Implementation of SBML-JSON
converter and SBML-JSON scheme

Proposal for Google Summer of Code, 2020

Student

Name: Hemant Yadav

E-mail: hemant@cs.iitr.ac.in

Github: Hemant27031999

Phone: +91-8708786527

Postal Address: BG-007, Rajeev Bhawan, IIT Roorkee, Roorkee, India
HomePage: https://hemant27031999.github.io/

University: Indian Institute of Technology, Roorkee

Mentoring Organization

National Resource in Network Biology (NRNB)

Mentors

Dr. Matthias Kénig (Humboldt-University Berlin, Germany, konigmatt@googlemail.com)
JProf. Andreas Drager (University of Tubingen, Germany, draeger@informatik.uni-tuebingen.de)

About the Project

The System Biology Markup Language (SBML)M is the de facto standard for representation and exchange of mathematical
models of biological systems. SBML can represent many different classes of phenomena in biology, including metabolic
networks, signaling pathways, or regulatory networks. First released in 2001, it has gone through many updates, the latest
version being level 3 version 2 (L3V2)®., SBML is the most popular format for the exchange and representation of biological
models between different software, with 296 tools supporting SBML as of 20195, SBML supports models of arbitrary
complexity and is organized as a list of components (compartments, species, parameters, reactions...). For a detailed
description of the SBML structure, we refer to its latest specifications!?.. Two main libraries for the parsing of SBML exist (i)
libSBML™ in C and C++ with language bindings for Python, R, Java™, and other languages; and (ii) JSBML" for all
programming languages that can interpret Java bytecode. These libraries read SBML files into their internal data structures
and provide many helper functions to work with SBML models, e.g., validation of SBML files or unit checking.

An essential feature of SBML is the annotation of the model and model components with meta-information describing the
biological and mathematical meaning, as well as information about the provenance. Annotations play a crucial role in
expressing the relationship between the parts and for linking components to external resources such as databases or
experimental data. The added semantic layer allows users to interact with models and understand them.

Though SBML is the leading data format for biological models, JSON® is the primary data exchange format on the web.
JSON objects consist of nested attribute-value pairs and array data types. Originally derived from JavaScript, JSON became
a widely-used language-independent data format for the exchange of information, especially between web applications. All
modern programming languages include methods to generate and parse JSON formatted data.

To support SBML in web applications and web-based workflows, the conversion of SBML models to JSON and vice versa
without information loss is an extraordinary open challenge. Having a large JSON data format for SBML models would be a
powerful output relevant to the interoperability of tools and workflows based on SBML. Tools and databases such as

mailto:hemant@cs.iitr.ac.in
https://github.com/Hemant27031999
https://hemant27031999.github.io/
mailto:konigmatt@googlemail.com
mailto:draeger@informatik.uni-tuebingen.de

cobrapy™ or the BiGG® database already support and exchange models in JSON on the web. However, many issues exist
with the currently used JSON representation of SBML models. Most importantly, essential information is lost while parsing
the SBML model to JSON as well as in the back-conversion from JSON to SBML. For instance, in model annotations,
biological qualifiers are used to define the kind of relationship which that component has with the annotated resource.
These qualifiers function as verbs in the RDF triples describing how model components are related to meta-data. Without
these verbs, the meaning of the metadata cannot be resolved, e.g., a vast difference exists between an “is” and “hasPart”
relationship. No support for qualifiers live in the current JSON-SBML scheme of cobrapy, and if an SBML model is written in
JSON-SBML, these qualifiers and the respective meaning of the annotation are lost. Many other issues of similar type exist
in the JSON format, restricting the exchange of SBML as JSON.

Main problems are that
I. only a small subset of SBML is currently serialized to JSON by existing tools;

Il. meta-information such as annotations are only partially supported;
[ll. no SBML-JSON scheme exists for validation of SBML-JSON. A well-defined scheme will help people to implement
SBML-JSON support in web tools or other automated processors and provide a reference.

Having a full-featured JSON exchange format for SBML will improve the web-integration and exchange of SBML models,
thereby increasing tool interoperability and reproducibility of workflows.

Motivation

Many factors motivate me to work on this project. First of all is biology, more specifically the application of computer
science to better understand biological systems. | have studied biology up to the tenth standard and have learned about
basic life processes. Today, after entering the field of Computer Science, and after understanding the structure of
computers, | often wonder how complex the internal structure of a biological system must be to fulfill its complex tasks.
Using computational methods to better understand biological systems is a perfect combination of these interests.
Secondly, open-source is something which | have always admired. | have been a part of open-source software
development for the last one and a half years, and have learned a lot in that course of time. GSoC is all about open source,
where people can contribute to their field of interest from any corner of the world. And the fact that the code | write will be
used by many people from all around the globe to solve their problems further brings a cherry on the cake.

