statements and control statements are linked to child nodes which contain all
statements in that control block.

●​ Once we have source code map we can get a program slice of a variable. So before
we get a program slice we identify all the variables in the program. According to
paper, “A slice of a program with respect to a variable is the program with all
statements which cannot impact on that variable removed.”

●​ After getting program slice of variable they try to find assignment, usage, conditional
usage and other statements. They classify all statements in program slice into one or
more of those four categories.

●​ Then based on these four categories of statements they make 21 propositions (from
A to U). They are called 21 rules. Each rule can have true or false for a particular
variable. For ex, whether a variable is used in loop, whether variable is assigned in
loop in used outside loop, whether variable is incremented in loop, etc…

●​ From these 21 propositions they can identify 11 distinct roles which are boolean
functions of above 21 rules. For ex, the failure condition for most recent holder is Y =
(F ∨ ¬A ∨ (Q ∧ R) ∨ (Q ∧ X) ∨ M ∨ K ∨ I ∨ J ∨ S ∨ H ∨ L ∨ (¬G ∧ D ∧
¬P) ∨(¬T ∧ ¬U) ∨ (¬B ∧ (¬C ∨ D ∨ E))) (if this boolean function is true then
variable is not a most recent holder).

●​ The research and source code are all publicly available. They have Java
implementation of this method available as a BlueJ IDE extension. Download the zip
inside it contains one more reserach paper which is more detailed and zip contains
all java files used for this analysis.

Stanford MOSS
●​ MOSS is an online web based service which checks plagiarized code. The purpose

of MOSS is to have a plagiarism tool for education. This paper describes the
algorithm being used in MOSS.

●​ At the heart of MOSS is winnowing algorithm. Which is based on document
fingerprint. Basic approach is to generate a document fingerprint and then compare it
with some other documents fingerprint. Using this fingerprints we can measure
similarity between two documents.

https://www.bluej.org/extensions/files/rolesOfVariables.zip
http://theory.stanford.edu/~aiken/moss/
http://theory.stanford.edu/~aiken/publications/papers/sigmod03.pdf

●​ The winnowing algorithm is based on concept of k-gram hash. That is after removing
unnecessary information from a document (like whitespaces). You generate all
possible strings of length K. (So if your document has L characters then there are L -
K + 1 possible strings).

●​ Then using a hash function convert these strings (of length K) to numeric value. The
hash function should assign values uniformly with less probability of collision.

●​ Winnowing uses concept of windows. For this it uses 2 values, namely, T and K. T is
the threshold value. That is if there is a substring match at least as long as the
guarantee threshold, T, then this match is detected. Thus T decides the minimum
length of substring that user wants to detect.

●​ K is a noise threshold. That is we never detect strings whose length is below the
noise threshold.

●​ This values are supplied by user and depending on values of T and K, the size of
window is decided (W = T - K + 1).

●​ Therefore now we generate hash values using K-grams (with K being noise
threshold). Then we create all possible windows of size W. From all these windows
we select minimum numeric value for digital fingerprint. Each value is selected only
once.

●​ So even let say first window is [110, 20, 30, 17, 50] and second (consecutive) window
is [20, 30, 17, 50, 78]. Then we select 17 from first window and second window will
also select 17. But since it is same 17 we select that 17 only once.

●​ Window size W > T - K allows us to match all strings with length T or more. (Since
there will be T - K + 1 hashes of substring of length T, this number is same as window
size)

●​ This way all the hash values which we selected make up digital fingerprint of the
document. We can extract fingerprints from 2 document and use any of the set
similarity metrics to measure the similarity between them.

●​ The advantage of MOSS is in query , too. If you want to query some document
against stored fingerprints then you can select windows size W’ > W (original size
using which stored fingerprints were generated) and still be able to measure
similarity. Since F(W’) is subset of F(W). (F(W) being fingerprint chosen for the
document using winnowing and windows size W).

A comparison of various source code similarity methods
●​ The research paper compares various source code similarity measurement methods

to find out accuracy of these methods for detecting code plagiarism.
●​ It compares AST, CFG, W-shingling and MOSS (Winnowing). There were 5 types of

attack cases. Each attack case had two programs with some alteration in them.
○​ Comment alteration: the two input programs were same but had different

comments or same comments but at different position.
○​ Whitespace padding: same programs but second one was padded with

whitespace.
○​ Identifier alteration: same programs but with different names of variables.

○​ Code reordering: same program but function definitions were differently
ordered.

○​ Algebraic expression alteration: same program with expression altered
slightly. For e.g. ‘4 + x’ and ‘x + 4’, ‘a * (b + c)’ and ‘a * b + a * c’.

Result of different methods for similarity measurement.