The JSON representation of SBML models is an important task to accomplish with impact for the biological modeling
community. | look forward to gaining many new experiences by contributing my knowledge and skills to a professional
open-source project.

Goals

The objectives of this project are

I. Milestone 1: provide comprehensive coverage of SBML features in JSON relevant for constraint-based modeling;

Il. Milestone 2: provide full support of meta-information in JSON with lossless conversion between SBML and JSON;
lll. Milestone 3: update the current SBML-JSON scheme with corresponding validation of SBML-JSON files against the

scheme definition.

Implementation will be in Python as part of the cobrapy project with a focus on SBML models used in the constraint-based
modeling community. Importantly, within this GSOC project, full representation in SBML-JSON of all features relevant for
constraint-based methods, i.e., SBML core and additional SBML packages FBC and groups will be implemented, and all the
current issues of JSON representation of SBML models as listed in the project™ will be resolved.

Work plan

Before discussing the work plan in detail, let me provide a high-level overview of how cobrapy reads/writes SBML models,
converts the SBML model to the internal cobra model data structure, and writes the cobra model to other data formats
like JSON, YAML, etc. Depicted in Fig. 1 is a general overview of the import and export functionality of cobraby from various

http://biomodels.net/biology-qualifiers/
https://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/HTML/ch07s01.html
https://github.com/opencobra/cobrapy
https://opencobra.github.io/MASS-Toolbox/Toolbox-HTML/html/tutorial/Constraint-based%20modeling.html
https://opencobra.github.io/MASS-Toolbox/Toolbox-HTML/html/tutorial/Constraint-based%20modeling.html

file formats. For reading/writing models in formats like JSON, YAML, MATLAB, etc., cobrapy uses core python modules, i.e.,
‘ison" module for JSON models, ‘scipy!"" module for Matlab format, etc.

SBML models are parsed into cobra models using
the libSBML library. Being written in C and C++,

it's reading and writing methods for SBML (XML) SBUL document
files are very fast. The library provides language)
interfaces to C#, Java™, Octave, Matlab, R, Ruby, | using IDSBML AP
and Python. In cobrapy, the SBML models are | standard O andi)

first parsed into libSBML documents (objects of
SBMLDocument class), which are subsequently

using other
python modules

Reading and writing
models from/to SBML

converted to cobra models by mapping e cosraPy L . Modelin maiab
corresponding components between the two pickle eic (CobiEiRtel) model.mat

. . . i h
data models. So in this way, a cobra model is sipy modie
extracted from an SBML model. L[y f

json module
Model in JSON
T format

JSON serialization works similarly by using the model json
cobra model instance as an intermediate object.
The project will mainly interact with the classes Fig.1 Cobrapy handling models in different format

for JSON and SBML serialization, and with the
internal cobra model instance.

The objectives of the project “Implementation of SBML-JSON converter and SBML-JSON scheme” will be achieved via
three work packages (WP) corresponding to the respective milestones:

WP1: Comprehensive coverage of SBML features in SBML-]SON

The focus of WP1 is to correctly parse the SBML features important for constraint-based models and implement the
representation of these model features in SBML-JSON. This includes the information from the SBML core, as well as
the information in the additional SBML packages fbc and groups.

Milestone 1.1: Complete support of FBC-version 3 features in SBML-JSON
Currently, the SBML-JSON format only supports a subset of features introduced in the fbc version 2 package. With the
latest fbc package, version 3 (fbc-v3), new vital functions have been added (see Fig. 2).

ListOfUserConstraints

userConstraint 1 .. *

Species (extended)

UserConstraint

id: SId {use="optional"y
name: string {use="optional’}
lowerBound: SldRef
upperBound: SldRef

ListOfKeyValuePairs charge: double {use="optional"}

chemicalFormula: string {use="optional"}|
T

xmins: uri

| e ieeo--
keyValuePair 1 .. KeyValuePair N

e FluxObjective -

ﬁlstOsterCnnslm\mCDmpDnenls L A etOserConstraimtComponents
[

?userConswainIComponenl 1.

id: Sld {use="optional"}
name: string {use="optional"}
key: string

value: string {use="optional"}
uri: uri {use="optional"}

UserC intComponent id: Sld {use="optional"}

name: string {use="optional"}
reaction: SldRef

coefficient: double
variableType: FbcVariableType

id: Sld {use="optional'}

name: string {use="optional"}
coefficient: double

variable: SldRef

variableType: FbcVariableType

Fig.2 New features introduced in fbc v3

The SBML package introduces non-stoichiometric constraints in addition to the classical stoichiometric constraints
from reaction stoichiometries in the linear programs (LP). This vital extension allows for encoding many additional
types of constraint-based models. Additional changes include better support for mass and charge balance calculation,

http://sbml.org/Special/specifications/sbml-level-3/version-2/core/release-2/sbml-level-3-version-2-release-2-core.pdf
https://co.mbine.org/specifications/sbml.level-3.version-1.fbc.version-2.release-1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451322/

the introduction of variableType attribute in flux objective class that indicates whether a variable should be
considered as ‘linear’ or ‘quadratic’ and a new extended annotation structure with the introduction of key-value pairs
for storing biological information. Another open issue is the support for alternative objective functions, which can be
encoded in SBML but are not yet represented in cobrapy. These features are necessary for the representation of
constraint-based models in any type of format. An important task, hence, will be the implementation of this additional
constraint information in the cobrapy model class and the SBML-JSON format.

Milestone 1.2: Complete support of ‘Groups’ features in SBML-JSON

A piece of valuable information in SBML models

used in constraint-based modeling is an
association of subsystems and groups to 7
reactions which function as pathway definitions. [
The SBML Groups package allows for encoding Sroup
such information. It adds the necessary features rame: sing { seoptonar
to SBML to enable the grouping of arbitrary —
model components to be expressed. Such groups listOMembers 0.1 Letomembere

do not affect the mathematical interpretation of a id: S1d { use="optional"}
model, but they do provide a way to add e
information that can be useful for modelers and e = Member
software tools. The SBML Groups package e e)
enables a modeler to include definitions of groups metaldRet, IDREF {uastroptinal”}
and nested groups, each of which may be
annotated to convey why that group was created,
and what it represents. Shown in Fig. 3 is the
structure of the Group component. An SBML model has a top-level child component ‘listOfGroups,” which has a list of
different types of Groups under it. These members may or may not be of the same type. The Group collectively is
used to either denote something or to attach the same kind of data to all its members to reduce writing the same
content again and again.

Fig. 3 The Group class structure in SBML

Currently, the Groups are supported in cobrapy, but the Groups information is not encoded in the SBML-JSON format.
The Groups component is not very complicated, and can easily be written to SBML-JSON. Hence, an essential task of
this project is to provide full support for encoding the Groups features in SBML-JSON. Dedicated methods for parsing
the Group data to SBML-JSON will be made, which will reduce the data loss and will provide better model
representation in SBML-JSON format.

Milestone 1.3: Solving issues related to model representation
Currently, multiple problems related to model representation in cobrapy exist, which are relevant for a complete

representation of information in SBML-JSON. As part of this project, solutions for these issues will be implemented.

e The consistent output of multiple-value elements as an array of string in]SON/YAML format (cobrapy issue #706).
When an SBML model is written in YAML/JSON format, the identifiers are represented as a single string if there is a

unique identifier, and as a list of strings, if multiple identifiers corresponding to that provider exist. This makes the
data type inconsistent and difficult to work with (string vs. a list of strings). This issue affects all formats supported
by cobrapy because the cobra model itself stores the provider-identifier data in this manner. As a solution,
consistent storage and serialization as a list of strings will be implemented, which will simplify the parsing of
JSON/YAML (and other formats). For this, the’ parse annotations () method (where this parsing is done) will be
updated.

e JSON export version attribute does not match JSON-scheme (cobrapy issue #720)
The current JSON scheme specifies the ‘version’ attribute of a JSON model to be of type integer, but the following

string type global variable is used to write the version attribute to SBML-JSON file:

https://github.com/opencobra/cobrapy/issues/706
https://github.com/opencobra/cobrapy/issues/720

JSON_SPEC = “1”

This produces a TypeError due to a type mismatch. This JSON_SPEC variable should be an integer because: (i) the
JSON scheme specifies its type to be of integer type, and (ii) the SBML also has its version of integer type. This issue
simply requires JSON SPEC to have an integer value instead of a string. Along with this, the version attributes of
other formats also (like YAML), should also be made of integer type to have consistent types for all formats.
Moreover, along with the version attribute, a level attribute should also be used (of integer type) to denote the
minor updates, as used in SBML format.

e Cannot export a model from |[SON to SBML when the annotation is a list of lists (cobrapy issue #736)
Many models in JSON format have annotations represented in the form of a list of lists (e.g., BiGG universal model).

Though the JSON scheme clearly defines annotation to be of type object (such as a python dictionary), some
models have annotation in the form of a list of lists. The motivation behind this can be that in SBML-XML, the
Annotation content type is any, allowing essentially arbitrary well-formed XML data content. But, even SBML places
restrictions on the organization of the content of the annotation (discussed in specification doc?). Hence, in JSON
also, the data structure format for annotation has to be fixed, which will be covered in Milestone 2.1 for the
complete implementation of annotation.

e JSON format does not support -infinity/infinity bounds (cobrapy issue #856)
The current JSON format for the representation of models does not allow any attribute (like upper/lower flux

bound of a reaction, reaction parameters, etc.) to take -infinity/infinity values. Though SBML supports infinity
values, if such a model is written in JSON a ValueError is thrown;

ValueError: Out of range float values are not JSON compliant: inf

This is not an error due to JSON not supporting infinity values. It is only because the value for the “allow_nan”
parameter passed to method json.dump (...)', which writes the model in JSON form, is currently false. The
‘allow_nan’ parameter specifies whether to allow NaN values (such as infinity, -infinity, number/0, etc.) to be written
from a dictionary to the JSON file or not. Hence, instead of using the default value to be false, the user should
decide whether to allow NaN values to be written to the JSON file or not. The corresponding method will be
modified, with an extra argument to enable the user to the setting of ‘allow_nan’value.