 AST CFG Lev
(src)

Lev (IR) W-shing
ling
(src)

W-shing
ling (IR)

MOSS

Comment
alteration

1.0 1.0 1.0 1.0 1.0 1.0 0.99

Whitespace padding 1.0 1.0 0.942 1.0 .0646 1.0 0.99

Identifier alteration 1.0 1.0 0.654 0.9994 0.0655 0.979 0.99

Code reordering 0.9299 1.0 0.3425 0.4616 0.679 0.971 0.82

Algebraic expression 0.611 0.6 0.8926 0.5229 0.546 0.746 0.68

root.c 0.1832 0.0573 0.2 0.224 0.0 0.1754 0.0

(root.c is entirely different program)

●​ AST is abstract syntax tree. To measure similarity using AST they’ve used RTED tree
edit distance algorithm.

●​ LEV is levenshtein distance between programs. Src compares source codes directly
while IR compares IR code generated by LLVM compiler.

●​ CFG is control flow graph. To find similarity using CFG first they generate CFG from
program and then generate its adjacency matrix. Then serialize this matrix into a
binary string and then compare leviathan distance between two string of two
programs.

●​ W-shingling is a document fingerprinting algorithm. It is similar to winnowing but they
differ in one aspect. Winnowing only takes subset of all k-gram hashes as
document’s fingerprint but W-shingling takes all the hashes into fingerprint.

●​ MOSS is an online web based utility to check plagiarism between two programs but
they use winnowing as main component.

Overcode
●​ Overcode is an program source code visualizer. This tool takes a bunch of programs

and arranges them according to their similarity and based on that they allow analysis
of programs. Their analysis pipeline is as follows:

●​ First they sort out all the source codes and remove unnecessary parts such as
comments.

http://people.csail.mit.edu/elg/overcode

●​ Second they execute this codes and extract variable sequences from this codes.
Variable sequences are sequence of values that a variable holds during execution of
program.

●​ Then they check these variables’ sequences of 2 or more programs and identify
common variables which have same variable sequence. They rename all common
variables and also identify unique variables and name them differently.

●​ After renaming they identify program stacks. A program stack is set of program which
are considered in same group. This identification is done on modified source codes
and by comparing source code directly. If codes have same outcome as execution
they are considered in same stack.

●​ That’s how they identify dissimilar programs and allows to conduct variety of analysis
on these source codes.

Detecting Source Code Similarity Using Code Abstraction
●​ In this paper goal is to identify similarity between programs by making abstraction of

code.
●​ First they abstract the code by remove unnecessary information which according to

them play no or negligible part in similarity checking. Here they remove all the
statements which are not control structure statements, all function calls (but they
keep standard library function calls), all variables, all constants, all literals. So in the
end they obtain a skeleton of the program code. For e.g. see image below, which
describes this skeleton structure obtained using code abstraction.

●​ Then they identify similarity between two or more programs by finding similarity

between the skeletons of program which is obtained using Moss utility.
●​ So code similarity analysis pipeline is to make code abstract and find similarity using

Moss.

http://theory.stanford.edu/~aiken/moss/

Dataset

Link: https://github.com/prasanna08/code-classifier-dataset

Description:
●​ See README.MD file in above repo.

Spreadsheets:
●​ Feedback class description: contains class ID and their corresponding feedback

statements.
●​ Execd dataset with classes: contains programs in ‘execd_dataset.json’ with each

program having unique ID and feedback class assigned to it.
●​ Compiled dataset with classes: contains programs in ‘compiled_dataset.json’ with

each program having unique ID and feedback class assigned to it.

Results
●​ I have been testing different classifiers on the tagged dataset. The summary of

classification report of these classifiers can be found here.

https://github.com/prasanna08/code-classifier-dataset
https://docs.google.com/spreadsheets/d/16T2UToqYIG6gosrI8I35PwTdSrHV-Ow9hwkfdL7oNHA/edit#gid=0
https://docs.google.com/spreadsheets/d/1K6et0bIXUiyeZGv8S5zNlWknd7XOciblLiVDm3FD6XM/edit#gid=2070480723
https://docs.google.com/spreadsheets/d/14QeJGUv5hyBVEG3LICsW2YqryTtg_94C37bkuyMpRcI/edit#gid=510455782
https://docs.google.com/spreadsheets/d/1tUdXqvox6Qbd9gm23JXO8HecEG466v9WL6U4Ek1gSJA/edit#gid=0

●​ I have also uploaded code of these classifiers on my GitHub repository.

https://github.com/prasanna08/code-classifier-dataset

	netPurpose
	Research papers
	My findings
	Automatic algorithm recognition based on programming schemas and beacons:
	Assessing roles of variables using program analysis:
	Stanford MOSS
	A comparison of various source code similarity methods
	Overcode
	Detecting Source Code Similarity Using Code Abstraction

	Dataset
	Link: https://github.com/prasanna08/code-classifier-dataset
	Description:
	Spreadsheets:

	Results