WP2: Provide full su

Meta-information in the SBML model is provided in the form of annotations and notes attached to each component of the
model. Currently, this meta-information is not fully supported in cobrapy, and many issues exist related to it. Different
metadata constructs attached to a component are used to to encode different information:
e Annotations to controlled vocabulary terms and database identifiers link to external resources and describe the
meaning of model components (addressed in Milestone 2.1).
e Notes are used to attach information to be seen by humans and are only minimally supported in the current version
of cobrapy (addressed in Milestone 2.2).
e Meta-information on model provenance and model history is encoded by the ModelHistory and Creator elements

(addressed in Milestone 2.3).

Milestone 2.1: Implementation of Annotation and meta-data support

Currently, Annotations of a component in the SBML model are defined in the Object class of cobrapy. This Object
class is the main parent class in cobrapy, and other classes which represent a component of the model, such as the
Reaction class, the Metabolite class, inherit from it The Object provides the basic attributes like name, id, etc.
which are used by all SBML components. Annotations are defined to be a dictionary type on Object without any
restrictions placed on the data inside the Annotation (the current scheme only specifies the annotation to be of type
object, i.e., dictionary). Currently, the parsing of annotation information from SBML to the cobra model is handled by

https://github.com/opencobra/cobrapy/issues/736
http://bigg.ucsd.edu/data_access
https://github.com/opencobra/cobrapy/issues/856

the ” parse annotations ()" method of cobra.core.io.sbml which maps the SBML annotation data using key-value
pairs in the annotation dictionary of the cobra model. This method does not store the biological qualifiers present in
the annotation. It merely maps the providers in the resource to the identifier. If there is more than one identifier
corresponding to a provider, it stores them as a list under the provider as key and list of identifiers as value. Hence,
the following SBML annotation (left) is currently stored in the following way in the cobra model (right)

SBML Annotation Cobra model annotation
<annotation> annotation = {
<rdf:RDF ...(other namespaces)... > “uniprot”: [“P77580”, “POA6A3”],
<rdf:Description rdf:about="#G_b0351"> “asap”: “ABE-0001207”,
<bgbiol:is> “ecogene”: “EG13625”,
<rdf:Bag> “ncbigene”: [“945008”, ~945008”]
<rdf:1i rdf:resource="https://identifiers.org/uniprot/P77580" /> }
<rdf:1i rdf:resource="http:s//identifiers.org/uniprot/POA6A3" />
</rdf:Bag>

</bgbiol:is>
<bgbiol:isEncodedBy>
<rdf:Bag>
<rdf:1i rdf:resource="https://identifiers.org/asap/ABE-0001207" />
<rdf:1i rdf:resource="https://identifiers.org/ecogene/EG13625" />
<rdf:1i rdf:resource="https://identifiers.org/ncbigene/945008" />
<rdf:1i rdf:resource="https://identifiers.org/ncbigene/945008" />
</rdf:Bag>
</bgbiol:isEncodedBy>
</rdf:Description>
</rdf:RDF>
</annotation>

The current implementation loses the biological qualifiers when an SBML model is converted to a cobra model. A
simple python dictionary is clearly insufficient to completely parse the annotation data because annotation can have
an arbitrary format, which makes its structure quite complicated, except in cases where either only external database
references are included via “is” relationships. There has been a discussion going on about the format for annotation,
and many issues have been reported regarding the storing of meta-information on the issue list of cobrapy. Attaching
other types of meta-data like the confidence score of a compartment, Gibbs free energy of a reaction, etc., are still
uncertain as to where they should be attached (issue #4). A generic Annotation class, with unique methods to check
the inner Annotation data format, is, hence, urgently needed to store all Annotation information in the internal
cobrapy data structure and to serialize Annotation objects from/to different model exchange formats. It will be best if
we, here also, follow the structure followed by libSBML to handle new different types of annotation, i.e., a tree of
XMLNodes (shown in fig. 5).

‘Note Dy MNete T B
A parent node can have | .all attributes present in that
‘ :many child nodes under it inode declaration :
CVTerm XMLNode : XMLAttribute
: 10..*
+ getListCVTerms() + getName() + getName()
+ getBiologyQualifier() : ge:ggﬂ_%(l?t (1“‘3‘?;‘) + getValue()
+ getNumResources() . N ggtNarrrllelsl 222(1;1 i) +getPrefix()
+ getResource(int i) 1. +gﬂPmﬁX6
+ addResource(string s) 8
+ addCvTerm(CVTerm c) Note =~~~ T XMLNamespace
+ setQualifier(string s) all namespaces presentl_
iin that hode declaration : + getName()
Fig. 4 CVTerm class to LT T | + getURI()

handle external resources

Fig. 5 An XMLNode in SBML document

https://github.com/opencobra/schema/issues/4
http://sbml.org/Software/libSBML/docs/cpp-api/class_x_m_l_node.html

The already defined annotation structures such as those of MIRIAM resources will have dedicated classes for their

easy handling because they are the one which mostly appears within the annotation field. But when some new,

self-defined meta-data is to be attached to any component, the XMLNode data structure will be best suited. For

MIRIAM resources annotation, the class structure will be similar to the CVTerm class of libSBML (fig. 4), which is used

to store the annotation’s data related to database identifiers in the libSBML models. Hence, within this milestone, a

general-purpose Annotation class will be implemented, which allows for handling the full spectrum of SBML RDF

annotations. Moreover, methods to validate the critical complex features of the annotation will be added, such as:

e Validation against MIRIAM resources and identifiers.org resources

e Handling annotation with “URL references,” which do not map to identifers.org resources, i.e., those resources
which cannot be split into a resource and an identifier.

e Encoding of complex composite annotations consisting of more than a single annotation term.

This will allow validation of annotations, e.g. if the annotations follow allowed patterns or not. The following structure

of annotation data in the class will look similar to a dictionary. Still, the data will be validated, and this structure will be

used to map the data to the corresponding SBML-JSON file.

Milestone 2.2: Provide complete support for Notes field in cobrapy model and SBML-]SON

The current SBML-JSON format does have no complete support for notes. The subcomponent Notes is a container for
XHTML 1.0 content. It is intended to serve as a place for storing optional information intended to be seen by humans.
Notes are currently supported in cobrapy only in a basic manner, i.e., only data of the form “<p>key: value</p>"is
parsed to the cobra model. But Notes can contain any well-formatted XHTML data, so any data not in the above form
is lost while parsing SBML to cobra models. It is, therefore, necessary to have a well defined structured format for
storing the notes field related to a component. So to handle the Notes, | propose the same format for handling Notes
that are used in the libSBML, i.e., a tree of XMLNodes (shown in fig. 5). Each Node in this tree will have a list of children
which themselves are going to be XMLNodes and also, a list of XMLAttributes and XMLNamespaces attached to that
Node. In this way, a complete hierarchical tree of XMLNode will be formed, and there will be no issue of having a
completely new different type of XHTML element anywhere. Also, to make the importing and exporting of some
simple general notes easy and less cumbersome, an unordered list will be added as one top-level child of the body
element of notes, and direct methods of adding and extracting notes from this unordered list will be made to make
the importing and exporting of general notes from the Notes field easy and simple. This way, there will be no
restriction on any type of data format until the notes data being added is following a general XHTML format.

Milestone 2.3: Support for meta-information about a model’s creator and history

So along with storing external resources, annotations are also used to store information]

about the model’s (or model component’s) creator and its history. Though, while reading ModelHistory

an SBML model from its corresponding SBML file, cobrapy stores this information in the + getCreator (int i)
cobra model (in a private attribute _sbml attached to the cobra_model), it is never used N giiﬁ;iiiﬁﬁi;iﬁg(mt i)
when the model is written in the JSON file, and, hence, this data is lost here. The parsing N Zggﬁgsiiigég;i?g;t?d)
from the SBML file to the cobra model related to the model’s history is not complete + addCreatedDate(Date d)
even, i.e., details about creator and the date of its creation is passed, the modification e &

data is not yet parsed. Hence, dedicated classes for encoding model provenance and 1

model history will be added to cobrapy within this milestone, which will ensure the

passing of complete meta-information of an SBML model. The ModelHistory class of 1.
libSBML, specifically used to handle data related to the last name, given name, email ModelCreator
address, organization, creation date, and modification date, will be taken as the R
reference class and the necessary methods to handle the data inside the model’s history + getFamilyName()

will be made (in fig. 6). Other than this, to handle the data that is not defined by this |} Setoraans2ation()
scheme but is valid XML syntax and is consistent with relevant standards for enclosing N zz:g;xgsagﬁé?;g:ggi)
elements (shown by ‘+++ in SBML specification document), the same XMLNode tree + setEmail(String s)
structure will be followed which will allow reading and writing of this extra content. A + setorghame(sString s)

simple JSON format out of this structure will then be made to write the corresponding Fig. 6 ModelHistory class o
handle model history

http://sbml.org/Software/libSBML/docs/cpp-api/class_c_v_term.html
https://co.mbine.org/standards/miriam
http://identifiers.org/
http://sbml.org/Software/libSBML/docs/cpp-api/class_x_m_l_node.html
http://sbml.org/Software/libSBML/docs/cpp-api/class_x_m_l_attributes.html
http://sbml.org/Software/libSBML/docs/cpp-api/class_x_m_l_namespaces.html
http://sbml.org/Software/libSBML/docs/cpp-api/class_model_history.html
http://sbml.org/Software/libSBML/docs/cpp-api/class_model_history.html
http://sbml.org/Software/libSBML/docs/cpp-api/class_x_m_l_node.html

data to the SBML-JSON file. To give you an instance, see the below conversion of the model’s creator and history from
SBML to JSON.

SBML Annotation JSON Annotation
<annotation> "annotation" : {
<rdf:RDF ...(other namespaces)...> "creator" : [
<rdf:Description rdf:about="#_180340"> {
<dcterms:creator> "fn" o {
<rdf:Bag> "text" : "Bruce Shapiro"
<rdf:1i rdf:parseType="Resource"> }s
<vcard4:fn> "email" : "bshapiro@jpl.nasa.gov",
<vcard4:text>Bruce Shapiro</vcard4:text> "organization-name" : "NASA Laboratory"
</vcard4:fn> }
<vcard4:email>bshapiro@jpl.nasa.gov</vcard4:email> 1s
<vcard4:organization-name> "created" : {
NASA Laboratory "W3CDTF" : "2005-02-06T23:39:40+00:00"
</vcard4:organization-name> }s
</rdf:1i> "modified" : [
</rdf:Bag> {"W3CDTF" : "2005-09-13T13:24:56+00:00"}
</dcterms:creator> 1

<dcterms:created rdf:parseType="Resource">
<dcterms:W3CDTF>2005-02-06T23:39:40+00:00</dcterms :W3CDTF>
</dcterms:created>
<dcterms:modified rdf:parseType="Resource">
<dcterms:W3CDTF>2005-09-13T13:24:56+00:00</dcterms :W3CDTF>
</dcterms:modified>
</rdf:Description>
</rdf:RDF>
</annotation>

WP3: Updating the current SBML-JSON scheme

Being able to validate data exchange formats against their specification is crucial for ensuring the correct and high-quality
exchange of information between tools. These become particularly important on the web. The basis of validating JSON
data is to provide a scheme of the respective data format, which clearly encodes the structure and allowed constructs in
the data file. It adds domain-specific rules on top of the generic JSON exchange format. Importantly, with an existing
scheme file, all tools can validate data sent in SBML-JSON against the scheme, because such functionality is routinely
included in JSON libraries and frameworks. Work-package 3 will update the current SBML-JSON scheme.

Milestone 3.1: Updating the current SBML-JSON scheme as per the features implemented above and other

additional unimplemented features.
The current SBML-JSON scheme does not support all features essential for representing constraint-based models and

needs updates to accommodate additional features. For example, the current SBML-JSON scheme does not put any
restrictions on the format of Annotations and Notes of a component. It merely specifies them to be of the type JSON
object (like python dictionary). However, as discussed in the above implementations, we are going to have a defined
format for our meta-information, therefore, corresponding to that format, the scheme will have to be updated. The
outdated scheme is blocking implementations of some tests also (such as test json.py), which are marked as xfail
(expected to fail due to some reason) due to the outdated scheme. Also, the current scheme does not have any
specification for groups; neither are groups written from SBML to JSON files. Hence, support for these additional
features will be added to the scheme and for the JSON format.

https://github.com/opencobra/cobrapy/blob/devel/cobra/test/test_io/test_json.py
http://doc.pytest.org/en/latest/skipping.html

Milestone 3.2: Updating the current SBML-JSON scheme draft version.

The current SBML-JSON scheme uses the draft-04 version of the scheme, whereas the latest draft version for the
scheme is draft-07. Though draft-07 is just a relatively minor update of draft-06, draft-06 has many notable updates
from draft-04. Hence, the SBML-JSON scheme requires a draft update also, which will make it compatible with the
current scheme draft specification. This will be covered as part of this milestone.

Milestone 3.3: Validation of SBML-JSON files against the scheme definition.

The scheme for SBML-JSON is currently not used to validate the JSON files in cobrapy. If the validation of a JSON file is
not performed at the time when the model is read, then subsequent errors may occur at the time when the model is
analyzed further. This will confuse the user about what could have gone wrong and makes it more challenging to
write algorithms based on the cobra model. An important task is, therefore, to implement validation of the JSON file
against the SBML-JSON scheme when the model is read from JSON.

Milestone 3.4: Testing and documentation of scheme definition

Test cases and test code for the scheme and scheme validation will be added. A test-suite of reference SBML-JSON
files will be created, which allows simple testing of SBML-JSON implementation in other tools. The updated annotation
format and other changes that are made in the SBML-JSON scheme will require updating existing tests of cobrapy.
Tests for the added features will be implemented. Along with this, all newly implemented features will be
documented to provide a complete description to users and developers.

Timeline

Date Tasks

April 1- May 3 1. Application submitted
2. Understand the cobrapy codebase with special focus on code
related to parsing of formats and features relevant for
constraint-based methods

May 4 - June 1 1. Interact with mentors, discuss implementation details and
finalize them
2. | have End term examination from 24th April to 4th May. So, | will
be a little less active during this period

June1-June 8 1. Resolve issues listed in Milestone 1.3
2. Start working towards Milestone 2.1, i.e., laying the detailed
structure of the Annotation class

June 9 - June 24 1. Start implementation of Annotation classes
2. Complete Milestone 2.1, Milestone 2.3 and the listOfKeyValue
feature from Milestone 1.1

June 25 - June 28 1. Make test cases for the above classes as part of Milestone 3.4
2. Document the above classes as part of Milestone 3.4

PHASE-1 EVALUATION
June 29 - July 3 Write my blog and interact with mentors for evaluation

July 4 - July 8 1. Implement complete Notes feature in cobrapy as well as
SBML-JSON (Milestone 2.2)

July 9 - July 22 1. Implement support for new fbc-v3 features (Milestone 1.1)
2. Implement support for Groups in SBML-JSON (Milestone 1.2)

July 23 - July 26 1. Make test cases for the above features as part of Milestone 3.4
2. Document the above features as part of Milestone 3.4

https://tools.ietf.org/html/draft-zyp-json-schema-04
https://json-schema.org/draft-07/json-schema-release-notes.html
https://json-schema.org/draft-06/json-schema-release-notes.html

PHASE-2 EVALUATION

July 27 - July 31 Write my blog and interact with mentors for evaluation
August 1- August 6 1. Update JSON scheme (Milestone 3.1)
2. Update the draft version of the scheme (Milestone 3.2)
August 7 - August 19 1. Validation of JSON files against scheme (Milestone 3.3)
August 20 - August 23 1. Work on test cases and fix old broken tests (Milestone 3.4)

2. Final documentation of all features (Milestone 3.4)

FINAL EVALUATION

August 24 - August 31 Interact with mentors for evaluation and submission of complete
code

Gantt Chart

start end ‘
04/05/20 01/06/20 | | nh i ling
04/05 01/06 ! Discussing Details with mentors
13/05 01/06 Understanding the codebase deeply
01/06/20 03/07/20 1 Phase-1
01/06 08/06 | Solving existing issues
09/06 24/06 Working pn Annotation class
25/06 28/06 kging Test cases and Documentation
29/06 03/07 Phase-1 Evaluation
04/07/20 31/07/20 , 1 Phase-2
04/07 08/07 Working on Notes feature
09/07 22/07 Support for fb¢-v3 and groups [
23/07 26/07 Making Test cases and Documentation
27/07 31/07 Phase-2 Evaluation
01/08/20 31/08/20 Final Phase |

01/08 06/08 JSON schema update

07/08 19/08 Validation of JSON files against schema

20/08 23/08 aking Test cases and Documentation
24/08 31/08 Final Evaluation

Prior Contributions

Pull Requests Merged
I. PR #930: This PR is part of jssue #736, i.e., handling annotation when they are a list of lists.

[l. PR #943: This PR is solving issue #902, i.e., handling model notes which are not written to the SBML file.

Issues Opened
I. Issue #937: The issue was about the loss of relational qualifiers when round-tripping the SBML - cobra model -
SBML. Though, it was later found that this issue already exists and has been reported.

About Me

Education

I. 1 am an undergraduate (B. Tech.) majoring in Computer Science and Engineering, currently in the second year of my

studies.
[l. Relevant courses include Object-Oriented Programming, Object-Oriented Analysis and Design, Data Structures and
Algorithms, and Software Engineering.

10

https://github.com/opencobra/cobrapy/pull/930
https://github.com/opencobra/cobrapy/issues/736
https://github.com/opencobra/cobrapy/pull/943
https://github.com/opencobra/cobrapy/issues/902
https://github.com/opencobra/cobrapy/issues/937

Experience

| have been actively involved in Mobile Development since my first year. | have made several apps and libraries,
which gave me substantial experience in JAVA™, XML, JSON (Networking), and working with APIs.

| am experienced in Web Development since | have been involved in it for the last year, both frontend and backend
in a few projects. This gave me experience, among others in React (Javascript), Django (Python), and Node.js
(JavaScript). My JSON experience comes from these web projects also, as JSON is the dominant data exchange format
for most web applications.

Being familiar with technologies such as version control (git), collaborative development using Github, and
experience with various IDFE's, it will not take me time getting all set with development.

IV. My projects can be viewed on my Github account.

V. | have prior experience with Biology up to the tenth standard. | further studied chemistry up to twelfth standard as
the main subject for the Joint Entrance Examination (|[EE), where | learned about different types of reactions, rate
laws, etc. under chemical kinetics.

Why Me?

l. It might sound a little odd, but | find myself as an individual who is always curious about learning new things and
interacting with other people. By working with an organization like NRNB and its amazing members, | will learn many
new things, not just about data handling and its manipulation from one format to another, but also about various
biology models and the processes they carry out to support life.

II. | have prior experience with software development, as | have done numerous coursework projects and projects by
myself. | am familiar with software development practices in teams.

Ill. Always being a team player, | understand the importance and way of working in open source development. | respect
everyone's views and am familiar with best practices and recommendations.

IV. | have been in constant touch with the mentors of the project and the members of cobrapy, getting a better

understanding of the project via self-exploration and regular clarification of unclear points with the cobrapy team
and mentors.

Commitments/Precautions

| have my end semester examination scheduled from 24th April to 4th May (community bonding period). So | will be
a little less active during this period. Other than this, | have no prior commitments. Because of unforeseen events, |
may be unavailable for a day or two at maximum. Still, | will make sure to inform my mentors about the unavailability
as soon as | can. Apart from this, | have ample time to give to the project, an average of about 40-45 working hours
per week. | do not have any other internship/project for this summer, so | will easily be able to manage time for the
project.

References
[11 http://sbml.org/Main_Page
[2] http://sbml.org/Documents/Specifications/SBML Level 3/Version 2/Core

[3] http://sbml.org/SBML Software Guide
[4] http://sbml.org/Software/libSBML

[5] http://sbml.org/Software/|SBML

[6] https://www.json.org/json-en.html

[71 https://opencobra.github.io/cobrapy/

[8] http://bi /

[9] https://github.com/nrnb/GoogleSummerOfCode/issues/137

[10] https://docs.python.org/3/library/json.html

[11] https://pypi.org/project/scipy/

[12] https//www.swig.org/

[13] http://bigg.ucsd.edu/data_access

[14] https://github.com/opencobra/cobra-component-models

n

https://github.com/Hemant27031999
https://en.wikipedia.org/wiki/Joint_Entrance_Examination
http://sbml.org/Main_Page
http://sbml.org/Documents/Specifications/SBML_Level_3/Version_2/Core
http://sbml.org/SBML_Software_Guide
http://sbml.org/Software/libSBML
http://sbml.org/Software/JSBML
https://www.json.org/json-en.html
https://opencobra.github.io/cobrapy/
http://bigg.ucsd.edu/
https://github.com/nrnb/GoogleSummerOfCode/issues/137
https://docs.python.org/3/library/json.html
https://pypi.org/project/scipy/
http://www.swig.org/
http://bigg.ucsd.edu/data_access
https://github.com/opencobra/cobra-component-models

	Implementation of SBML-JSON converter and SBML-JSON scheme
	Student
	Mentoring Organization
	Mentors
	About the Project
	Motivation
	Goals
	Work plan
	WP1: Comprehensive coverage of SBML features in SBML-JSON
	Milestone 1.1: Complete support of FBC-version 3 features in SBML-JSON
	Milestone 1.2: Complete support of ‘Groups’ features in SBML-JSON
	Milestone 1.3: Solving issues related to model representation

	●​The consistent output of multiple-value elements as an array of string in JSON/YAML format (cobrapy issue #706).
	●​Cannot export a model from JSON to SBML when the annotation is a list of lists (cobrapy issue #736)
	●​JSON format does not support -infinity/infinity bounds (cobrapy issue #856)
	WP2: Provide full support of meta-information in SBML-JSON
	Milestone 2.2: Provide complete support for Notes field in cobrapy model and SBML-JSON
	Milestone 2.3: Support for meta-information about a model’s creator and history

	WP3: Updating the current SBML-JSON scheme
	Milestone 3.1: Updating the current SBML-JSON scheme as per the features implemented above and other additional unimplemented features.
	Milestone 3.2: Updating the current SBML-JSON scheme draft version.
	Milestone 3.3: Validation of SBML-JSON files against the scheme definition.
	Milestone 3.4: Testing and documentation of scheme definition

	
	Timeline
	Gantt Chart
	
	Prior Contributions
	I.​Issue #937: The issue was about the loss of relational qualifiers when round-tripping the SBML - cobra model - SBML. Though, it was later found that this issue already exists and has been reported.
	About Me
	Education
	Experience
	Why Me?
	Commitments/Precautions

	References

